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Abstract: This article explores the emerging field of nanomedicine as a drug delivery system, aimed
at enhancing the therapeutic efficacy of active pharmaceutical ingredients in medicinal plants. The
traditional methods of applying medicinal plants present several limitations, such as low bioavail-
ability, poor solubility, challenges in accurately controlling drug dosage, and inadequate targeting.
Nanoformulations represent an innovative approach in drug preparation that employs nanotech-
nology to produce nanoscale particles or carriers, which are designed to overcome these limitations.
Nanoformulations offer distinct advantages, significantly enhancing the solubility and bioavailability
of drugs, particularly for the poorly soluble components of medicinal plants. These formulations
effectively enhance solubility, thereby facilitating better absorption and utilization by the human body,
which in turn improves drug efficacy. Furthermore, nanomedicine enables targeted drug delivery,
ensuring precise administration to the lesion site and minimizing side effects on healthy tissues.
Additionally, nanoformulations can regulate drug release rates, extend the duration of therapeutic
action, and enhance the stability of treatment effects. However, nanoformulations present certain
limitations and potential risks; their stability and safety require further investigation, particularly
regarding the potential toxicity with long-term use. Nevertheless, nanomaterials demonstrate sub-
stantial potential in augmenting the efficacy of active pharmaceutical ingredients in medicinal plants,
offering novel approaches and methodologies for their development and application.

Keywords: nanoformulations; medicinal plant; bioavailability; triggered release; targeting

1. Introduction

The global healthcare field is experiencing an increasing demand for more effective,
safe, and sustainable treatment methods [1]. Medicinal plants, a crucial component of
traditional medicine, have a long history of use and considerable therapeutic potential. The
World Health Organization reports that 80% of individuals in developing countries depend
on natural medicines to meet their daily medical needs [2]. Approximately 11% of drugs
listed in the World Health Organization’s Essential Medicines List are derived entirely from
medicinal plants [2]. The global market for plant-based medicines is substantial, expanding
at an annual rate of 13%; by 2050, market demand is projected to reach $5 trillion [3,4].

Medicinal plants refer to plants used for disease prevention and treatment, all or part
of which can be used for medicinal purposes or as raw materials for the pharmaceutical
industry [5]. With a total of 11,146 species of medicinal plants, China is one of the coun-
tries with the richest resources of medicinal plants. Additionally, China is the world’s
largest producer and supplier of herbal medicines, with a long history of discovering,
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utilizing, and cultivating medicinal plants [6,7]. However, the share of Chinese herbal
medicine in the global traditional medicine market is relatively small, representing only
approximately 10% [8]. Low bioavailability and poor solvent solubility significantly impact
the effectiveness and utilization of medicinal plants, contributing to their limited market
share [9]. Many bioactive compounds in medicinal plants, including flavonoids, terpenes,
and saponins, have high water solubility but exhibit low absorption by the human body.
Due to their high molecular weight, which hinders the penetration of lipid membranes,
their absorption rate is low, leading to reduced bioavailability and efficacy [10–12]. Fur-
thermore, some valuable medicinal plant resources are scarce, and traditional preparation
methods, such as decoctions, pills, ointments, etc., have led to the suboptimal utilization of
their medicinal effects, resulting in resource waste [13]. For example, luteolin is a flavonoid
compound found naturally in a variety of plants, fruits, and vegetables. In traditional
Chinese medicine, luteolin is used to treat high blood pressure, cancer, and inflammatory
diseases. However, its clinical application is severely limited due to its low solubility in
water and oral availability [14]. Other studies have shown that the content of ginsenosides,
the active ingredient of ginseng, varies depending on factors such as variety, origin, and
growth years, which makes the quality of ginseng difficult to control. In addition, the
dosage of ginseng is also difficult to precisely control, and the excessive consumption of gin-
seng may cause adverse reactions such as irritation, insomnia, and heart palpitations [15].
In this context, exploring novel methods to enhance the efficacy of active pharmaceutical
ingredients in medicinal plants is crucial.

In recent years, people’s interest in nanotechnology has shown exponential growth,
driving the emergence of multidisciplinary nanomedicine. This field is increasingly be-
ing explored to develop new strategies for diagnosing, treating, and preventing diseases,
reducing pain, and maintaining and enhancing human health [16–18]. Specifically, as an
emerging drug delivery system, nanomaterials have shown significant potential in the
field of medicinal plants, as shown in Figure 1. Previous studies have shown that the
solubility and stability of certain active ingredients in medicinal plants can be significantly
improved through nanoformulations. For example, after extracting active ingredients such
as paclitaxel, curcumin, luteolin, and quercetin from medicinal plants into nanoformula-
tions, their pharmacological effects have been significantly improved [19–21]. Moreover,
by combining medicinal plant extracts or active ingredients with nanoformulations, their
targeting and triggered release performance can be improved, thereby achieving more
effective therapeutic effects [22,23].
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Figure 1. Advantages of improving the efficacy of active pharmaceutical ingredients in medicinal
plants through nanoformulations.
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The purpose of this review is to systematically summarize the current application
status of nanomaterials in enhancing the efficacy of active pharmaceutical ingredients in
medicinal plants, analyze the problems and difficulties in the existing research, and explore
the future development directions and solutions. By comparing the performance of different
nanoformulations, evaluating their pharmacokinetic behavior in vivo, and exploring their
interactions with active ingredients in medicinal plants, theoretical support and practical
guidance can be provided for further optimizing the efficacy of active pharmaceutical
ingredients in medicinal plants.

2. Nanoformulations of Medicinal Plant

There are generally the following two forms of development for the nanoformulations
of active pharmaceutical ingredients in medicinal plants: nano ultrafine technology and
drug nanocarriers [24]. Through nano ultrafine technology such as the recrystallization and
pulverization methods (e.g., ball milling and airflow pulverization), traditional Chinese
medicines unsuitable for industrial extraction processes, such as mineral or poisonous
medicines, and those with easily destructible active ingredients, are finely ground. As the
surface area of drug particles expands, a large number of active ingredients are generated,
imparting rich physical and chemical properties [25,26]. This method processes and crushes
traditional Chinese medicine particles to the nanometer level, representing the initial
technology for nano-traditional Chinese medicine. Nanocarrier encapsulation of drugs
inherits and develops the ultrafine technology, enabling changes in the drug distribution,
regulation of release rate, and enhancement of bioavailability for insoluble drugs [27,28].
Nanodrug carriers achieve passive targeting by enhancing the permeability and retention
effects, whereas ligands attached to their surface deliver drugs to specific cells or organs,
achieving active targeting [29].

The nano-dosage forms of active pharmaceutical ingredients in medicinal plants
primarily include nanoparticles and drug nanocarriers [30]. The nanoparticles of the
active pharmaceutical ingredients in medicinal plants encompass nanosuspensions, nano-
eutectics, and similar forms, whereas drug nanocarriers exhibit a diverse range of dosage
forms, including liposomes, nanoparticles, nanoemulsions, and colloidal polymers [31,32].
In recent years, recent advancements in the research and development of nanocarriers have
led to significant progress, including the further modification of carrier surfaces and the
incorporation of surface-active agents such as transferrin, folate, low-density lipoprotein,
peptides, lectins, and epidermal growth factor. These enhancements notably improve
drug targeting, bioavailability, and solubility [33–35]. Furthermore, novel nano-based
preparations of Chinese medicines, including eutectics, inorganic carriers, phospholipid
complexes, and suspension gels, have also been reported [36,37]. The development of
nano-dosage forms for active pharmaceutical ingredients in medicinal plants increasingly
focuses on enhancing targeting, bioavailability, and solubility.

