JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS
https://doi.org/10.1080/07391102.2020.1778537

Taylor & Francis
Taylor &Francis Group

‘ W) Check for updates‘

Ethnomedicines of Indian origin for combating COVID-19 infection by
hampering the viral replication: using structure-based drug discovery approach

Selvaraj Alagu Lakshmi
Shunmugiah

, Raja Mohamed Beema Shafreen

, Arumugam Priya (® and Karutha Pandian

Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India

Communicated by Ramaswamy H. Sarma

ABSTRACT

In the present study, we have explored the interaction of the active components from 10 different
medicinal plants of Indian origin that are commonly used for treating cold and respiratory-related dis-
orders, through molecular docking analysis. In the current scenario, COVID-19 patients experience
severe respiratory syndromes, hence it is envisaged from our study that these traditional medicines
are very likely to provide a favourable effect on COVID-19 infections. The active ingredients identified
from these natural products are previously reported for antiviral activities against large group of
viruses. Totally 47 bioactives identified from the medicinal plants were investigated against the struc-
tural targets of SARS-CoV-2 (Mpro and spike protein) and human ACE2 receptor. The top leads were
identified based on interaction energies, number of hydrogen bond and other parameters that explain
their potency to inhibit SARS-CoV-2. The bioactive ligands such as Cucurbitacin E, Orientin, Bis-androg-
rapholide, Cucurbitacin B, Isocucurbitacin B, Vitexin, Berberine, Bryonolic acid, Piperine and
Magnoflorine targeted the hotspot residues of SARS-CoV-2 main protease. In fact, this protease
enzyme has an essential role in mediating the viral replication and therefore compounds targeting
this key enzyme are expected to block the viral replication and transcription. The top scoring
conformations identified through docking analysis were further demonstrated with molecular dynam-
ics simulation. Besides, the stability of the conformation was studied in detail by investigating the
binding free energy using MM-PBSA method. Overall, the study emphasized that the proposed hit
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Cucurbitacin E and orientin could serve as a promising scaffold for developing anti-COVID-19 drug.

Introduction

At the peak of COVID19 pandemic which shudder the whole
world through human to human transmission of SARS-CoV-2,
devouring numerous lives, medical professionals and
researchers all over the globe are in pursuit for the discovery
of prophylactic or anaphylactic remedy to surmount the con-
dition (Al-Khafaji et al., 2020; Boopathi et al., 2020; Pant
et al,, 2020). Thus far, no specific vaccine or antiviral thera-
peutic has been either discovered or anticipated as a con-
ventional medication for this viral infection (Zumla et al.,
2016). Current treatment strategy includes supportive care
which is extended with supplementation of combination of
broad-spectrum antibiotics, antivirals, cortecosteroids and
convalescent plasma (Chen et al, 2020; Habibzadeh &
Stoneman, 2020). SARS-CoV-2 was found to be an enveloped
single-stranded RNA-type beta coronavirus which shares
79.5% sequence similarity with its antecedent class SARS-CoV
(Chen et al,, 2020; Wu et al., 2020). During the previous out-
break of SARS crisis due to SARS-CoV, several research
groups have conducted in vitro analysis and randomized

trials on use of natural herbal medicines to control the
adverse effects of infection and evidenced their use as effect-
ive (Hsu et al.,, 2008; Jang et al., 2009; Kim et al., 2008; Lau
et al., 2005a, 2005b; Li et al., 2005; Wen et al.,, 2011). As novel
coronavirus is closely related to SARS coronavirus, it can be
suggested that natural herbal medicine may have potential
use in existing health crisis (Aanouz et al, 2020; Elfiky,
2020b; Islam et al.,, 2020; Umesh et al., 2020; Wahedi et al.,
2020). In addition to this, for decades, natural herbal medi-
cine has been expended for prevention and cure of numer-
ous ailments concerning human wellbeing.

