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1. Introduction 
In the past few years, the study of nanotechnology has grown exponentially, achieving new heights in various fields such 
as food technology, healthcare, optical devices, the space industry, cosmetics, water supply, and electronics [1–3]. Its 
incorporation in various research areas such as chemistry, engineering, physics, material science, and biology is being 
explored [4,5]. Nanomaterials, usually ≤100 nm in size, could exhibit outstanding chemical and physical properties in bulk 
due to their high specific surface areas [6,7]. 

The two different main approaches for the synthesis of nanomaterials are bottom-up and top-down, as shown in 
Figure 1. In the top-down approach, bulk materials are broken down to the nanoscale, while in the bottom-up approach, 
molecules or atoms are assembled to form nanoparticles (NPs) [8–10]. A large number of methods have been reported 
for the synthesis of nanomaterials, including the coprecipitation method, hydrothermal method, sol-gel method, and 
sonochemical method [11]. These methods are highly expensive and toxic, raising problems of toxic waste generation and 
energy imbalance. Hence, the green eco-friendly synthesis of nanomaterials is attracting attention among researchers [12]. 
Green synthesis methods for nanomaterials constitute an eco-friendly, less expensive, clean, and relatively newer field of 
study [4,8,13].

Metal oxide nanomaterials such as TiO2, SnO2, and ZnO that offer good optical and electronic properties and can be 
used in supercapacitors have been widely studied [9–11]. Biogenic metallic nanomaterials could be produced by various 
organisms such as plants, bacteria, yeast, and actinomycetes. Some other microorganisms like fungi, which offer several 
advantages, such as high cell wall-binding capacity, the production of various extracellular enzymes, and high biomass 
capacity, are also used in green synthesis methods [14,15]. These biogenic nanomaterials are utilized in wastewater 
treatment and for their antimicrobial activity. 

Wastewater effluents are generated by various industries, such as textile, paper, plastic, cosmetics, and pharmaceutical 
industries. These effluents largely consist of organic pollutants such as dyes and phenolics, which are toxic and carcinogenic 
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in nature [16]. These dyes reduce the photosynthesis process of aquatic plants by blocking the full intensity of sunlight 
and reducing the oxygen-carrying capacity of water [17]. Many studies have reported on green synthesis with nickel, 
palladium, cobalt, tin, iron, gold, titania, zinc, silver, copper, cadmium, and magnesium [13,18,19]. This review 
addresses green synthesis approaches and describes various green sources used for the synthesis of transition metals and 
metal oxides. We also explore the advantages and disadvantages, limitations, and future directions for green synthesis 
methods.

2. Green synthesis 
The term “green chemistry” was coined by Paul Anastas, who is considered as the father of green chemistry. It is defined 
as the invention, design, and application of chemical products to decrease or remove the use and generation of toxic 
substances. It creates new alternative paths allowing the use of less hazardous materials. Green synthesis approaches entail 
transformations of existing ideas and research efforts in the context of resolving the problems of chemical pollution and 
resource depletion, as shown in Figure 2 [15].

Green synthesis methods for nanomaterials are needed as the existing methods are often toxic or entail costly physical 
and chemical processes. During chemical synthesis processes, toxic chemicals can be absorbed on various surfaces and exert 
adverse effects. Compared to chemical and physical methods, green synthesis methods do not need high temperatures or 
pressures, they are cost-effective and environmentally friendly, and they are easily scaled for large productions, as shown in 
Figure 3 [15]. Alongside these advantages, some limitations do also exist, such as the rate of reaction being comparatively 
low, the purity of samples being a challenge, and the impossibility of manipulating the material characteristics of natural 
products.

3. Green synthesis of metal and metal oxide nanomaterials
Green resources can act as reducing agents, capping agents, and oxidizing agents for the synthesis of metal and metal 
oxide nanomaterials. In the literature, different methods are available for the synthesis of nanomaterials, as summarized 
in Figure 1.

 
Figure 1. Synthesis methods for nanoparticles.
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3.1. Green synthesis of nickel oxide (NiO) NPs
Nickel (Ni) is a transition metal that plays an important role in chemistry. In nano form, it reacts with oxygen and other 
metals to form nanocomposites, enhancing its properties. The synthesis of Ni NPs and NiO NPs using Calotropis gigantea 
extract was reported in the literature [12]. In that study, the extract acted as a reducing and capping agent. Both types of 
NPs were characterized through UV/Vis spectroscopy and the absorption peak was found at 400 nm for Ni NPs and at 
415 nm for NiO NPs. Both types of NPs showed good antibacterial and catalytic activity. In green synthesis, a Zea mays 
silk extract was reported for the synthesis of NiO NPs, which were characterized by X-ray diffraction (XRD) and high-
resolution transmission electron microscopy (HRTEM) and found to have diameters of 10–20 nm. These NPs were used 
in electrochemical energy storage devices [20]. 
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Figure 2. Green synthesis of NPs.
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Figure 3. Importance of green synthesis.
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NiO NPs synthesized using Moringa oleifera exhibited single crystalline face-centered cubic phases and had intense 
photoluminescence and antibacterial activities, as shown in Figure 4a [21]. Green NiO NPs synthesized using an extract of 
Terminalia plants exhibited emissions at 305.46 nm and 410 nm. They had improved cytotoxicity against breast cancer cells 
in a dose-dependent manner in the range of 0-100 µg/mL and were also used in biological and biomedical applications 
[22]. NiO NPs synthesized using a Euphorbia heterophylla plant extract could be used as an antimicrobial coating for 
biomedical and environmental applications. The UV-DRS spectra of the biosynthesized NiO NPs exhibited well-defined 
optical properties with an optical band gap of 3.24 eV and cytotoxicity against a human lung cancer cell line (A549) and 
human hepatocarcinoma (HepG2) [23]. NiO NPs prepared with fresh egg whites were subjected to MTT cytotoxicity 
testing against a human primary glioblastoma cell line (U87MG) commonly used in brain cancer research [24]. It was 
found that 50% of the cells died after exposure to the NPs at a concentration of 15.62 µg/mL. These NPs also exerted 
photocatalytic activity to remove methylene blue (MB) dye under UV light irradiation, with 79% degradation observed 
after 4 h.