2.1. Nanoliposomes

Nanoliposomes are known as nanoscale bilayer lipid vesicles, typically ranging in size
from 20 nm to 200 nm, primarily composed of lipids and phospholipids. They may addi-
tionally incorporate other molecules such as carbohydrates, proteins, and sterols [38,39]. As
shown in Figure 2, during vesicle formation, nanoliposomes encapsulate both hydrophilic
and hydrophobic compounds individually or simultaneously due to their bilayer structure
consisting of lipid and aqueous components. Hydrophilic substances are encapsulated within
the aqueous regions, including the central core, whereas hydrophobic molecules are inte-
grated into the lipid bilayer membrane or vesicle [40,41]. Compounds encapsulated within
nanoliposomes can be released gradually via double-layer diffusion or vesicle degradation
triggered by variations in the pH, osmotic pressure, ionic strength, or temperature [39,42,43].
Nanoliposomes that enter the cell through receptor-mediated endocytosis or other endocytic
pathways first enter the early endosomal vesicles. The acidic environment in the endosomes
can lead to changes in the structure and properties of the nanoliposomes [44]. For example,
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some pH-sensitive liposomes may release drugs in the acidic environment of the insiders [45].
Subsequently, endosomes may fuse with lysosomes, and nanoliposomes and their encap-
sulated drugs are transported into lysosomes. In lysosomes, drugs may be degraded by
hydrolases, and some nanoliposomes are specially designed to avoid being degraded by lyso-
somes, so as to achieve the release of drugs in cells [46]. After some nanoliposomes enter cells
through caveolin-dependent endocytosis, they first enter the subcellular compartments of the
non-lysosomes and eventually diffuse into the cytoplasm; they may further enter organelles
such as the Golgi apparatus and endoplasmic reticulum. In these organelles, nanoliposomes
and their encapsulated drugs may be involved in some physiological processes within the
cell, or they may be secreted outside the cell through the transport mechanism of organelles
to achieve cross-cellular transport of drugs or their effects in specific organelles [47,48].
Nanoliposomes loaded with hydrophobic compounds, such as phenolic compounds [49],
significantly enhance their solubility and bioavailability, as discussed further in Section 3.
Furthermore, the unique bilayer and biofilm structure of nanoliposomes closely resemble
natural cell membranes and can mimic their behavior. This capability enables targeted
drug delivery into the cells, significantly minimizing damage to the human tissues [50,51].
Nanoliposomes are unquestionably robust and flexible drug delivery systems. Furthermore,
their targeting-triggered release and stability properties modify the drug pharmacokinetics
and biological distribution, holding substantial promise in tumor therapy [52,53].
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2.2. Nanoemulsion

Nanoemulsions serve as optimal drug delivery carriers, offering superior encapsu-
lation and delivery capabilities for poorly soluble or lipophilic drugs, thereby shielding
them from the impacts of hydrolytic enzymes, gastrointestinal pH, and other environ-
mental conditions [54]. After the nanoemulsion enters the body, it is transported into
the bloodstream. Factors such as particle size, surface properties, and binding to plasma
proteins affect its stability and circulation time in the blood [55]. Smaller particle sizes and
proper surface modifications can reduce the probability of being recognized and cleared
by immune system cells such as macrophages, thereby prolonging the time of presence
in blood circulation. Nanoemulsions can be enriched in specific tissues or organs by pas-
sively targeting or actively targeting mechanisms. Passive targeting takes advantage of
the high permeability and retention effect (EPR effect) of the tumor tissues and other sites,
making it easier for nanoemulsions to accumulate at these sites. Active targeting involves
attaching specific antibodies, ligands, or molecules to the surface of the nanoemulsion
so that they can specifically recognize and bind to receptors on target tissues or cells for
more precise drug delivery [56–58]. These isotropic systems are typically transparent or
semi-transparent, with particle sizes ranging from 20 to 500 nm. The drug is evenly dis-
tributed within nanodroplets to achieve dispersion, while equilibrium and stability are
maintained through the interfacial layer of emulsifiers and co-emulsifiers, ensuring both
thermodynamic and kinetic stability [59,60]. Nanoemulsions feature small droplet sizes
and possess the capability to solubilize poorly soluble and hydrophobic drugs, thereby
enhancing drug solubility and bioavailability [61]. Drug release from nanoemulsions begins



Nanomaterials 2024, 14, 1598 5 of 26

with the drug transitioning from the oil phase into a surfactant layer, followed by entry
into the aqueous phase. Upon diffusion from the oil, the dissolved drug interfaces with the
surrounding water, significantly amplifying its surface area [62].

Nanoemulsions are categorized as oil-in-water, water-in-oil, oil-in-oil, water-in-water
bicontinuous emulsions, and nanoemulsions (as depicted in Figure 3). In an oil-in-water
emulsion, oil droplets are dispersed within a continuous aqueous phase [62]. In a water-
in-oil emulsion, water droplets are dispersed within a continuous oil phase [63]. Water-
in-oil nanoemulsions are produced via a two-step high-energy method, involving initial
emulsification of oil in the water phase, followed by re-emulsification into the oil phase [60].
These nanoemulsions comprise a multi-chamber system, where water-in-oil emulsions are
dispersed as droplets within an external aqueous phase [64]. Water-in-oil nanoemulsions
serve as templates for nano gels that encapsulate internal oil droplets within a hydrogel
matrix. In the dual-continuous nanoemulsion system, both oil and water droplets are
dispersed throughout the system [65].
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2.3. Nano Micelles

Nano micelles are typically self-assembled nanoscale colloidal dispersions ranging in
size from 10 to 100 nm, characterized by hydrophobic cores and hydrophilic shells, enabling
the enhanced solubility and stability for hydrophobic drugs [66,67]. This thermodynam-
ically driven process occurs above a concentration threshold defined by the copolymer,
known as the critical micelle concentration [68]. As shown in Figure 4, due to this structural
property, micelles are better protected from recognition by the monocyte–macrophage
system, prolonging blood circulation. Nano micelles can pass through the gaps between
vascular endothelial cells and enter the interstitial space by passive diffusion. Factors
such as particle size, surface properties, and hydrophilic/hydrophobic balance affect the
efficiency of passive transport. For example, nano micelles with smaller particle sizes
and moderate surface hydrophilicity are more likely to enter tissues through the vascular
endothelial intercellular space [69,70]. The external hydrophilic corona can be modified
with molecules such as transferrin, folate, low-density lipoprotein, peptides, lectins, and
epidermal growth factor and its polymer structure can provide additional modification
sites to facilitate active targeting [71,72]. Nano micelles encompass both polymer and
surfactant micelles, exhibiting varied morphologies such as spherical, tubular, reverse mi-
celle, and bottle brush structures depending on hydrophobicity, hydrophilicity, and solvent
conditions. They enhance the cellular uptake of carrier micelles and offer an alternative
internalization pathway via endosomes, which is critical in pathology where drug therapy
efficacy is affected by drug efflux mechanisms linked to multidrug resistance. These ad-
vantages result in significant pharmacokinetic improvements, including prolonged mean
residence time in the bloodstream, enhanced bioavailability, precise drug delivery to target
tissues, and potentially reduced dosage to mitigate nonspecific organ toxicity.
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2.4. Nanoparticles