The WHO estimates that, 80% of population from under-
developed realm rely mostly on the traditional medicines. In
addition to this, WHO listed around 21,000 plants which are
known for their therapeutic potential around the world
among which 2500 varieties are found around India includ-
ing 150 species with large scale commercial usage (Shukla
et al., 2019). In India, Siddha is one among the three trad-
itional medical systems practiced and the other two being
Ayurveda and Unani. In Siddha medicine Nilavembu
Kudineer Chooranam (NKC) has been recommended for the
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preclusion and control of all the types of viral infectious dis-
eases. NKC is an herbal formulation comprising nine varieties
of plant materials viz. Nilavembu (Andrographis paniculata),
Vetiver (Vetiveria zizanioides), Vilamiccam ver (Plectranthus
vettiveroides), Santanam (Santalum album), Pei pudal
(Trichosanthes dioica), Korai kizhangu (Cyperus rotandus),
Chukku (Zingeber officinale), Milagu (Piper nigrum) and
Parpatakam (Mollugo cerviana) (Kavinilavan et al., 2017). NKC
has been reported to have therapeutic applications such as
antiviral, antipyretic, antibacterial, antiulcer, antioxidant, anal-
gesic etc (Jain et al., 2019). On the other hand, it has also
been stated to act as an immunostimulant and immunomo-
dulant which enhances the host immune system and modu-
lates the defence response that helps to protect the
complications of infections (Kamalarajan et al, 2019;
Nakkeeran et al., 2016; Ramanathan et al., 2019). Previously,
NKC has been shown to alleviate the symptoms of dengue
and chikungunya (Anbarasu et al, 2011; Mattummal et al.,
2018). In fact, Government of Tamil Nadu have taken initia-
tives in supplying decoction of NKC to patients visiting the
primary health care centres and also promoted the drink for
prevention and control of morbidity level during outbreak of
viral fever (Ramanathan et al., 2019). Owing to their medi-
cinal properties and specifically antiviral potential, the pre-
sent study aims at investigating the therapeutic efficacy of
active components of NKC and natural constituents from
other known medicinal plants (Tinospora cordifolia and
Anethumsowa) which are also used as combinations to treat
respiratory diseases. Phytomolecules from the components of
NKC and the aforementioned medicinal plants against the
two major viral targets spike glycoprotein and protease and
a host target human angiotensin-converting enzyme 2
(ACE2) receptor, which is the entry point for viral encounter
were examined with the prospects of identifying potential
drug candidate(s) against COVID19 infection. Thus, ethnome-
dicines identified from the study through in silico approaches
can combat the global health crisis instigated by SARS-CoV-2
(Abdelli et al., 2020; Elfiky & Azzam, 2020; Elmezayen et al.,
2020; Enayatkhani et al., 2020; Enmozhi et al., 2020, Elfiky,
2020a; Gupta et al., 2020; Sarma et al, 2020; Sinha et al,,
2020). Unlike modern medicines, the antique herbal remedies
do not possess side effects, indeed they establish natural
resistance to alleviate the viral infection by boosting the
immune system. Thus, the main objective of the study is to
identify a potent phytocompound as inhibitor against SARS-
CoV-2 drug targets from vintage medicinal plants through
computational investigations.

Materials and methods
Bioactive ligands

The study focuses predominantly on bioactive ligands from ten
traditional medicinal plants that are primarily used in the treat-
ment of respiratory illness. The active components were
selected and screened against SARS-CoV-2 main protease,
spike (S) protein and host cell ACE2 receptor. The list of active
leads used in the present study is shown in Table 1. Ligand 3D
structure was obtained in .sdf format from PubChem database

and converted into .pdb format through online program
(https://cactus.nci.nih.gov/translate/). PubChem ID of bioac-
tives are provided in Supplementary Table 1.