Ni complex-functionalized Fe3O4 was utilized as a green and reusable catalyst for one-pot synthesis of polyhydroquinoline 
derivatives using pistachio leaf extract. It showed high conversion amounts and easy reusability with no loss of catalytic 
activity [25]. NiO NPs synthesized using Aegle marmelos leaf showed intense emission peaks at 363 and 412 nm and a 
band gap value of 3.5 eV. These NPs exerted good antibacterial activity and photocatalytic activity against 4-chlorophenol 
[26]. The synthesis of green NiO NPs using Monsonia burkeana leaves yielded good anticancer activity against A549 lung 
cancer cells. The average particle size of these NPs was found by HRTEM and XRD to be 20 nm [27]. NiO was synthesized 
using Agathosma betulina leaf extract for use in a p-type semiconductor and band gap values in the range of 3.6 to 4 eV 
were found [28]. Other similar studies on the synthesis of NiO and Ni NPs are given in Table 1 and the references [29–36].
3.2. Green synthesis of palladium (Pd) NPs
The synthesis of Pd NPs from Rosmarinus officinalis yielded good catalytic and biological properties, as shown in 
Figure 4b. The catalytic activity of the metal was investigated by Mizoroki–Heck reaction and the biological activity of 
the synthesized NPs was evaluated in terms of antibacterial and antifungal assessments against Staphylococcus aureus, 
Staphylococcus epidermidis, Escherichia coli, and Micrococcus luteus bacteria and Candida parapsilosis, Candida albicans, 
Candida glabrata, and Candida krusei yeast [37].

Pd NPs synthesized with Solanum nigrum showed spherical shapes with a size of 21.55 nm, and the presence of 
antioxidants and polyphenols in the extract was responsible for reduction and stabilizing properties [38]. Pd NPs synthesized 
with Spirulina platensis also had spherical shapes and a size range of 10–20 nm [39]. The highest absorption efficiency of 
the Pd NPs was obtained at pH 6 with contact time of 60 min, absorbent dose of 0.5 g/L, and lead concentration of 10 
mg/L. Upon increasing the lead concentration from 10 to 150 mg/L, the removal percentage decreased from 87% to 32%, 
and when the absorbent dose was increased from 0.02 to 0.5 g/L, the removal percentage increased from 12% to 90%. Pd/
Fe3O4 nanocomposites prepared from Hibiscus tiliaceus were used as a catalyst for the reduction of Cr(VI), 4-nitrophenol, 
and 2,4-dinitrophenylhydrazine. The flavonoids present in the extract acted as both reducing and capping/stabilizing 
agents [40]. A Pd/GO nanocomposite was also synthesized using Thymbra spicata and its recyclability and catalytic activity 
were studied [41]. Green Pd NPs synthesized using a lentinan extract had uniform distribution of graphene with high 
absorption ability. Efficient electron transfer was reported from graphene to the Pd NPs, which made the synthesized Pd 
NPs/FGO nanohybrid an effective nanocatalyst to be further utilized for 4-nitrophenol reduction. Recycling of the catalyst 
and good antimicrobial activity were also observed [42]. The green synthesis of Pd NPs/RGO using Hippophae rhamnoides 
was reported for the catalytic reduction of nitro aromatic compounds by NaBH4 [43]. Pd NPs synthesized using Anogeissus 
latifolia were found to be spherical in shape with average particle size of 4.8 ± 1.6 nm. The produced Pd NPs showed good 
catalytic activity and superior antioxidant properties at much lower NP doses [44]. The synthesis of Pd NPs was performed 
using Ananas comosus leaf extract as a reducing and stabilizing agent. These NPs were investigated for photocatalytic 
degradation of low-density polyethene and were concluded to be a useful material for the polymer industry [45]. Other 
similar studies are summarized in Table 1 and the references [46].
3.3. Green synthesis of cobalt (Co) NPs
The proteic sol-gel green method has been used to synthesize cobalt tungstate powder through agar-agar obtained from 
red seaweed, utilized further for battery electrodes. The long-term stability of the electrodes was confirmed by capacity 
retention of about 98% over 1000 charge–discharge cycles at a specific current of 1 A g–1 [47]. The green synthesis of 
cobalt oxide NPs was performed using Sageretia thea leaf extract as a chelating agent. These synthesized NPs were used 
for their antibacterial activity [48]. Cobalt ferrite NPs were successfully synthesized using the fungus Monascus purpureus. 
The production method was reported to be eco-friendly and easy. Transmission electron microscopy (TEM) analysis 
of these NPs confirmed their spherical shape with an average size of 6.5 nm. The NPs showed good antibacterial and 
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antioxidant properties against all tested microbial pathogens and plants [49]. Cobalt ferrite and Ag-doped cobalt ferrite 
were synthesized using Tulsi seed (Ocimum sanctum) extract and garlic (Allium sativum) extract as shown in Figure 4c 
[50]. These materials were applied against gram-positive and gram-negative bacterial strains.

The XRD pattern of cobalt oxide powder produced with tamarind fruit extract by calcination of a polynuclear complex 
precursor at 1000 °C/2 h indicated the formation of the CoAl2O3 cubic spinel with a single phase. These NPs were used 
for their antimicrobial activity [51]. Cobalt ferrite synthesized with tomato (Solanum lycopersicum) leaf extract is widely 

(c) 

(d) 

(b) (a) 

Figure 4. Synthesis of (a) NiO NPs [21]; (b) Pd NPs [37]; (c) Co NPs [50]; (d) Sn NPs [11].
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used in medical applications. The crystalline size as determined by XRD was 17 ± 1 nm [52]. Fluorescent metallic oxide 
NPs have been synthesized with Aspergillus nidulans at room temperature. Fourier transform infrared (FTIR) analysis 
showed that protein capping stabilized the NPs [53]. The single phase of a CoFe2O4 sample was obtained with the wet 
ferritization method using an aqueous extract of Sesamum indicum seed. The XRD pattern of the sample calcined at 

Table 1. Synthesis of Ni, Pd, Co, and Sn NPs from biological sources and applications.