Nanoparticles typically refer to tiny particles ranging from 1 to 100 nm, with their
larger surface area and nanoscale size endowing them with unique physicochemical prop-
erties [73]. These nanoparticles can consist of single substances such as titanium dioxide,
silver nanoparticles, gold nanoparticles, iron oxides, or complexes such as polymer–drug
complexes, and nucleic acid–nanoparticle complexes, among others [74–77]. When nanopar-
ticles enter living organisms, they first come into contact with biological fluids (e.g., blood,
tissue fluids, etc.). Various components in biofluids, such as proteins, lipids, sugars, etc.,
quickly adsorb to the surface of the nanoparticles, forming the so-called “protein corona”.
The composition and structure of the protein corona depend on the physicochemical prop-
erties of the nanoparticles (e.g., size, shape, surface charge, hydrophilicity, etc.) and the
environment of the biofluid (e.g., protein concentration, pH, ionic strength, etc.) [78,79].
For example, gold nanoparticles are smaller in size but have a relatively large specific
surface area, which can provide more binding sites for proteins and make it easier to
adsorb some low-molecular-weight proteins, such as albumin and transferrin [80]. Polymer
nanoparticles with a diameter of several hundred nanometers may bind more to macro-
molecular proteins such as immunoglobulins [81]. The formation of protein corona will
change the surface properties of nanoparticles and affect their subsequent interactions
with biological systems, such as biorecognition, immune response, and cellular uptake
of nanoparticles [82,83]. Nanoparticles may be recognized by the immune system as a
foreign body, triggering an immune response. Immune cells such as macrophages and
monocytes can ingest nanoparticles through phagocytosis, which can lead to the removal
of nanoparticles before they reach the target site, reducing the efficiency of drug delivery.
To avoid this, researchers utilize substances such as folate, protein, polysaccharides, and
polyethylene glycol to modify nanoparticle surfaces, thereby designing nanoparticles for
targeting specific tissues or cells, improving drug targeting precision while minimizing
damage to healthy tissues [84,85]. Compared to other nanoscale delivery systems, nanopar-
ticles prioritize drug protection, precise triggered release, and effective drug loading. They
are suitable for water-soluble and sustained-release drugs like peptide drugs that protect
them from degradation by gastric acid, ensuring stability and effectiveness in target tissues
or cells [86,87].

In addition to the conventional nano delivery systems mentioned above, these in-
clude metal–organic frameworks, upconversion nanoparticles, metal nanoelements, and
carbon dots. Table 1 classifies these nano-delivery vectors and describes their comparative
advantages and limitations.
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Table 1. Comparative advantages and limitations of various nanocarriers.

Type Comparative Advantage Limitations References

Nanoemulsion
Strong drug-loading capacity. The
particle size is small and uniform.
High bioavailability.

Potential toxicity of surfactants; the
storage conditions are demanding. [59,60,62,88]

Nano micelles

High loading capacity, good
stability in blood, prolonged
circulation time, low number of
side effects, and protects internal
drugs from degradation.

Stability still needs to be improved;
complex behavior in vivo [89,90]

Nanoliposomes
Passive targeting of drugs, highly
efficient cargo delivery, reducing
cargo toxicity.

The storage and transportation
conditions are demanding;
stability issues.

[38,91–94]

Upconversion nanoparticles
Unique optical properties, low
toxicity and good biocompatibility,
and easy surface functionalization.

The optical conversion efficiency
needs to be improved. The drug
load is relatively low.

[95]

Metal-organic framework

High specific surface area and
porosity, biodegradability,
structure and performance can
be adjusted.

Synthesis and preparation are
complex. There are limited studies
on drug loading and
release kinetics.

[96,97]

Nanometallic elemental

Low cytotoxicity, controlled size
and surface, easy synthesis, high
cell permeability, ability to bind
many molecules on their surface,
high drug-loading capacity.

Clearance problems in the body;
difficult to achieve complex drug
delivery patterns.

[98,99]

Carbon dots

Very high elastic modulus and
mechanical strength, high
electrical and thermal conductivity,
prolonged circulating time, cell
membrane permeability, high
aspect ratio allowing for high
drug loading.

Limited drug loading. Preparation
is complex and costly. [100]

3. Advantages of Nanoformulations in Enhancing the Efficacy of Medicinal Plants

With the continuous advancement of nanotechnology, nanoformulations increasingly
play a pivotal role in enhancing the efficacy of active pharmaceutical ingredients in medic-
inal plants [25]. In addition to the above-mentioned characteristics, nanoformulations
exhibit good biocompatibility, helping to weaken the repulsion between drugs and tissues
in the body and thereby reducing the side effects on healthy tissues [26]. Based on this,
we summarize the advantages of nanoformulations in enhancing the efficacy of active
pharmaceutical ingredients in medicinal plants (see Table 2).
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Table 2. Improving the bioavailability and drug activity of active pharmaceutical ingredients in
medicinal plants through nanoformulations.

Nanoformulations Active Ingredient Impacts Reference

Nanoemulsion Curcumin

Compared with curcumin dispersed in
conventional hydrogel systems, the
developed curcumin nanolatex exhibits
thixotropic rheological behavior with a
significant increase in skin permeability.

[12,49,101,102]

Nanoemulsion Brucine

Brucine-loaded nanolatex exhibits
superior anti-inflammatory and
antinociceptive activity in reducing
hind paw swelling and inhibiting acetic
acid-induced abdominal writhing
compared to brucine-loaded gels or
brucine-loaded latex.

[54,55,60,61,63,103]

Nanoemulsion Quercetin
In four delivery systems, the highest
bioavailability of quercetin was
observed in nanoemulsions.

[104–108]

Nanoparticles Puerarin
Compared with free puerarin,
poly-puerarin nanoparticles have the
best anti-tumor effect.

[72,76,77,109]

Nanoparticles Naringenin

In experimental rat models,
naringenin-loaded nanoparticles were
more effective than free naringenin in
improving Streptozotocin-induced
diabetogenic effects.

[94,110–113]

Nanoparticles Quercetin

The amount of quercetin loaded on the
ZnO nanoparticles reached 210 µg/mg,
and the half maximal inhibitory
concentration value of ZnO-quercetin
nanocomposites for Michigan Cancer
Foundation-7 breast cancer cells was
0.01 (0.07 µg/mL for free quercetin).

[51,105,114–116]

Nano micelles Naringenin

Compared with pure bovine
beta-casein micelles,
naringenin-containing bovine
beta-casein micelles had a lower critical
micelle concentration and a larger
aggregation number, which greatly
increased the concentration of
naringenin in aqueous solution.

[111,112,117,118]

Nano micelles Podophyllotoxin

Compared with the other two cytotoxic
agent-loaded micelles,
podophyllotoxin-loaded micelles had
the highest activity.

[89,119,120]

Nano micelles Thymoquinone

Thymoquinone polymer micelles
exhibit better wound-healing effects
than natural thymoquinone and
silver sulfadiazine.