Molecular docking

Crystal Structures of SARS-CoV-2 main protease (PDB ID:
5R82.pdb), spike protein (PDB ID: 6VYB.pdb) and human entry
receptor ACE2 (PDB ID:1R42.pdb) were retrieved from RCSB PDB
database (http://www.rcsb.org/pdb). In order to minimize the
energy, PDB structures of the target proteins were refined
through ModRefiner algorithm (Xu & Zhang, 2011). Ligands were
optimized by adding hydrogen atoms and energy minimization
was performed with MMFF94 Force Field in Autodock v4.2
(Norgan et al., 2011). Grid box was defined on binding pocket of
target protein and the grid points were extended in all directions
to encompass the binding region. Molecular docking was per-
formed through Autodock v4.2 by tethering ligand to target pro-
tein and the binding affinity was determined through kcal mol™".
The pose with highest binding energy was extracted and ana-
lysed in Biovia Discovery Studio 4.5 software (Systemes, 2015).

Molecular dynamics (MD) simulation

The top two ligands showing interaction with Mpro (revealed
through docking analysis) were further subjected to 20ns MD
simulation studies. The energy and structural properties of the lig-
and-receptor complexes were determined through Gromacs 5.1.4
simulation package using CHARMM force field. The protein-ligand
complex was inserted into a cubic box of 10 A dimension and sol-
vated using SPCE water model and the system was neutralized by
adding counter ions (0.15M NaCl). An initial minimization of
1000-step was carried out by applying steepest descent algorithm
followed by 2000-step using conjugate gradient minimization.
The system was gradually heated to 300K for 100 ps and then
equilibrated using NVT ensemble for 100 ps and retained at con-
stant temperature. Sequentially, the system was equilibrated
using NPT ensemble for 1000 ps. MD production run for 20 ns
was performed with a time step of 2 ps and the trajectories were
recorded at every step (Beema Shafreen et al., 2014). The struc-
tural behaviour of Mpro protein in the presence and absence of
the drug molecules were calculated through Root mean square
deviation (RMSD) and Root mean square fluctuation (RMSF).
Overall methodology is represented as a flowchart in Figure 1
(Borgio et al., 2020).

Binding energy calculation

The binding free energy between the protein and drug mol-
ecules were calculated using molecular mechanics/Poisson-
Boltzmann surface area (MM-PBSA) method in Gromacs
(g_mmpbsa) software. The following equation was used to
calculate the binding free energy.

AGging = AEym + AAGs,) — TAS
= (AEvdw + AEelec) + (AGGB + AGSA) —TAS

Where AGgng is the binding free energy; AEyy is the
interaction energies such as AE,q,, (van der Waals interaction
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Table 1. List of natural products that are commonly used to treat fever, cold and respiratory related ailments in traditional South Indian medicine system. The
active ingredients extracted from these natural products are used for docking with SARS-CoV-2 drug targets.

Natural products

S. No Tamil name Scientific name Accepted Scientific name Active ingredients

1. Nilavembu Andrographis paniculata Andrographis paniculata (Burm.f.) Nees Andrographolide, Bis-andrographolide, Caffeic acid

2. Vetiver Chrysopogon zizanoides Chrysopogon zizanioides (L.) Roberty Vetivone, a-cadinene, a-calacorene

3. Korai kizhangu Cyperus rotundus Cyperus rotundus L. Cyperene, B-selinene

4, Cittapiryan Mollugo cerviana Mollugo cerviana (L.) Ser. Vitexin, Orientin

5. Milagu Piper nigrum Piper nigrum L. Piperine, p-cymene, D-limonene

6. Santanam Santalum album Santalum album L. o, B-santalol, Vanillic acid

7. Pei pudal Trichosanthes cucumerina Trichosanthes cucumerina L. Bryonolic acid, Cucurbitacin B, Cucurbitacin E,
Isocucurbitacin B, B-sitosterol, Stigmasterol

8. Chukku Zingiber officinale Roscoe Zingiber officinale Roscoe 6-shogaol, 6-ginerol, zingiberol, alpha pinene,
beta pinene, camphene, Limonene, myrcene