Name of material Source Nanoparticles Applications Reference
Citrus sinensis Peel Tin Photocatalytic [11]
Jujube Fruit Tin Photocatalytic [16]
Lycopersicon esculentum Peel Tin Catalytic [17]
Moringa oleifera Leaves Nickel In vitro cytotoxicity [21]
Terminalia chebula Leaves Nickel Biomedical [22]
Euphorbia heterophylla Leaves Nickel Anticoagulant, cytotoxicity [23]
Fresh egg Albumen Nickel Cytotoxicity [24]
Pistachio Leaves Nickel Cytotoxicity [25]
Aegle marmelos Leaves Nickel Pharmaceutical [26]
Monsonia burkeana Leaves Nickel Anticancer activity [27]
Agathosma betulina Leaves Nickel - [28]
Eichhornia crassipes Leaves Nickel Hydrogen production [29]
Neem Leaves Nickel - [30]
Calendula officinalis Leaves Nickel Antiesophageal [31]
Grapes Seeds Nickel Biological activity [32]
Limonia acidissima Fruits Nickel Antioxidant activity [33]
Plectranthus amboinicus Leaves Nickel Antifungal activity [34]
Cactus Leaves Nickel Energy storage [35]
Nigella sativa Fruits Nickel Catalytic activity [36]
Rosmarinus officinalis Leaves Palladium Antibacterial [37]
Solanum nigrum Leaves Palladium Antimicrobial [38]
Spirulina platensis Leaves Palladium Antimicrobial [39]
Hibiscus tiliaceus Leaves Palladium Catalytic [40]
Thymbra spicata Leaves Palladium Catalytic [41]
Lentinan Plant Palladium Catalytic [42]
Hippophae rhamnoides Leaves Palladium Catalytic [43]
Anogeissus latifolia Leaves Palladium Catalytic [44]
Chamomile Flowers Palladium Catalytic activity [46]
Red seaweed Algae Cobalt Antimicrobial [47]
Sageretia thea Bacteria Cobalt Antimicrobial [48]
Monascus purpureus Fungus Cobalt Antioxidant [49]
Allium sativum and Ocimum 
sanctum Seed Cobalt Antibacterial [50]

Tamarind Fruits Cobalt Antimicrobial [51]
Solanum lycopersicum Plant Cobalt Medical [52]
Aspergillus nidulans Fungus Cobalt - [53]
Sesamum indicum Seed Cobalt Antimicrobial [54]
Hibiscus rosa-sinensis Leaves Cobalt Biomedical [55]
C. sativum and A. sativum Seeds and cloves Cobalt Photocatalytic [56]
Psidium guajava Leaves Tin Photocatalytic [57]
Aspalathus linearis Plant Tin - [58]
Simarouba glauca Leaves Tin Photocatalytic [59]
Camellia sinensis Leaves Tin Photocatalytic [60]
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800 °C/1 h indicated the formation of the CoFe2O4 spinel type with good crystallinity. The tested cobalt ferrite was not 
cytotoxic at the examined concentrations against different microbial strains, but it demonstrated potential for use in in 
vitro applications [54]. Other synthesized cobalt oxide NPs are presented in Table 1 and the references [55,56].
3.4. Green synthesis of tin oxide (SnO2) NPs
Tin dioxide NPs were synthesized in different concentrations using an extract from the peel of Citrus sinensis as a reducing 
agent, as shown in Figure 4d. Tin oxide achieved better activity because of its stability, in addition to being nontoxic, 
low-cost, and easily available. It was able to degrade a very high percentage of MB and could be used in air and water 
purification techniques [11].

Green SnO2 NPs synthesized using Lycopersicon esculentum peel extract were further studied for photocatalytic activity 
in the degradation of MB, achieving a rate of 100% within 120 min. A better degradation rate was obtained compared to 
both NPs synthesized with other synthetic routes and commercially available bulk SnO2 [17]. The green synthesis of SnO2 
NPs using jujube fruit was performed to obtain a systematic photocatalyst for use in the decay of two hazardous organic 
dyes, namely MB and Eriochrome Black T, under sunlight. Degradation efficiency of 90% and 83% was respectively 
obtained [16]. The synthesis of SnO2 NPs using Psidium guajava was also reported, with sizes ranging between 8 and 10 
nm. These NPs were highly effective in degrading RY186 dye. The antimicrobial activity of these NPs was also evaluated 
against S. aureus, Bacillus subtilis, and E. coli. Levels of antimicrobial activity were higher against S. aureus compared to 
B. subtilis and E. coli. The antioxidant activity of SnO2 NPs on vitamin C was also studied using the DPPH assay [57]. A 
ZnSnO3 nanocluster synthesized using Aspalathus linearis plant extract was annealed at 500 °C. The morphology of the 
product was investigated and the average size of the NPs was found to be 16.5 to 20.5 nm. UV-Vis spectra showed an 
absorption edge at 354 nm and a band gap of 3.50 eV, which confirmed that the tin NPs had good optical properties [58]. 
Other studies on different green sources used for tin oxide NPs are available in the literature [59,60].
3.5. Green synthesis of iron (Fe) NPs
The principles of green chemistry, waste prevention, energy efficiency, safer solvents, and benign precursor materials have 
become fundamental considerations in synthesizing NPs [61]. The green synthesis of iron NPs using Azadirachta indica 
leaf was performed in a study that evaluated the effect of size and the concentration of polyphenols, and the efficiency 
against petroleum refinery waste water with high COD values and nitrates was determined. The size of the Fe NPs was 
found to be in the range of 98–500 nm. It was evident that the polyphenol content together with the Fe NPs increased the 
production of reactive oxygen species (ROS). The accumulation of these NPs in cytoplasm occurred due to size variations; 
increased antibacterial activity was also observed. The zones of inhibition were 25 nm for E. coli, 29 nm for Pseudomonas 
aeruginosa, and 30 nm for S. aureus [62]. Similarly, Fe NPs produced with Aspergillus niger were utilized for Cr(VI) 
removal from aqueous solution, showing >99% removal of Cr at 40 °C and pH 3 with an adsorbent dose of 2.5 g/L. Fe 
NPs were regenerated using NaOH solution and retained 79.7% of their metal removal capacity for five successive cycles 
of absorption and desorption [63]. The green synthesis of two types of FeO NPs using Cucurbita moschata leaves and Beta 
vulgaris stalks was also reported [64]. These materials were further used for the adsorption of two dyes, namely Bordeaux 
red and tartrazine. Both materials showed different adsorption capacities varying from 59 to 64 mg g–1. An extract of 
yerba mate was prepared for iron NPs, which were applied for the removal of Cr(VI) from aqueous solution at pH 3 with 
two concentration ratios of Cr(VI) and iron NPs, i.e., 1:3 and 1:05 [65]. The rate of the reaction was compared to that of 
a commercial nanoscale zerovalent iron solution. The rapid rate of the NPs allowed the removal of pollutants in soil and 
ground water. An extract of Withania coagulans was used for the synthesis of iron oxide NPs, as shown in Figure 5a, and 
the NPs were applied for antimicrobial activity and photocatalytic degradation [66].