[90,120,121]

Nanoliposomes Sargassum boveanum

After encapsulating the extract with
nanoliposomes, Sargassum boveanum
retained a high proportion of phenolic
compounds for antioxidant properties.

[92,93,122]
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Table 2. Cont.

Nanoformulations Active Ingredient Impacts Reference

Nanoliposomes Capsaicin

Compared with capsaicin,
nanoliposomes encapsulating capsaicin
have improved pharmacokinetic
properties, enhanced anticancer activity,
and selectivity.

[38,91,123]

Nanoliposomes Lutin Better protection of the vitality of rutin
bioactive compounds. [52,93,123]

Nanocrystals Resveratrol

Compared to nonnanocrystalline forms,
resveratrol nanocrystals exhibit better
anti-tumor effects than resveratrol
itself.

[102,124,125]

Nanocrystals Isoliquiritigenin
Compared with the free form of
isoliquiritigenin, it has higher solubility
and lower toxicity to cells.

[126–128]

Nanocrystals Breviscapine

Compared with brevisanthin
microparticle formulations,
brevisanthin nanocrystals can provide
relatively stable drug concentrations in
plasma for a long time.

[124,129]

Nanocrystals Ginkgolide B

Ginkgolide B nanocrystals show higher
drug plasma levels and neuronal drug
distribution compared to free
ginkgolide B.

[127,128]

3.1. Improve Bioavailability and Drug Activity

Flavonoids are crucial polyphenolic antioxidants present in various parts of medicinal
plants, including the roots, stems, leaves, and flowers [130,131]. As secondary metabolites,
they are synthesized and accumulated throughout the growth process of these plants [132].
The unique structure of flavonoids not only endows them with defensive, protective, and
communicative functions in plants but also imparts medicinal value [133]. However, the
hydrophobic nature of most flavonoids results in low bioavailability, which hinders their
clinical applications. Recently, combining flavonoids with nano-delivery systems has been
anticipated to offer novel strategies to address this challenge.

Baicalin, a flavonoid component derived from the traditional Chinese medicine Huang-
cen, is primarily extracted from the dried roots, stems, and leaves of this plant. It exhibits a
range of pharmacological effects commonly associated with traditional Chinese medicine,
including antibacterial, antiviral, antioxidant, anti-inflammatory, and anti-tumor prop-
erties [134,135]. Recent studies suggest that baicalin has potential applications in both
chemotherapy and immunotherapy, and it is anticipated to emerge as a novel anti-tumor
agent with dual chemotherapy and immunotherapy effects. However, as a chemothera-
peutic agent, baicalin suffers from poor solubility and necessitates high doses to achieve
significant tumoricidal effects. At elevated doses, baicalin is prone to cumulative toxi-
city and other adverse side effects [136–138]. Additionally, baicalin is a small-molecule
flavonoid glycoside characterized by low hydrophilicity and lipophilicity. It is insolu-
ble in water at room temperature, resulting in poor water solubility and consequently
low bioavailability [139]. The low water solubility and inadequate absorption of baicalin
constrain its clinical applicability.

Nanoparticle-based drug delivery systems are effective methods for enhancing drug
efficacy. Various nanoparticle formulations of baicalin have been explored, including
nanocrystals, nanoemulsions, nanoliposomes, nano micelles, and nanophospholipid com-
plexes, to improve their bioavailability and solubility. Mi et al. [140] developed a baicalin
nanoparticle drug delivery system using zeolite imidazole framework-8 (ZIF-8) as a carrier.
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Notably, 4T1 breast cancer cells were inoculated into female BALB/c mice for in vivo
experiments. By degrading the outer layer of polyethylene glycol–folate–folate in an acidic
environment with reduced pH in the cancer cells, the ligand bonds of ZIF-8 were also grad-
ually broken in the acidic environment, thereby slowly releasing the drug and inhibiting
the growth of the cancer cells. Wei et al. [141] were the first to develop a baicalin-loaded
nanoliposome system for targeted lung delivery. In vitro evaluations revealed that the
baicalin-loaded nanoliposomes exhibited high encapsulation efficiency and exceptional sta-
bility. Nude mice carrying orthotopic human lung cancer cells were injected intravenously
with the same volume of blank nanoliposomes, baicalin solution (100 mg baicalin/kg body
weight), and baicalin nanoliposomes (100 mg baicalin/kg body weight); in vivo evalu-
ations demonstrated that the baicalin-loaded nanoliposomes significantly increased the
drug concentration in the lungs following a single intravenous administration. Notably,
the baicalin-loaded nanoemulsion appeared to be more effective than the other nanofor-
mulations. Xu et al. [142] developed a water-in-oil nanoemulsion loaded with baicalin. By
examining the degree of lymphatic uptake in rats, it was found that compared with baicalin
suspension, the bioavailability of baicalin in the nanoemulsion increased, and its detectable
concentration in vivo was sustained for at least 12 h. This enhancement may be attributed
to the increased permeability induced by surfactants and co-surfactants, sustained release
of baicalin, and augmented uptake through lymphatic transport [142,143]. From this, it can
be seen that baicalin nanoformulations are more effective than traditional formulations,
exhibiting better absorption and higher bioavailability.

Naringin, a type of citrus flavonoid, exhibits diverse biological activities such as an-
tioxidant, anti-diabetic, anticancer, anti-inflammatory, antidepressant, anti-obesity, anti-
hypertensive, and cardiovascular disease prevention. Despite these health benefits, Naringin’s
therapeutic potential remains constrained by its low water solubility and poor permeabil-
ity [111,112,118]. Being hydrophobic, naringin exhibits low solubility in aqueous buffers,
approximately 475 mg/L [113]. The oral bioavailability of naringin in both animals and
humans is less than 10% [144], possibly due to reduced gastrointestinal absorption involving
passive diffusion and active transport mechanisms [145].

Recent studies on encapsulating naringin with biopolymers have garnered significant
attention among researchers. Biopolymers are preferred over other nanocarriers for deliver-
ing hydrophobic flavonoids like naringin due to their biocompatibility, biodegradability,
and slower release rates compared to low molecular weight surfactants [146,147]. One
study showed that naringenin was loaded into the hydrophobic core of bovine beta-casein
micelles through hydrophobic interactions. In this process, the naringenin molecule bound
tightly to the hydrophobic region of the bovine beta-casein micelle and was stably encapsu-
lated inside the micelle. Naringenin-loaded bovine beta-casein micelles exhibited lower
critical micelle concentrations and higher aggregation numbers, resulting in a significant
increase in their concentrations in aqueous solutions [117]. Smruthi et al. [94] loaded
naringin with P/P-Nar NPs; the hydrophobic nature of naringenin allowed it to interact
with the hydrophobic region of zein and be encapsulated inside the zein nanoparticles or
nanofibers. At the same time, the hydrophobic core of casein micelles can also accommodate
naringenin molecules and the loading of naringenin can be realized through hydrophobic
interactions, demonstrating significant alterations in naringin’s physicochemical properties
and bioavailability under simulated gastrointestinal conditions. Compared to free naringin,
P/P-Nar NPs increased their bioavailability by 4.7 times in the rat model. In addition to
the characteristics of general biopolymers, the mucosal adhesion of chitosan can make
the nanopolymers stay on the mucosal surface for a long time, improve the absorption
efficiency of drugs, encapsulation efficiency of naringenin exceeds 90%, and cause signifi-
cant anti-diabetic reactions after oral administration [110]. Thus, biopolymers represent a
promising approach as effective nanocarriers for delivering naringin.