9. Seenthilkodi Tinospora cordifolia Tinospora cordifolia (Willd.) Tinosporin, Berberine, Palmatine, Magnoflorine,

Hook.f. & Thomson
10. Sathakuppai Anethum sowa Anethum sowa Roxb. a-phellandrene,Carvone and Limonene

Screening of bioactive ligands from ten different medicinal plants that
are used for treatment of respiratory illness
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Literature survey

Interaction studies with 47 bioactive ligands against three drug
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Figure 1. Flow chart representing the summary of the work.

energy) and AE.. (electrostatic interaction energy) between
the protein and drug complex; AG,, is the solvation energy
comprising AGgg (polar components) and AGsa (non-polar
components); TAS is the entropy change at temperature T.

Results

Crystal structures of main protease, spike protein and human
entry receptor (ACE2) were used to define the molecular

interactions (Meng et al., 2011) with the scrutinized bioac-
tives. The top ten scoring bioactive ligands are represented
in Table 2 with binding energy, dock score, van der Waals
and H-bond energy. Interestingly, among the bioactives
screened, the compounds Orientin, Vitexin, Berberine,
Bryonolic acid and Magnoflorine were found to interact with
all the drug targets of SARS-CoV-2 including the human
entry receptor ACE2 (Figure 2). Although the aforesaid com-
pounds had interaction with all the drug targets of SARS-
CoV-2, interaction with active site residues of main protease
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was found to be much stronger than the other two drug tar-
gets (spike protein and ACE2) used in the study (Hasan et al.,
2020). The highest binding affinity between the ligands-
receptor complex was confirmed through binding energy
and other possible non-covalent interactions. Based on the
scoring values it is confirmed that these compounds can sig-
nificantly inhibit SARS-CoV-2 viral replication by binding
strongly with the main protease.

Among 47 bioactives used in the study, Orientin, a C-gly-
cosyl compound, showed the highest binding affinity with
main protease with a dock score of —134.14 and binding
energy of —90.2kcal mol™' (Figure 2-IB). It formed seven
conventional hydrogen bonds with five residues (Thr26,
His41, Gly143, Cys145 and Glu 166). These hydrogen bond
interactions indeed enhance the binding affinity of the com-
plex by stabilizing the ligand at the active site of the target
and thereby help in increasing the biological activity of the
complex. Notably, among the active site residues the cata-
Iytic dyad of main protease (His41 and Cys145) was mainly
involved in hydrogen bond interactions. These interactions
are expected to prevent the virus from processing polypro-
tein which consequently hinder the viral replication. The
other interactions that stabilizes the Orientin and main prote-
ase complex includes pi-pi stacked interaction with His163,
pi-pi T-shaped interaction with His41, pi-alkyl interaction
with Cys145, pi-sulfur interaction with Met49. In addition, the
residue Asn142 formed a pi-donor hydrogen bond with the
ligand molecule. The conformation had the van der Waals
and H-bond energy of —63.65 and —26.58kcal mol™",
respectively. All these crucial interactions facilitate in aug-
menting the efficacy of the drug molecules by stabilizing the
binding structures. Orientin docked with spike protein (6VYB)
revealed the docking and binding energy score of —110.05
and —72.3kcal mol™’, respectively. Besides, it formed six
hydrogen bond interactions with four amino acids (Tyr28,
Asn30, Phe59 and Asn61) and one carbon-hydrogen bond
with Thr29. H-bond and van der Waals interaction energies

1A
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were found to be —13.23 and —59.02kcal mol™", respect-
ively. Similarly, Orientin docked with ACE2 receptor revealed
the docking and binding energy score of —101.17 and
—70.6 kcal mol™", respectively. The binding affinity was asso-
ciated with five hydrogen bond interactions formed by three
residues (Glu22, Lys26 and Asn90), one carbon hydrogen
bond interaction with Glu22 and pi-alkyl interaction with
Lys94. The structure possesses van der Waals and H-bond
interactions energy of —5884 and —11.76kcal mol™’,
respectively.