Zerovalent Fe NPs synthesized using mango peel had a structure similar to that of Fe+2/Fe+3 complex islands over 
metallic iron [67]. The role of different polyphenol compounds in stabilizing the NPs and changes in surface characteristics 
and stability against desorption and biodegradation were described. Fe NPs were also synthesized with an aqueous extract 
of two plants, namely Terminalia bellirica and Moringa oleifera [68]. Total phenolic contents were highest for the Terminalia 
extract (3581.36 ± 2.38 µg/mL). These NPs were used for antibacterial activity. Antioxidant activity was also higher with 
Terminalia compared to the Moringa oleifera extract. In another study, Avicennia marina flowers were used to control the 
size of iron NPs and sizes of about 100 nm were reported [69]. These promising greener materials may have important 
roles in applications requiring antitoxicity or dye degradation. They are compatible with electrical materials, applications 
in the electronics industry, and the design of high-quality materials.
3.6. Green synthesis of gold (Au) NPs
Various NP reduction reagents are available, such as NaBH4, LiBH4, cetyltrimethylammonium bromide (CTAB), and 
NaOH. They have functions of surface modification with suitable capping ligands to prevent the self-aggregation of Au 
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(b) 

(c) 

(d)

Figure 5. Synthesis of (a) iron NPs [66]; (b) gold NPs [70]; (c) titanium NPs [76]; (d) zinc NPs [77].
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NPs. To control aggregation, various plant extracts are also utilized. Au NPs were produced using a leaf extract of Euphorbia 
hirta, as shown in Figure 5b, and they were found to be environmentally friendly with antibacterial activities against E. coli, 
P. aeruginosa, and Klebsiella pneumoniae strains [70].

Au NPs synthesized using Schisandra chinensis fruit were assembled on polystyrene beads. After characterization, the 
Au NPs were used as a heterogeneous catalyst to promote a one-pot sequential reaction for the synthesis of bifunctionalized 
chromeno([2,3-d]pyrimidin-2-yl)phenol derivatives [71]. The UV-Vis spectra of Au NPs synthesized with Sphaeranthus 
indicus showed a surface plasmon resonance peak at 531 nm [72]. TEM revealed a spherical shape with mean particle 
size of 25 nm. These Au NPs were used for their antioxidant and photochemical activity. The cytotoxicity of Au NPs 
synthesized with Olea europaea and Acacia nilotica was evaluated by MTT assay against breast (MCF-7), colon (TCT-116), 
and hepatocellular (HCepG-2) cancer cell lines [73]. The size of the Au NPs was found to be less than 10 nm at the chosen 
concentration. Additionally, the combination of 0.3 mL of Simarouba glauca leaf extract and 2.7 mL of gold solution was 
shown to provide superior results in terms of antimicrobial activity [74]. 
3.7. Green synthesis of titanium oxide (TiO2) NPs
TiO2 NPs were synthesized using the aqueous leaf extract of Aloe barbadensis, which acted as a reducing and fabricating 
agent. Due to their unique properties, the NPs could be widely used as antioxidant agents. TiO2 NPs synthesized with 
Sesbania grandiflora showed 100% peak intensity with a z-average value of 620 nm by dynamic light scattering (DLS) 
analysis. TEM analysis confirmed that the NPs were 20–40 nm in size. XRD and energy dispersive X-ray (EDX) analysis 
confirmed the crystalline rutile structure of the TiO2 NPs [75]. TiO2 NPs synthesized with Psidium guajava were analyzed 
by field emission scanning electron microscopy (FESEM) and were found to have spherical shape and sizes in the range 
of 32.58–35.25 nm. The synthesis route for these NPs is given in Figure 5c. They were used for in vitro cytotoxicity. The 
phenolic contents of the leaf extract and the NPs were respectively found to be 85.4 and 18.3 mg TA/g [76].
3.8. Green synthesis of zinc oxide (ZnO) NPs
ZnO NPs were prepared using Prunus dulcis (almond gum). The synthesis route of these NPs is provided in Figure 5d. 
The extract showed effective antibacterial activity against S. aureus and E. coli. The UV analysis spectrum showed an 
absorption peak at 243 nm and a band gap value of 5.17 eV. XRD analysis confirmed a wurtzite structure with average 
crystalline size of approximately 30 nm [77].

The UV-Vis spectra of ZnO NPs prepared with Camellia japonica leaf extract showed an absorption peak at 301 nm. 
The crystalline ZnO NPs were 20 nm in size. The synthesized NPs were used in a biological system as optical sensors [78]. 
Small crystalline size was achieved with increased surface area, leading to good antibacterial activity. The synthesis of ZnO 
NPs using a hydrothermal method and plant extract of Justicia adhatoda was also studied [79]. The average crystalline size 
was found to be 36 nm and the band gap was 3.36 eV, which helped enhance the anticancer and antibacterial activities of the 
NPs. The selected area electron diffraction (SAED) pattern showed highly crystalline morphology. ZnO NPs synthesized 
with Hydnocarpus alpinus had spherical morphology with diameters of 38.84 nm and high phase-purity [80]. ZnO NPs 
showed scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. At a basic pH, photocatalytic 
activity was observed for MB degradation at a rate of about 96%. Green ZnO NPs synthesized with Aristolochia indica 
exhibited strong bactericidal properties against E. coli and the average size was 22.5 nm with zeta potential of –21.9 ± 1 
mV [81]. ZnO NPs synthesized using an extract of Selaginella convoluta were characterized by their FTIR spectra, which 
indicated that polyphenols acted as capping ligands. These synthesized NPs were used in biomedical applications for pain 
management [82]. 