Quercetin is one of the most extensively studied flavonoids, found abundantly in
fruits and vegetables. Quercetin exhibits notable biological activities, including antioxidant,
anticancer, and anti-inflammatory effects. Leveraging its antioxidant activity, quercetin
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can activate and bolster endogenous defense mechanisms against free radicals [105,148].
Despite its significant biological potential, quercetin’s clinical application is limited by its
extremely low solubility, poor stability, and low bioavailability, with solubility levels of only
5.5 µg/mL in gastric fluids and 28.9 µg/mL in intestinal fluids. The oral bioavailability of
quercetin in rats is less than 17%, while in humans, it is approximately 1%, which limits its
application in pharmaceutical formulations [108,149].

Quercetin, being a lipid-soluble nutrient, can be encapsulated within the hydrophobic
core of these lipid particles [55,107]. At the same time, it can also be adsorbed at the
interface between the oil phase and the aqueous phase, and the adsorption layer formed
by the surfactant and co-surfactant at the interface can provide a stable environment for
quercetin to prevent its aggregation and precipitation [106]. Incorporating quercetin into a
particle transport system can enhance its solubility, stability, bioavailability, and overall
biological activity. Research indicates that nanoemulsion can enhance the bioavailability of
fat-soluble substances by facilitating rapid and complete digestion in the small intestine [88].
Du et al. [104] developed four delivery systems—crude emulsion, nanoemulsion, high
internal phase emulsion, and emulsion gel—to transport quercetin and identify the most
effective system in a simulated gastrointestinal tract. The results show that the average
particle size of the nanoemulsion is relatively small, and the droplet distribution is relatively
uniform, which gives the nanoemulsion the characteristics of difficult aggregation after
heat treatment. On the other hand, the absolute ζ potential of the nanoemulsion is relatively
high, indicating that there is a high electrostatic repulsion between the droplets, which helps
to maintain its stability by reducing the possibility of droplet coalescence caused by droplet
contact, and the nanoemulsion has good thermal stability and storage stability. The results
demonstrate that nanoemulsion exhibits superior thermal and storage stability. Compared
to other delivery systems, nanoemulsion is the optimal choice for quercetin delivery due to
its higher bioavailability. Additionally, Sathishkumar et al. [114] developed a zinc oxide–
quercetin nanocomposite as an advanced nanomedicine delivery system. The quercetin
loading capacity on ZnO nanoparticles was 210 µg/mg, with an IC 50 value of 0.01 µg/mL
on MCF-7 cancer cells (compared to 0.07 µg/mL for free quercetin), demonstrating potent
anti-cancer effects. Hemati et al. used niosome (a bilayer nonionic surfactant-based vesicle
that is a novel drug delivery system) as a vehicle to deliver quercetin. Hydrophobic
quercetin was encapsulated within the lipid layer, and cytotoxicity experiments showed
that the IC50s of quercetin, loaded by this delivery system, were significantly lower than
those of the free form [150]. Embedding quercetin within a nanoscale particle transport
system proved to be an effective approach.

Similarly, many studies have shown that nanomaterials enhance the bioavailability
and drug activity of other flavonoids. Yi et al. [109] modified puerarin with unsaturated
olefins using acryloyl chloride and obtained an amphiphilic polymer called poly puerarin
via free radical polymerization, which was used to prepare drug delivery systems. They
also prepared poly puerarin nanoparticles using the nanoprecipitation method, addressing
the low solubility and low oral utilization of puerarin. Demirturk et al. [115] analyzed
daidzein in rat plasma, and the relative bioavailability of soybean flavonoid nanoformu-
lations prepared with nanoemulsion and nanosuspension reached 265.6% and 262.3%,
respectively. The research results of Hamadou et al. [93] indicated that nanoliposomes
have good encapsulation efficiency for rutin, and coating these nanoliposomes loaded with
rutin with multiple layers of pectin and chitosan can enhance the protection of bioactive
compounds and nanoliposomes from various environmental stresses, thereby expanding
their potential applications. Self-assembling nano gas carriers based on non-invasive effer-
vescence effectively enhances the solubility of low water-soluble luteolin [151]. It should
be pointed out that although various preclinical mechanism studies have been conducted
on the nanoformulations of flavonoids, there is a lack of carefully designed randomized
clinical trials on the therapeutic activity and safety of such nanoformulations, emphasizing
the need for more clinical research.
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3.2. Trigger Release

These stimulus signals are primarily categorized into two types, namely internal
stimuli and external stimuli [152]. Internal stimuli include factors such as pH value,
temperature, hypoxia, enzymatic processes, and glutathione concentration. Significant
environmental changes between the normal and tumor tissues affect the pH values, redox
conditions, and malignant biological molecular properties. Tumor tissues exhibit higher
temperatures, acidic pH values, elevated concentrations of glutathione, and overexpression
of specific enzymes compared to normal tissues [153,154]. Due to these intrinsic gradients,
internal stimulus signals act as ideal activators for triggering drug release systems and
enhancing their precision in targeting tumor tissues. However, external stimuli, including
light, magnetic fields, electric fields, and ultrasound-based drug delivery systems (DDS),
provide triggered drug release and reduce individual variability compared to internal
stimulus parameters [23,155]. This paper primarily discusses the effects of pH and light on
the control of drug delivery systems.

pH. In internal stimulation, pH is one of the most commonly used triggers for drug
release in triggered release systems, as different pathologies exhibit varying pH values
during their progression [156]. Moreover, when nanomaterials enter cells, they encounter
variations in cellular pH, such as in tumor and inflammatory tissues (pH~6.8), endosomes
(pH~5.5–6), and lysosomes (pH~4.5–5.0). Therefore, pH-responsive triggered release
systems offer a safe and effective means of regulating drug release in specific regions
of the body. Recently, successful examples of pH-responsive triggered release systems
utilizing nanomaterials have been developed. After receiving a specific pH stimulation,
polymer nanocarriers can achieve a triggered release not only through matrix degradation
or diffusion but also through their own interactions with the drug, such as hydrogen
bonding, hydrophobic interactions, or electrostatic interactions, to affect the release rate
of the drug. The molecular arrangement of a drug in a polymer determines its release
behavior [157]. Aniruhan et al. [158] treated curcumin-loaded drug delivery systems
with simulated gastric acid pH (1.2), acidic tumor pH (5.0), and simulated intestinal fluid
pH (7.4), and performed drug release studies on the curcumin-loaded polymer carriers
loaded with curcumin at different pH values. Curcumin adsorbed on the surface of the
polymer carrier became protonated due to the presence of imines, carboxyl groups, and
hydroxyl groups in the material. This protonation induced electron repulsion within the
material, leading to swelling and the enhanced release of curcumin. Within 48 h, the drug
release reached 91.0% at the acidic tumor pH of 5.5, which is significantly higher compared
to the release percentages at pH 1.2 and 7.4. Gong et al. [159] prepared mesoporous
zinc oxide nanocarriers using polyoxyethylene–polyoxypropylene ether block copolymer
(Poloxamer 188) and sucrose as dual templates for loading tea polyphenols. Under weak
acidic conditions, the release rate and proportion of tea polyphenols in the nanocomposites
were significantly improved. This use of hydrogels as polymer nanocarriers is characterized
by a three-dimensional network structure filled with water, where the tea polyphenols can
be released by diffusion in the pores and channels of the hydrogel, and the hydrogel can
swell in response to pH. At pH 5.5, the release rate and proportion of the nanocomposites
reached the highest level, with a maximum equilibrium release rate of 90%. In addition
to this, studies on the release of ZnO–quercetin nanocomposites showed that the hard
ligand (-OH group) of quercetin remained in its ionized form at pH = 7.4. Thus, it can
act as an active ligand for chelation formation. At pH 5.5, the ZnO–quercetin complex
is unstable because the OH group of ZnO–quercetin exists in a combined form and also
partially dissolves the ZnO nanoparticles, this suggests that quercetin is released more
rapidly under the acidic conditions (typical cancer pH 5.5) compared to the physiological
conditions (pH 7.4) [114]. Thus, these nanoformulations exhibit pH sensitivity and can
be precisely triggered for release at pH levels adapted by cancer cells, making them more
suitable for cancer treatment.