Vitexin, an apigenin flavone glycoside, was found to have
the binding energy of —85.7 kcal mol™" and the dock score of
—98.03 during the interaction with main protease. The strong
affinity was explicable from six hydrogen bonds formed with
six residues of main protease (Phe140, Ser144, Cys145, Asn142,
Leu167 and GIn189). Vitexin-Mpro complex was stabilized by
pi-anion (Cys145), pi-sulfur (Glu166), pi-lone pair (Asn142), pi-
pi T-shaped (His41) and pi-alkyl (Met165) interactions. The van
der Waals and H-bond energy was found to be —72.97 and
—12.71 kcal mol ™", respectively. Vitexin docked with spike pro-
tein reported —98.34 and —67.7 kcal mol™' as docking and
binding energy score, respectively. It formed four hydrogen
bonds with four residues (Tyr28, Asn30, Phe59 and Asn61) and
one carbon hydrogen bond with Thr29. The conformation had
the van der Waals and H-bond energy of —57.78 and —9.93,
respectively. ACE2 receptor with Vitexin had a docking and
binding energy score of —85.24 and —68.1 kcal mol ™", respect-
ively. Conformational stability of the complex (Vitexin-ACE2) is
maintained by hydrogen bond (two hydrogen bonds from
Glu22 and Asn90), van der Waals (Lys26, Leu29, GIn89 and
GIn96) and pi-alkyl interactions (Val93 and Lys 94). H-bond and
van der Waals energy was found to be —57.61 and —10.5 kcal
mol ™', respectively.

Main protease and Berberine (an organic heteropentacyclic
compound) interaction showed a binding energy of —83.2 kcal
mol~' and a dock score of —103.89. The interaction between
ligand with the receptor binding site of Mpro was stabilized by

Figure 2. Interaction map of top ten scoring ligands with SARS-CoV-2 drug targets (I) Main protease (Mpro, 5R82) (Il) Spike protein (6VYB) (Ill) ACE-2 (1R42) (A)
Crystal structure of drug targets (represented in space-filling model) displaying the druggable pocket of ligands (stick model) (B) 2D interaction map showing the
top ten ligand interactions with receptor. Active site binding pockets residues are represented in three letter amino acid code and the type of interactions are men-

tioned in different colors.
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pi-pi T-shaped interaction with His163, Pi-alkyl interaction with
Cys145 & His41 and alkyl interaction with His163. The conform-
ation showed van der Waals and H-bond energy of —74.84 and
—8.34kcal mol™', respectively. Berberine with spike protein
revealed the docking score, binding and interaction energies
such as H-bond and van der Waals as —82.48, —69.7, —4.89
and —64.84 kcal mol ™', respectively. The other stabilizing inter-
actions includes van der Waals (Asn30), amide pi-stacked

(Phe59), pi-pi stacked (Thr29) and pi-alkyl (Phe59) interactions.
Berberine with ACE2 receptor had a docking score of —95.33,
binding energy of —71.5kcal mol™" and H-bond and van der
Waals interaction energies of —58.759 and —12.728, respect-
ively. It formed two conventional hydrogen bond interactions
with Lys26 and Thr27. Further stabilization occurred with pi-
cation (Glu22), pi-anion (Glu22), pi-sulfur (Val93) and alkyl
(Val93) interactions.
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Bryonolic acid formed a strong interaction with the recep-
tor binding sites of main protease with a binding energy
score of —81.0kcal mol™' and dock score of —91.63.
Bryonolic acid formed two hydrogen bond interactions with
Arg188 and GIn189. Further conformational interactions such
as carbon hydrogen bond interaction was observed with
Ser139 and His163, alkyl interaction with Tyr118, Cys145,
His163 and Met49 and pi-alkyl interaction with His41, His163,
His172 and Met165 which stabilized the binding of the bryo-
nolic with Mpro. The van der Waals and H-bond interaction
energy was —74.25 and —6.71kcal mol™', respectively.
Bryonolic acid docked with spike protein reported —80.57,
—63.9, —60.37 and —3.5kcal mol™" as docking, binding, H-
bond and van der Waals energies, respectively. Key interac-
tions between Bryonolic acid and spike protein includes one
conventional hydrogen bond with Tyr28 and pi-alkyl inter-
action with Phe58. Interaction with ACE2 receptor was found
to have a docking score of —80.99, binding energy score of
—65.6 kcal mol™' and van der Waals and H-bond interaction
score of —54.032 and —11.596kcal mol~', respectively.
Energetic contributions to the ligand include conventional
hydrogen bonds (four bonds with Glu22, Thr27, GIn89 and
Asn 90) and pi-alkyl (Leu29 and Lys94) interactions.