ZnO NPs synthesized using Euphorbia heterophylla leaf extract were characterized with a hexagonal wurtzite structure 
[83]. The optical energy band gap value was found to be about 3.15 eV by DRS. TEM analysis revealed an average size of 
40 nm. The ZnO NPs showed good antibacterial and anticancer activities and they were evaluated against lung (A549) 
and hepatocarcinoma (HepG2) cancer cell lines. Antibacterial and antifungal activities were evaluated by well diffusion 
method based on minimum inhibitory concentrations. The maximum zones of inhibition of ZnO NPs synthesized using 
an extract of Aeromonas hydrophila (25 µg/mL) were reported for Pseudomonas aeruginosa (22 ± 1.8 mm) and Aspergillus 
flavus (19 ± 1.0 mm). The ZnO NPs were characterized by atomic force microscopy and a size of 57.72 nm was reported 
together with the topological appearance in 3D profile on the surface on the nanoscale [84].

ZnO NPs synthesized using Mirabilis jalapa were evaluated for the presence of phenolic- and flavonoid-like properties 
due to the presence of different functional groups on the particle surface. By XRD characterization of the NPs, the 
crystalline size was found to be 12.9 nm. Bimetallic ZnO/Ag NPs exhibited antibacterial (zones of inhibition of up to 
25 mm) and antileishmanial properties [85]. ZnO NPs synthesized with Trianthema portulacastrum leaf extract were 
evaluated for antioxidant activity against DPPH. Photocatalytic activity was also evaluated for Synozol Navy Blue (KBF) 
textile dye and a degradation rate of 91% was reported after 159 min [86]. ZnO NPs synthesized using Trifolium pratense 
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flower extract were tested against standard strains of S. aureus, P. aeruginosa, and E. coli and the best results were obtained 
for E. coli. XRD characterization of the NPs showed crystalline size of 60–70 nm and total reflection X-ray fluorescence 
(TXRF) showed an intense signal at 8.63 KeV for analysis performed at 50 kV and 600 µA [87]. 

ZnO NPs synthesized with Punica granatum peel extract exhibited cytotoxicity against both normal human colon 
cells and cancerous cells. They exhibited cell-death activities for both types of cells at a concentration of ≥31.25 µg/mL. 
TEM analysis of the NPs revealed a hexagonal shape and averages size of 32.98 nm at 600 °C and 81.84 nm at 700 °C. They 
also displayed good antibacterial activity [88]. ZnO NPs synthesized using Medicago sativa were used in antimicrobial 
testing against bacterial strains of Staphylococcus epidermidis (ATCC49461), Saccharomyces cerevisiae (MG012794), and 
Lactobacillus (ATCC334) and yeast (Candida albicans ATCC10231). After nano-ZnO treatment, the fluorescence indicated 
the formation of vacuolization and the deformation of yeast cells. EDX analysis of these NPs with signals of 1 keV and 8.5 
keV highlighted the presence and chemical distribution of ZnO NPs while TEM analysis showed an average size of 10 nm 
[89]. Synthesis of ZnO NPs using Cucurbita pepo leaf extract was performed to induce cytotoxicity against the proliferation 
of MG63 osteoblast-like cells and reduction in cell proliferation was confirmed. TEM analysis showed a spherical shape 
and average particle size of 8 nm [90]. 

ZnO NPs synthesized using Costus woodsonii leaf extract showed crystalline hexagonal wurtzite structures and an 
optical band gap value of 3.18 eV. The ZnO NPs were also prepared by boiling the leaf extract to narrow the band gap and 
values of approximately 2.68–2.77 eV were reported [91]. Raphanus sativus root extract was used to synthesize ZnO NPs 
and their antimicrobial activity was studied against E. coli [92]. ZnO NPs were synthesized using Garcinia xanthochymus 
for the photodegradation of MB in the presence of UV rays and sunlight. They exhibited antioxidant activity against the 
DPPH free radical. SEM analysis of these NPs showed spongy cave-like structures and the photoluminescence spectra 
showed four emission edges at 397, 436, 556, and 651 nm [93]. The antioxidant activity of ZnO NPs produced using 
Tecoma castanifolia was found to increase with concentration, leading to increased radical scavenging activity. An IC50 
value of 65 µg/mL was obtained as a measure of anticancer activity, revealing the good cytotoxic effects of ZnO NPs against 
the proliferation of A549 cells [94]. 

ZnO NPs produced using Pongamia pinnata extract were crystalline in structure at 350 °C. They showed antibacterial 
activity against pathogenic bacteria and successfully minimized infection [95]. ZnO NPs were synthesized using Ruta 
chalepensis leaf extract and by a chemical method, and the properties of the two types of samples were compared. It was 
found that the green ZnO NPs had an average size of 17.72 nm and band gap value of 2.86 eV, which were lower than the 
values obtained for the chemically synthesized NPs. The green ZnO NPs also achieved better degradation of Malachite 
green (MG) compared to the chemically produced ZnO NPs [96]. ZnO NPs synthesized using Coriandrum sativum leaf 
extract calcined at 100 °C and 550 °C had band gaps of 3.56 and 3.72 eV, respectively, and crystalline sizes of 60.85 and 
55.13 nm, respectively. However, the ZnO NPs produced at 550 °C had better structural properties compared to those 
produced at 100 °C [97]. ZnO NPs were synthesized using Thymus vulgaris leaf extract by hydrothermal method. An in 
vitro DPPH assay to evaluate antioxidant activity showed prominent activity (<75%) at higher concentrations [98]. XRD 
analysis revealed average NP crystalline sizes of 46.74, 132.54, and 779.38 nm for 1, 0.5, and 0 mL of Thymus leaf extract, 
respectively. Table 2 presents studies on the synthesis of iron, gold, TiO2, and ZnO NPs and their applications.

Table 2. Synthesis of iron, gold, TiO2, and ZnO NPs from biological sources and applications.