Light. Light is regarded as a distinctive exogenous triggering factor, operating within
a broad, effective, and relatively safe energy range—primarily infrared, ultraviolet, and
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visible light—and can induce molecular changes to activate and release drugs in a fully
cell-compatible manner [160,161]. It can also be highly focused to induce local reactions,
thereby enabling precise spatiotemporal control over therapeutic release [162]. Given
these intrinsic characteristics, light has consistently been one of the most favored external
triggering factors in therapeutic applications. Upconversion nanoparticles have unique
upconversion luminescence properties that absorb low-energy near-infrared light and
convert it into high-energy visible or ultraviolet light. This property allows for the upcon-
version nanoparticles to be excited in deep tissues, as near-infrared light penetrates more
deeply into biological tissues, reducing damage to the surrounding healthy tissues [95].
Hu et al. [163] developed a near-infrared photoresponsive nanomedicine delivery system
utilizing carvacrol. The system comprises upconversion nanoparticles that can convert
808 nm near-infrared light to blue light, mesoporous silica (serving as the carrier channel),
and hydrophobic carvacrol (exhibiting blue light-responsive properties). Under 808 nm
near-infrared irradiation, the upconversion nanoparticles display specific antibacterial
(including against anaerobic bacteria), anti-inflammatory, and immunomodulatory proper-
ties due to the synergistic effect of carvacrol and upconverted blue light. Wen et al. [164]
synthesized a novel pH and near-infrared responsive nanocomposite with ZIF-8 as the
carrier. This material encapsulates the upconversion nanoparticles and titanium dioxide
nanoparticles, with energy upconverted through the photosensitive interaction between
the chemotherapy agents, curcumin and TiO2. In vivo experiments in rats have shown that
ZIF-8 decomposes in the acidic microenvironment of tumors, facilitating the conversion of
irradiated near-infrared 808 nm light into ultraviolet-visible light by TiO2 NPs, thereby gen-
erating a substantial amount of reactive oxygen species and effectively inhibiting tumors.
In addition, photosensitizer-mediated lipid oxidation is an effective drug-triggered release
mechanism, photosensitizers can absorb molecules of specific wavelengths of light, use their
own reactive oxygen species to trigger lipid oxidation reactions, and destroy the structure
of lipid membranes, so as to achieve precise drug release [127]. Meerovich et al. [165] devel-
oped a paclitaxel-loaded solid lipid nanoparticle system using low-intensity (23 mW/cm2)
near-infrared (approximately 730 nm) illumination as the light source. Within 4 h, in a
cellular model of A549 in vitro, the paclitaxel release from these solid lipid nanoparticles
was less than 10%, increasing eightfold after zero-point illumination. This validates the
feasibility of combining herbal monomers with photoresponsive in situ nano drug delivery
systems, offering a more effective and reliable strategy for potential applications in deep
tissue diseases.

Multi-Response Triggered Release System. In addition to the single-response triggered
release system mentioned above, researchers have also developed a series of triggered
release systems capable of responding to complex environmental stimuli. These multi-
response systems offer numerous potential applications in the further development of intel-
ligent triggered release systems. Li et al. [166] developed a microgel loaded with gambogic
acid that exhibits triple environmental responsiveness. This system not only accelerates
drug release to target tumor cells at an acidic pH, thereby reducing agent presence and
high temperatures, but also demonstrates fewer side effects and greater safety compared
to free gambogic acid. Hafezi et al. [167] constructed a novel biocompatible nanocar-
rier utilizing magnetic nano-sensitizers as luminescent agents (ZnFe2O4@mZnO-N-GQDs
and ZnFe2O4@mZnO-GQDs). This nanocarrier was used for curcumin-triggered release,
with pH and ultrasound-triggered intelligent drug release, and incorporated N-GQDs
(nitrogen-doped graphene quantum dots) to enhance biocompatibility and hydrophilicity.
The controlled and sustained release of curcumin from nanocarriers, triggered by pH and
ultrasound, may help reduce the side effects on normal tissues while increasing tumor
selectivity. In summary, this reliable and direct strategy for establishing a multifunctional
drug delivery platform opens new avenues for developing innovative anti-tumor therapy
delivery systems suitable for clinical application.
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3.3. Targeted Action

The targeting of nanomedicine can enable drugs to reach target organs and cells more
effectively than non-targeted delivery methods, thereby significantly improving therapeu-
tic efficacy [154]. The concept of the “Property flavors attributive channel” in traditional
Chinese medicine refers to the selectivity of drugs towards specific organs and meridians,
which can enhance their affinity for targeted areas of the body [168]. The integration of
nanotechnology can leverage this affinity, allowing the design of targeted drug delivery
systems that maintain a specific drug concentration at the target site and introduce messen-
ger drugs to enhance targeting synergistically [22,169]. Targeted drug delivery systems are
generally classified into passive targeting, active targeting, and responsive targeting.