Magnoflorine docked with main protease showed a bind-
ing energy score of —77kcal mol™' and a dock score of
—92.41. It formed six hydrogen bonds with four amino acids
(Leu141, Asn142, Ser144 and Cys145). Besides, it also forms
carbon hydrogen bond with Phe140, His163 and Glu166 and
pi-donor hydrogen bond with Cys145. The extra stabilizing
interaction associated with ligand and main protease com-
plex includes pi-cation interaction with His41, pi-alkyl inter-
action with Leu27 and Cys145 and pi-sigma interaction with
His41. The van der Waals and H-bond interaction energy was
—64.02 and —12.98kcal mol™~', respectively. Magnoflorine
with spike protein has a dock score of —90.88, binding
energy score of —65.5kcal mol~'and van der Waals and H-
bond interactions score of —57.44 and —8.02kcal mol~’,
respectively. It formed conventional hydrogen bonds with
Asn61 and carbon hydrogen and pi-donor hydrogen bond
with Tyr28. Other significant interactions comprise pi-sigma
(Tyr28) and pi-pi stacked (Tyr28) interactions. Magnoflorine
with ACE2 receptors exhibited a docking score of —95.46,
binding energy score of —64.4kcal mol™', H-bond and van
der Waals interaction scores of —15.52 and —48.90kcal
mol ™', respectively. It formed two hydrogen bond interac-
tions with Thr27 and Leu29 and carbon hydrogen bond with
Val93 and Glu22. Other energetic contribution includes pi-
cation (Lys26 and Glu22) and pi-alkyl (Leu29 and Val23) inter-
actions. In addition, it formed electrostatic interaction with
Lys26 and Glu22, thereby stabilizing the complex formed.

Besides, the compound Cucurbitacin E, Bis-andrographo-
lide, Cucurbitacin B, Isocucurbitacin B and Piperine had
strong binding affinity to main protease of SARS-CoV-2.
Cucurbitacin E was the top scorer among the main protease
inhibitors. It had the highest binding energy score of
—91.0kcal mol™" with a dock score of —113.4. The H-bond
and van der Waals interactions energy was found to be
—19.48 and —71.53kcal mol™', respectively. It formed two
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conventional hydrogen bond interactions with Asn142 and
Cys145 and one carbon hydrogen bond with Ser46. Besides,
it had alkyl and pi-alkyl interaction with Met49, His41, Cys44
and His163. The compounds Cucurbitacin B and
Isocucurbitacin B had similar kind of pi-alkyl and alkyl inter-
actions as Cucurbitacin E. But in case of conventional hydro-
gen bond interactions both lacked Cys145 interactions. In
addition, Isocucurbitacin B lacked carbon hydrogen bond
interaction with Ser46. Notably, Cucurbitacin B formed a spe-
cific conventional hydrogen bond with Thr25.