Name of material Source Nanoparticles Applications Reference
Azadirachta indica Leaves Iron Antibacterial [62]
Aspergillus niger Fungus Iron - [63]
Cucurbita moschata and Beta vulgaris Leaves and stalks Iron Photocatalytic [64]
Yerba mate Leaves Iron Removal of pollutant [65]
Withania coagulans Leaves Iron Antibacterial [66]
Mango Peel Iron - [67]
Terminalia bellirica and Moringa 
oleifera Leaves Iron Antibacterial [68]

Avicennia marina Flower Iron Dye degradation [69]
Euphorbia hirta Leaves Gold Antibacterial [70]
Olea europaea and Acacia nilotica Fruit Gold Cytotoxicity [73]
Simarouba glauca Leaves Gold Antimicrobial [74]
Sesbania grandiflora Embryo TiO2 Antibacterial [75]
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3.9. Green synthesis of silver (Ag) NPs
Ag NPs synthesized using Allium ampeloprasum had high levels of activity against the HeLa cell line with an IC50 value of 
<25 µg/mL. Total phenolic contents were 15.58 µg/mL and 10.94 µg/mL for the extract and the NPs at a concentration of 
150 µg/mL, respectively [99]. The synthesis route of these NPs is shown in Figure 6a.

Ag NPs synthesized with Crataegus pentagyna were used in catalysis for the degradation of the organic dyes Rhodamine 
B (RhB), eosin (EY), and MB with rates of 85%, 70%, and 78% achieved respectively under sunlight. Antibacterial activity 
against seven ATCC strains of bacteria and eight strains of drug-resistant bacteria was also reported [100]. 

The in vitro cytotoxicity of NPs against the MCF-7 and AGS cell lines was assayed using Ag NPs prepared with different 
concentrations of Crataegus microphylla. Doxorubicin was used as a positive control. Excellent inhibition of the growth of 
the MCF-7 and AGS cell lines was reported [101]. NPs produced with Annona muricata extract showed antiproliferative 
effects against A549 with elevated activity in nano form. The anticancer activity of the NPs was studied in the context of 
the upregulation and downregulation of apoptotic (Bax and caspase) and antiapoptotic (Bcl-2) genes along with their 
functional groups [102]. The synthesis of Ag NPs using Handroanthus heptaphyllus yielded a maximum absorption peak 
close to 440 nm, indicating that the nanostructure had a hydrodynamic diameter of 10 nm for Ag NPs [103].

Ag NPs synthesized using Tamarindus indica fruit extract were used for anticancer activity. Evaluation of the 
cytotoxicity of these NPs showed dose-related effects against breast cancer cells (MCF-7); using the MTT assay, the IC50 
value was found to be 20 µg/mL [104]. The synthesis of Ag NPs using Andrographis paniculata was performed to induce 
levels of ROS, reduce the activity of thioredoxin reductase, and thus shift the redox homeostasis of the particles [105]. 
After the synthesis of Ag NPs using reishi mushrooms, the highest antioxidant activity in the form of DPPH scavenging 
was found to be 76.45% at 250 mg/L. The analysis of DNA cleavage activity indicated that the Ag NPs caused single-strand 
DNA cleavage for 30 and 60 min at 50 and 100 mg/L concentrations [106]. Ag NPs synthesized using Rheum ribes were 
evaluated for cytotoxicity against the MDA-MB-231 breast carcinoma cell line. The IC50 values of the NPs ranged from 165 
to 99 µg/mL against the MDA-MB-231 cell line for 24 h and 48 h of exposure [107]. 

The synthesis of Ag NPs using Fumaria parviflora was performed and an absorption peak at 460 nm was observed. The 
MMT assay revealed the prevention of viability in human breast cancer cells [108]. The MMT assay was also applied for Ag 
NPs synthesized with Delonix regia, exhibiting better antiproliferative activity against the A549 cell line in comparison to 
the SiHa cell line. The circular dichroism was performed to study the decrease in alpha-helical content in the perturbation 

Psidium guajava Leaves TiO2 In vitro cytotoxicity [76]
Prunus dulcis Almond ZnO Antimicrobial [77]
Camellia japonica Leaves ZnO Biological sensor [78]
Justicia adhatoda Leaves ZnO Antibacterial [79]
Hydnocarpus alpinus Root ZnO Photocatalytic [80]
Aristolochia indica Root ZnO Antimicrobial [81]
Euphorbia heterophylla Leaves ZnO Antibacterial [83]
Aeromonas hydrophila Plant ZnO Antifungal [84]
Mirabilis jalapa Leaves ZnO Antioxidant [85]
Trianthema portulacastrum Flower ZnO Photocatalytic [86]
Trifolium pratense Peel ZnO Antibacterial [87]
Punica granatum Leaves ZnO Cytotoxicity [88]
Medicago sativa Leaves ZnO Cytotoxicity [89]
Cucurbita pepo Leaves ZnO Photocatalytic [90]
Costus woodsonii Leaves ZnO - [91]
Raphanus sativus Root ZnO Antimicrobial [92]
Garcinia xanthochymus Plant ZnO Photocatalytic [93]
Tecoma castanifolia Leaves ZnO Anticancer [94]
Pongamia pinnata Leaves ZnO Antibacterial [95]
Ruta chalepensis Leaves ZnO Photocatalytic [96]
Coriandrum sativum Leaves ZnO Antimicrobial [97]
Thymus vulgaris Leaves ZnO Photocatalytic [98]

Table 2. (Continued.)
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Figure 6. Synthesis of (a) silver NPs [99]; (b) copper NPs [136]; (c) cadmium NPs [127]; (d) magnesium NPs [131].
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of the secondary structure [109]. Ag NPs synthesized using Calotropis gigantea leaf extract were studied for larvicidal 
properties and antimicrobial activity against gram-negative and gram-positive bacteria [110]. Ag NPs were also obtained 
using the water extract of marine algae (Gracilaria dura). They exhibited powerful antimicrobial, anticoagulant, and 
anticancer activities [111]. A broth microdilution test showed that Ag NPs prepared using red algae (Portieria hornemannii) 
had high levels of antimicrobial activity with very low MIC values (0.51 µg/mL for Candida albicans, 0.26 µg/mL for E. 
coli). In a study of prebiofilm effects, an 81% reducing effect on biofilm formation was achieved at 0.51 μg/mL. The highest 
reduction rate in postbiofilm studies was 73.5%, achieved with 2.04 µg/mL Ag NPs [112]. An aqueous extract of green 
algae (Botryococcus braunii) had the potential to stabilize Ag NPs. The NPs were found to be efficient for the reduction of 
2-nitroaniline and in the synthesis of 2-arylbenzimidazoles [113]. 