Passive targeting. Due to vascular leakage and impaired lymphatic clearance, small
molecule compounds are efficiently extravasive and retained in the tumor stroma (en-
hanced permeability and retention (EPR) effect). Passive targeting refers to the passive
accumulation of small molecules through the EPR effect, thereby achieving a therapeutic ef-
fect in tumor tissues [170]. Nano drugs (20–200 nm) can accumulate in tumors because they
can pass through the gaps between tumor vascular endothelial cells (200–2000 nm) and are
retained due to defects in the lymphatic circulation within the tumor tissue [171,172]. For
instance, egg yolk lecithin liposomes with a size of 100 nm circulate in mice for up to 12.8 h.
A longer circulation time results in greater accumulation at the tumor site [173]. Resveratrol,
as a non-flavonoid polyphenolic compound found in a large number of medicinal plants,
has anti-inflammatory and antioxidant properties. Over the past three decades, it has also
been found to exhibit anti-cancer properties in some cancers, such as liver, breast, and
ovarian cancer. However, resveratrol is less water-soluble and has limited dissolution in
the aqueous environment of the gastrointestinal tract. It is mainly absorbed in the gastroin-
testinal tract by passive diffusion, but due to its molecular structure characteristics, it is
relatively difficult to transport across cell membranes. There are also a variety of metabolic
enzymes in the gastrointestinal tract and liver, such as the cytochrome P450 enzyme sys-
tem. Resveratrol is easily metabolized into other metabolites by these metabolic enzymes
during gastrointestinal absorption and hepatic first-pass metabolism. These metabolites
may have different bioactive and pharmacokinetic properties, resulting in a reduction in
the original active ingredient of resveratrol and a decrease in bioavailability [174,175]. Yao
et al. [125] used polylactic acid–glycolic acid copolymer nanoparticles as carriers for resver-
atrol loading, and in vitro experiments showed that this specific nano delivery system has
the characteristics of good stability, long vascular circulation time, etc., and increased toxic-
ity of resveratrol to cancer cells, which is especially suitable for passive targeted therapy
of tumors. Patra et al. [102] prepared a resveratrol-loaded gold nanoparticle. The large
surface area of spherical gold nanoparticles enabled a relatively high loading of resveratrol
molecules, which also increased the intermolecular binding between surface molecules and
preloaded drugs. In mice carrying breast cancer cells, resveratrol-loaded gold nanoparticles,
were retained longer in the colon tumors than in normal colon tissues, suggesting that
resveratrol-loaded gold nanoparticles had improved targeting of colon tumors. In addition,
Vijayakumar et al. used D-α-tocopheryl polyethylene glycol 1000 succinate-coated solid
lipid nanoparticles loaded with resveratrol and found that this nanocarrier could passively
target gliomas after intravenous administration to Charles Foster rats [176]. Among them,
the brain distribution of resveratrol loaded with solid lipid nanoparticles was 9.23 times
higher than that of resveratrol alone, and there was no accumulation in the surrounding
tissues, suggesting that the nanoloaded system could reduce the damaging effect on other
tissues and sites. It is worth noting that although the EPR effect can endow nanomaterials
with the ability to accumulate in the tumor area, the degree of angiogenesis and pore size in
the tumor is closely related to the type and state of the tumor, which significantly affects the
targeting efficiency. For example, breast cancer typically has higher levels of angiogenesis
and larger vascular pores, allowing nanomaterials to penetrate and accumulate more easily.
However, the vascular network of liver cancer may be more complex and irregular, result-
ing in poor penetration of nanomaterials [177]. In addition, in some sclerosing tumors,
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such as pancreatic cancer, the high density of the vascular matrix limits the penetration
of nanomaterials [178]. Therefore, although passive targeting based on the EPR effect can
selectively accumulate at the lesion site and enhance the local therapeutic effect of the drug,
its universality is limited [179].

Active targeting. To enhance both the interaction between the drug carriers and tumor
cells and the internalization of these carriers by tumor cells, it is essential to incorporate
active targeting functions into the drug carriers. Active targeting refers to the combination
of targeted portions of the nanocarrier surface, such as aptamers, ligands, and antibodies,
with specific recognition of tumor cells. By specifically recognizing overexpressed receptors
on the surface of tumor cells, it stimulates receptor-mediated endocytosis to internalize
nanocarriers, resulting in better therapeutic outcomes [22]. Active targeting involves mod-
ifying the surface of nanomedicines with ligands, thereby significantly improving their
specificity for targeted cells and reducing off-target drug release compared to passive
targeting. Ligands such as folate, transferrin, biotin, and hyaluronic acid are overexpressed
in certain cells. Nanocarriers that bind to specific receptors for these ligands can effectively
enhance the targeting capability of traditional Chinese medicine. For example, in normal
tissue cells, folic acid enters the cell through the transmembrane transport, while in cancer
cells, the folate receptors on the cell surface recognize folic acid and form a folate complex,
at which point endocytic vesicles are formed to enter cancer cells through endocytosis,
which is the main way that folic acid molecules recognize and enter cancer cells [180,181].
Based on the fact that folic acid enters normal cells and tumor cells in different ways,
it can be modified to the surface of the carrier as a targeting molecule, so that the drug
delivery system can selectively enter tumor cells and release loaded drugs in the cyto-
plasm, play the role of anticancer agents in biomedicine, and realize targeted therapy for
tumors [120,182]. Chen et al. [120] developed a folic acid-modified nano-herbal micelle
for the delivery of paclitaxel and intravenous injection to nude mice transplanted with
A549 cells. This actively targeted nano micelles demonstrating excellent tumor-targeting
properties with minimal toxicity. Essa et al. [116] prepared polymeric nanoparticles from
polylactic acid–glycolic acid copolymers for quercetin loading and used folic acid as a
ligand modification to investigate whether it could provide selective toxicity and enhance
the uptake in model LnCap prostate cancer cells. By comparing free quercetin with the
corresponding non-targeted system, it was found that the folic acid-targeted nanosystem
increased the uptake and toxicity of cancer cells. Li et al. [14] prepared 4-aminophenyl
β-D-galactopyranoside/mulberry leaf polysaccharide lysozyme/luteolin nanoparticles
via amide reaction, self-assembly, and electrostatic interaction. In an in vitro HepG2 cell
study, this nanoparticle targets the liver for luteolin delivery and enhances its efficacy
in liver tissue by specifically recognizing sialic acid protein receptors, thereby increas-
ing the concentration of luteolin. Curcumin-loaded liposomes modified with galactose
could recognize specific stem cells, thereby enhancing curcumin’s anti-tumor efficacy [183].
Additionally, particles such as cells, vesicles, and viruses in biomimetic drug delivery
systems offer novel approaches for enhancing drug targeting. Extracellular vesicle-like
natural nanovesicles from Camellia contain various bioactive polyphenolic compounds,
including tea catechin gallate esters and epicatechin gallate. In vivo experiments have
demonstrated that extracellular vesicle-like natural nanovesicles exhibit strong targeting
ability due to their accumulation at the tumor and metastasis sites [184], thereby providing
new possibilities for developing novel nanocarriers.

Responsive targeting. Responsive targeting is a method that uses a specific stimulus-
response mechanism to enable drug carriers to change in specific physiological or patho-
logical environments in vivo so as to achieve precisely targeted delivery to lesion sites. It is
different from the two targeted reactions mentioned above. Responsive drug carriers can
precisely control the rate and amount of drug release based on the intensity and duration
of the stimulus, enabling on-demand release. This is difficult to achieve with passive
targeting and active targeting, which can better meet the needs of treatment, improve the
efficacy of drugs, and reduce the side effects of drugs [185]. For example, Wang et al. [186]
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developed a method for loading HM (a β-carboline extracted from the traditional Chinese
herb Peganum harmala) into the Au@MSNs@PEG@Asp6 (NPS) nanocomposite material.
This material exhibits low cytotoxicity to normal tissues, good biocompatibility, and can
precisely target lung adenocarcinoma cells through its responsiveness to reactive oxygen
species, which facilitates the release of HM and effectively reduces the migration and
invasion of these cancer cells. Moreover, responsive targeting can be tailored to individual
physiological conditions or disease characteristics to achieve personalized treatment. For
example, in the tumor microenvironment, glutathione levels are significantly higher com-
pared to normal tissues [187]. Ma et al. [90] designed a glutathione-sensitive nano micelle
that binds to the polyphenolic compound curcumin for the treatment of esophageal cancer.
Glutathione in the tumor microenvironment stimulates the release of curcumin, thereby
enhancing its targeted delivery efficiency to the tumor site. Gene-specific drug delivery is
also a component of personalized therapy. Multidrug resistance protein-1 (MDR-1), also
known as P-glycoprotein, is a member of the ATP-binding cassette transporters that can
reduce the intracellular accumulation of chemotherapy drugs and induce chemotherapy
resistance [188,189]. Yang et al. [190] designed an N-succinyl chitosan–lipoic acid micelle
for the co-delivery of paclitaxel and MDR1-siRNA. As siRNA downregulates MDR1, the
intracellular concentration of paclitaxel increases, allowing for continuous targeting and
accumulation in diseased tissues, which is crucial for inhibiting cancer progression. This
drug release strategy can achieve more precise therapeutic effects, offering new possibilities
for treating complex diseases and enhancing patients’ quality of life.