Bis-andrographolide had the docking and binding energy
score of —100.3 and —90kcal mol ™', respectively. It formed
conventional hydrogen bond with Glu166 and alkyl inter-
action with Met49. The conformation had the van der Waals
and H-bond energy score of —88.60 and —1.38kcal mol ™',
respectively. Piperine interacted with main protease with a
dock score of —90.95 and binding energy score of
—78.10kcal mol™". It formed one conventional hydrogen
bond with hotspot residue His41 and other stabilizing inter-
actions include pi-sulfur, pi-sigma, pi-pi T-shaped and alkyl
interactions.

The compounds Palmatine, Piperine, Stigmasterol,
Andrographolide and B-sitosterol and the components 2-monoli-
nolenin, Andrographolide, Isocucurbitacin B, Cucurbitacin E and
B had strong binding affinity to spike and ACE2 receptor, respect-
ively. The schematic representation summarizing the overall scor-
ing functions of top ten bioactive molecules is shown in Figure 3.

MD simulation and binding energy

Among the ligands screened through docking studies,
Cucurbitacin E and Orientin revealed significant interaction
with most critical residues of Mpro with high binding affin-
ities. Therefore, these two compounds were selected as the
best inhibitors and used for further analysis. MD simulation
of 20 ns was performed for the two selected drug molecules
to get deep insights into the stability of the Mpro-drug
complex. The overall stability was determined through RMSD
and RMSF analysis. The energy profile in the presence and
absence of ligands were computed during 20 ns MD simula-
tion. Wherein, the potential energy profile of the system was
found to be stable throughout the simulation and the lowest
energy profile in the presence of ligands indicates that the
system is considerably stable than in the absence of ligand
(Figure 4(A)). Similarly, RMSD analysis during each time step
unveiled the stability of the system. Mpro in the absence of
drug molecule maintained the steady state throughout the
simulation with an average RMSD value of 3.71A, indicating
the convergence of the system during 20ns simulation.
However, Mpro in complex with drug molecules exhibited lit-
tle variations during the simulation run (Figure 4(A)). Orientin
presented an average RMSD of 4.6 A whereas Cucurbitacin E
presented an average RMSD of 4.9 A. Although, the system
started with increasing RMSD profile, it favored to equilib-
rium state after 2ns and successfully maintained the stable
state throughout the remaining simulation run (Figure 4(B)).
RMSF provides the visibility for most flexible and mobile
regions in the protein during the simulation. In fact, these
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Figure 3. A schematic representation summarizing the top ten scoring functions of ligands in complex with (A) 5R82.pdb (B) 6VYB.pdb (C) 1R42.pdb.

structural fluctuations reveal the binding and interaction of
the drug molecules with the protein motif. RMSF analysis of
Mpro in the presence of ligand unveiled the fluctuating resi-
dues at 1-12, 128-146 and 185-192 amino acid regions cor-
responding to the loop region (Figure 4(C)) of Mpro. The
average RMSF value for Mpro was found to be 1.53A

revealing that there was little fluctuation in the loop region
during MD run. However, Mpro in complex with Cucurbitacin
E and Orientin was found to have high fluctuation in the
druggable pocket with an average RMSF value of 2.10A and
1.79A, respectively. The Mpro-Cucurbitacin E complex was
found to have significant fluctuation with the catalytic
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Figure 4. Analysis of MD trajectories (A) Potential energy during 20 ns MD simulation (B) RMSD of protein backbone (C) RMSF.

residues (Cys145) of Mpro in comparison to Orientin. Since,
Cys145 resides in the loop region, the fluctuations are favor-
able and advantageous in accommodating the drug mol-
ecule at the receptor site.

MM-PBSA is the most reliable method for predicting the
binding interaction between protein-drug complexes. The
binding free energy for Cucurbitacin E and Orientin was
—152.96 and —123.62kcal/mol respectively. The binding
energies obtained from MD trajectories further confirms the
accommodation of inhibitors into the druggable pocket of
Mpro. Moreover, the binding pocket with polar microenviron-
ment reinforces the strong hydrogen and hydrophobic inter-
actions with the drug molecule and seizes them in the active
site of Mpro. Overall, the results were suggestive that Mpro

150 200 250 300
Residues
maintains a stable binding state with the inhibitors

(Cucurbitacin E and Orientin) for plausible interactions.