Ag NPs synthesized with Berberis vulgaris extract had spherical shapes and sizes of 30–70 nm [114]. Jackfruit was 
used for the synthesis of Ag NPs, and its seeds contain jacalin. Jacalin recognizes and binds to the O-glycoprotein of 
tumor-associated T-antigenic disaccharide. Thanks to the strong interaction of these NPs with cancer cells, they could 
be used in cancer therapy. The particle size was found to be 22.53 ± 1.51 nm by HR-TEM [115]. Ag NPs synthesized 
with Combretum erythrophyllum plant leaves were characterized and the particle size was found to be 13.62 nm. The 
synthesized NPs were used for their antibacterial activity against gram-positive and gram-negative bacteria [116]. Ag 
NPs synthesized with Allium cepa showed high levels of antidiabetic activity by inhibiting carbohydrate metabolites 
such as α-amylase and α-glycosidase. They exhibited good antioxidant activity by scavenging free radicals [117]. Ag NPs 
synthesized with Laminaria japonica by hydrothermal process were successfully evaluated for their metallic, optical, and 
structural properties in a steam autoclave at 100 kPa and with a 20-min time duration [118]. 

The synthesis of Ag NPs using Ampelocissus latifolia was confirmed by color changes in UV analysis with an absorption 
peak at 436 nm [119]. Ag NPs synthesized with Rhododendron ponticum were studied for their anticarcinogenic properties. 
The MTT test was performed using the MCF-7 and 4T1 cell lines in cell culture. Antibacterial and antibiofilm inhibition 
was achieved against pathogens such as Enterococcus durans [120]. Ag NPs synthesized using Nauclea latifolia fruit extract 
were found to exert antimicrobial and antifungal activity against Pseudomonas aeruginosa, E. coli, and Aspergillus niger 
with high sensitivity. This aqueous extract had a broad spectrum of activity compared to a menthol extract [121]. Ag NPs 
synthesized using Annona reticulata were exposed to fourth-instar larvae at different concentrations (3–20 µg/mL) for 24 
h and maximum mortality was obtained at a final concentration of 1 mg/mL. The LC50 lethal concentration value was 4.43 
µg/mL and the LC90 value was 13.96 µg/mL [122]. The formation of Ag NPs using Madhuca longifolia was observed at 40 
°C after 20 min and a significant UV spectra peak was found at 436 nm [123].
3.10. Green synthesis of copper oxide (CuO) NPs
CuO NPs synthesized using Tinospora crispa had benefits including being harmless and low-cost with a simple preparation 
method. The typical absorption peak of the CuO NPs occurred at 383 nm and the band gap energy value was 1.32 eV [124]. 
The synthesis and characterization of CuO-ZnO nanocomposites prepared using Thymus vulgaris was also performed 
and sizes of 10–20 nm were reported. The flavonoid and phenolic constituents were confirmed by FTIR. The phenolic 
constituents drove the reduction of the CuCl2 and functioned as capping ligands on the surfaces of the CuO NPs. These 
NPs exhibited good catalytic activity. The catalyst was retrieved and reused many times and there was no decrease in 
catalytic activity [125]. Biogenic CuO NPs synthesized using Psidium guajava had an optical band gap value of 2.5 eV 
as shown in Figure 6b. The effectiveness of the NPs was tested based on the degradation of industrial dyes (e.g., NB and 
RY160 relative to MB and Congo red). CuO NPs synthesized with Melissa officinalis extract were stable and served as an 
efficient catalyst with antibacterial activity [126].
3.11. Green synthesis of cadmium (Cd) NPs
CdS NPs produced by green synthesis are eco-friendly and naturally renewable. The fruit of Opuntia ficus-indica acted as a 
stabilizing and capping agent in the production of highly homogeneous CdS spherical NPs with particle sizes in the range 
of 3–5 nm. The synthetic process used for these NPs is given in Figure 6c. Opuntia ficus-indica fruit sap was also used in 
the synthesis of CdO semiconductor quantum dots. CdS was determined by UV-Vis analysis at 323 nm and DLS analysis 
yielded a d50 value of 9.56 nm. The main applications of this synthesized green material are in solar cells [127].

The synthesis of CdO NPs was performed using turmeric extract act as a reducing agent. The optical band gap value 
of the CdO NPs was found to be 5.8 eV. The antibacterial behavior of the green synthesized NPs was tested against 
Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and Escherichia coli using agar well diffusion. 
Anticancer activity was also determined against human colon cancer cells (HT29) using the MTT assay [128]. CdO NPs 
synthesized using olive were utilized for antifungal activity. XRD analysis of the CdO NPs revealed an average crystallite 
size of 20 nm. The particle size was estimated as 32 nm using a particle size analyzer. The weight loss as measured by a 
TG-DTA curve was 0.98% [129].
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3.12. Green synthesis of magnesium oxide (MgO) NPs
Mg NPs synthesized using Penicillium chrysogenum were evaluated under the influence of different gamma doses. 
The antimicrobial activity of the Mg NPs was examined against common pathogenic bacteria, unicellular fungi, and 
multidrug-resistant pathogens [130]. Antibacterial activity was also reported for MgO NPs, which was synthesized using 
Bauhinia purpurea leaf extract. These NPs were further utilized with antibacterial activity against Staphylococcus aureus 
and exhibited good activity [131]. 

MgO NPs synthesized by coprecipitation route at room temperature using brown marine algae (Turbinaria ornata) 
with antimycobacterial activity were applied against M. tuberculosis H39Rv and a luciferase reporter phage assay revealed 
73% relative light unit reduction [132]. MgO NPs synthesized using marine algae (Sargassum wightii) were highly stable 
at 19.8 mV and the particle size was 68.06 nm. These NPs were used for their antifungal, antibacterial, and photocatalytic 
activities [133]. Withania somnifera has been used in Ayurvedic medicine in India. MgO NPs synthesized with W. somnifera 
extract were used for electrochemical sensing and antifungal and cytotoxic activity [134]. NPs synthesized with Pisonia 
alba showed good antioxidant activity. They exhibited strong fungicidal activity against A. flavus and F. solani. Good 
antioxidant properties were also exhibited with P. alba leaf extract in DPPH and FRAP assays [135]. A summary of the 
synthesis and application of these NPs is provided in Table 3. 