4. Limitations and Potential Toxicity of Nanoformulations of Medicinal Plants

Although numerous nano-functional formulations of active pharmaceutical ingre-
dients in medicinal plants have been developed, most research remains confined to the
laboratory, with few advancing to clinical application. To effectively address the challenges
associated with nanoformulations, the following factors must be considered:

(1) The particle size and distribution of nanoformulations have an important impact on
their performance and biological effects. In large-scale production, it is difficult to en-
sure that every batch of nanoparticles has a uniform particle size and a narrow particle
size distribution. Small fluctuations in the production process, such as changes in tem-
perature, stirring speed, reaction time, etc., can lead to uneven particle size [191]. For
example, in the preparation of nanoparticles by emulsion polymerization, agitation
that is too fast may result in smaller particle sizes but, at the same time, increase the
width of the particle size distribution. Many methods for the preparation of nanofor-
mulations can be successfully implemented in the laboratory, but various problems
are encountered when scaling up to industrial-scale production. For example, some
nano-preparation methods based on microfluidic technology can accurately control
the flow and reaction conditions of fluids in the laboratory to prepare high-quality
nano-preparations, but in large-scale production, microfluidic equipment is expensive
and complex to operate, making it difficult to achieve industrial application [192,193].

(2) There is still a lot of uncertainty about the long-term toxicity and potential risks of
nanomaterials. In vivo, the nanoformulations may interact with biomolecules, cells,
and tissues, producing some unexpected biological effects. For example, nanoparticles
may accumulate in the body, causing damage to the organs such as the liver and
kidneys; or trigger an immune response, leading to adverse reactions such as allergies
and inflammation [194,195]. However, due to the relatively short development and
application time of nanoformulations, the long-term toxicity and potential risks of
nanoformulations have not been sufficiently studied, which poses a great challenge
to the safety assessment of regulatory authorities. In addition, the biocompatibility
of nanoformulations is also a key issue. Some nanomaterials may interact with the
immune system, blood system, etc., affecting the normal physiological functions of
organisms. For example, certain nanoparticles may activate the complement system,
leading to the formation of immune complexes and inflammatory responses; or bind
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to proteins in the blood, altering the rheological properties of the blood and increasing
the risk of thrombosis [196,197].

(3) The pharmacokinetic behavior of nanoformulations in vivo is very different from
that of conventional drugs. Factors such as the size, shape, and surface properties
of nanoparticles affect their distribution, metabolism, and excretion in the body. For
example, nanoparticles with smaller particle sizes may be more likely to enter the
interstitial space through the walls of blood vessels, while nanoparticles with specific
ligands on the surface can enable targeted delivery to specific tissues or cells. Tradi-
tional medicines are metabolized primarily by hepatic metabolic enzymes. Nanofor-
mulations may be taken up by immune cells such as macrophages, where different
metabolic processes occur within the cell. For example, some lipid nanoformulations
may be degraded by lysosomes within the cells [46]. However, these unique in vivo
behaviors make traditional pharmacokinetic research methods no longer applicable,
and new research methods and models need to be developed to accurately assess the
pharmacokinetic properties of nanoformulations.

(4) At present, the international regulatory standards for nanoformulations are not uni-
form, and there are differences in regulatory requirements in different countries and
regions. This makes enterprises face great confusion when carrying out the research
and development and declaration of nanoformulations and increases the difficulty
and cost of listing products in different regions. The established (and in some cases,
unwanted regulations) set by drug regulatory authorities are another challenge on
the road to new nano dosage forms. Regulations from regulatory agencies such as
the NMPA, EMA, and FDA are different from one another, and these regulations
are always subject to change on a regular basis. As a result, such regulations can
significantly impact the entire process of a clinical trial.

Overall, numerous challenges persist regarding the full experimental and clinical
translation of nanoformulations of active pharmaceutical ingredients in medicinal plants.
Consequently, a comprehensive understanding of key issues, including quality control
and safety assessment in nanomedicine, as well as the close integration of basic chemistry,
pharmacology, and materials science, is essential. Clear strategies must be developed to
address the challenges associated with medicinal plant nanomaterials effectively.

5. Conclusions

This review provides a comprehensive and in-depth analysis of the promising field of
enhancing the efficacy of active pharmaceutical ingredients in medicinal plants through
nanotechnology-based formulations. It highlights the significant potential of these nanofor-
mulations in addressing medical needs and advancing the modernization of traditional
Chinese medicine. The study of nanoformulations reveals that they offer innovative and
effective methods for improving the efficacy of active pharmaceutical ingredients in medic-
inal plants. Nanotechnology notably enhances the solubility, stability, and bioavailability
of medicinal plant components, improves drug targeting, and thus increases therapeutic
efficacy. Detailed research into the interaction between nanomaterials and active pharma-
ceutical ingredients in medicinal plants has uncovered complex mechanisms involving
nanocarriers and the active ingredients of these plants. This synergistic effect not only
optimizes drug release patterns but may also activate the latent therapeutic potential
of medicinal plant components, offering both the theoretical foundations and practical
guidance for developing more efficient nanoformulations of active pharmaceutical ingre-
dients in medicinal plants. Nonetheless, the limitations and potential toxicity associated
with nanoformulations of active pharmaceutical ingredients in medicinal plants must be
acknowledged. In practical applications, the preparation process of nanoformulations
requires further optimization to achieve standardization in large-scale production and
quality control. Additionally, potential toxicity issues necessitate long-term, comprehensive
research to evaluate their impact on human health. Despite the current challenges, the
considerable potential of nanomaterials to enhance the efficacy of active pharmaceutical
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ingredients in medicinal plants cannot be overlooked. Future research should focus on
addressing existing problems, exploring innovative strategies for integrating nanotech-
nology with traditional Chinese medicine and fostering interdisciplinary collaboration
to advance this field. With ongoing technological advancements and rigorous research,
nanoformulations of active pharmaceutical ingredients in medicinal plants are expected to
play a more significant role in traditional Chinese medicine and contribute substantially to
human health. In summary, research into enhancing the efficacy of active pharmaceutical
ingredients in medicinal plants through nanoformulations is a promising and evolving
field that holds the potential to open new applications for medicinal plants and leads to
significant breakthroughs in the pharmaceutical industry.
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