Table 3. Synthesis of silver, copper, cadmium, and magnesium NPs from biological sources and applications.

Name of material Source Nanoparticles Applications Reference
Allium ampeloprasum Leaves Silver Antiinflammatory [99]
Crataegus pentagyna Fruit Silver Photocatalytic degradation [100]
Crataegus microphylla Fruit Silver Antibacterial [101]
Annona muricata Leaves Silver Anticancer [102]
Handroanthus heptaphyllus Leaves Silver - [103]
Tamarindus indica Fruit Silver Anticancer [104]
Andrographis paniculata Leaves Silver In vitro antifilarial [105]
Fumaria parviflora Plant Silver Cytotoxicity [108]
Delonix regia Leaves Silver In vitro cytotoxicity [109]
Calotropis gigantea Leaves Silver Larvicidal [110]
Portieria hornemannii Algae Silver Antibacterial [111]
Gelidium corneum Algae Silver Antimicrobial [112]
Botryococcus braunii Algae Silver - [113]
Jackfruit Seed Silver Antimicrobial [115]
Combretum erythrophyllum Leaves Silver Antibacterial [116]
Allium cepa Plant Silver Antidiabetic [117]
Laminaria japonica Algae Silver - [118]
Ampelocissus latifolia Leaves Silver Antibacterial [119]
Rhododendron ponticum Leave Silver Antibiofilm [120]
Nauclea latifolia Fruit Silver Antioxidant [121]
Annona reticulata Leaves Silver Antimicrobial [122]
Tinospora crispa Leaves Copper - [124]
Thymus vulgaris Leaves Copper Catalytic [125]

Melissa officinalis Leaves Copper Antibacterial activity [126]
Opuntia ficus-indica Fruit Cadmium Solar cell [127]
Turmeric Plant Cadmium Antibacterial [128]
Olive Leaves Cadmium Antifungal [129]
Penicillium chrysogenum Fungus Magnesium Antimicrobial [130]
Bauhinia purpurea Leaves Magnesium Antibacterial [131]
Turbinaria ornata Algae Magnesium Antimycobacterial [132]
Sargassum wightii Algae Magnesium Antifungal [133]
Withania somnifera Leaves Magnesium Antifungal [134]
Pisonia alba Leaves Magnesium Antimicrobial [135]
Psidium guajava Leaves Copper Photocatalytic [136]
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4. Toxicity and safety of green nanomaterials
Together with their smaller sizes and unique properties, nanomaterials and nanocomposites affect the environment and 
human health adversely with long exposure or high quantities. Various consumer products and industries use nanomaterials 
as reactants or intermediates. Long-term exposure to these particles affects organs of the body such as the liver, spleen, and 
skin. If the concentration of NPs increases in the blood, they are then circulated throughout the body, potentially causing 
fatal organ damage. According to the literature, silver is deposited in the liver and spleen while gold is deposited in the liver 
[137,138]. Similarly, exposure to nanomaterials adversely affects the environment and especially aqueous reservoirs. These 
particles can enter the food chain via aqueous media and negatively affect the soil characteristics and organisms living in 
the soil such as worms and microorganisms [139]. 

Nanomaterials enter human and animal bodies through inhalation and ingestion; they are also absorbed by endocytosis. 
After entering the body, they generate ROS that damage different systems via mitochondrial breakdown, mitochondrial 
dysfunction, DNA damage, and protein denaturation. This leads to cytotoxicity and genotoxicity [140,141]. Limited data 
are available on assessments of the toxicity of green nanomaterials, although many researchers are currently working on 
this topic.

It is essential to assess the risks associated with nanomaterials, addressing uncertainties in manufacturing and 
usage processes. Proactive strategies must be developed for risk management, including preventive measures for toxic 
exposure. It is necessary to validate processes and execute precautions regularly, conduct exposure-based inspections and 
maintain vigilance, implement preemptive safety protocols to prevent accidents, initiate health assessments, and provide 
comprehensive training and information for individuals handling toxic materials.

5. Challenges of green synthesis
The advancement of green nanotechnology faces several challenges, including technical obstacles, the toxicity of NPs, 
adherence to regulatory policies governing their synthesis, and the industrial scaling-up of procedures. These factors 
impede the growth of the field. For green synthesis, the standard quality of raw materials is an important parameter for 
the consistency of the produced NPs. Therefore, when selecting raw materials, cost-effectiveness and economic feasibility 
are important criteria along with practicability [142]. Reproducibility is a major concern when using green nanomaterials 
[143].

6. Conclusions
The exploration of environmentally friendly methods for synthesizing metal and metal oxide NPs has been an important 
focus of research for many years. Various natural sources, including plant extracts, bacteria, fungi, and yeast, have been 
utilized with this aim. Notably, plant extracts have demonstrated significant effectiveness as both stabilizing and reducing 
agents. Different plant components such as stems, leaves, fruits, and seeds can be employed in this process. The rich 
presence of polyphenols in these natural extracts plays a crucial role in facilitating reduction, capping, and stabilization. 
The type and quantity of the polyphenols have direct impacts on the resulting particle size. Green NPs may be further 
utilized in various applications in the photocatalytic, electronic, and biomedical fields. Researchers increasingly favor 
green synthesized NPs with better catalytic activity.

7. Future perspectives
To foster sustainable and secure nanotechnology in the future, there is a need for clear design guidelines in production, 
swift toxicology analysis and clear protocols for assessing the safety of MPs, and increased demand from end markets 
to ensure broader applications and commercialization. It is necessary to gain a deeper understanding of the underlying 
reaction mechanisms in green approaches, employ improved characterization techniques, and enhance data analysis. 
These efforts will establish a strong foundation for eco-friendly and sustainable nanotechnology. While substantial 
advancements have been made in laboratory settings, the successful scaling-up of nanomaterial synthesis for real-world 
applications necessitates a thorough comprehension of the synthesis mechanisms and key components. In the future, 
research and development efforts should shift from laboratory-based work to the industrial-scale implementation of green 
materials and NP synthesis.
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