Discussion

Siddha, one of the oldest traditional systems of medicine in
India, has been shown to be effective in treating respiratory-
related infections (Ram et al., 2009). Several natural bioac-
tives isolated from medicinal plants of Siddha system are
reported for antiviral property against respiratory viruses. It is
thus likely that these compounds may exert an antiviral
activity against SARS-CoV-2 (Adeoye et al., 2020; Oliveira
et al.,, 2020). Hence, in the present study anti-COVID-19 drug
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candidates were identified from Siddha medicinal plant, with
special attention to NKC combination plants, due to its anti-
viral, immunostimulant and immunomodulatory activities
(Kavinilavan et al., 2017). The potent anti-COVID-19 drug
candidates were screened from 47 bioactives, among them
5 (Orientin, Vitexin, Berberine, Bryonolic acid and
Magnoflorine) bioactives had potential interactions with all
drug targets (mentioned in the present study). All these drug
candidates exhibited strong affinity towards the target site of
the receptor molecule with high binding energy. The top
scoring receptor-ligand complex was stabilized by non-cova-
lent interactions such as hydrogen-bonding, van der Waals
and electrostatics interactions (Chen & Kurgan, 2009). These
interactions are indeed prerequisites for biological functions
and successful drug developments. Moreover, the top
two scoring ligands Cucurbitacin E and Orientin were further
substantiated through 20 ns MD simulation studies.

Mpro, one of the best characterized drug targets of SARS-
CoV-2, is essential for polyprotein processing (translated from
viral RNA) that enables viral replication and gene expressions.
The catalytic dyad His41 and Cys145 is essential for substrate
hydrolysis. Thus, compounds inhibiting the active site of this
protease are expected to prevent replication and transcription
of viral components (Das et al., 2020; Gyebi et al., 2020; Joshi
et al.,, 2020; Khan et al.,, 2020a; 2020b; Kumar et al.,, 2020;
Muralidharan et al., 2020; Zhang et al., 2020a; Zhang et al.,
2020b). Other drug targets of SARS-CoV-2 include spike glyco-
protein and host cell receptor ACE2. In general, SARS-CoV-2
makes an entry into host cell through ACE2 receptors and it is
mediated by receptor binding domain of homo trimeric spike
glycoprotein. The crystal structure of spike protein in complex
with human ACE2 receptor revealed that residue Ser19,
GIn24,Thr27, Phe28, Asp30, Lys31, His34, Glu35,Glu37, Asp38,
Tyr41, GIn42, Leu45, Leu79, Met82, Tyr83,Asn330,Lys353,
Gly354, Asp355, Arg357 and Arg393 of human ACE2 interacted
with residues Ala475/Gly476, Alad74/G476/Asn487, Phe56/
Tyr473/Ala475/Tyr489, Tyr489, Lys417/Leu455/Phe456,
Leu455/Phe456/Glu484/Tyr489/Phe490/GIn493, Tyrd53/
Leud55/GIn493, GIn493, Tyr505, Tyr449/Gly496/GIn498,
GIn498/Thr500/Asn501, Gly446/Tyr449/GIn498, GIn498/
Thr500, Phe486, Phe486, Phe486/Asn487/Tyr489, Thr500,
Gly496/Asn501/Gly502/Tyr505, Tyr502/Tyr505, Thr500,Gly502,
Thr500, Tyr505, respectively, of spike glycoprotein (Wang et al.,
2020). Therefore, bioactives targeting these hotspot residues
are likely to become a potent inhibitor of SARS-CoV-2.
However, spike protein and ACE2 receptor showed no signifi-
cant inhibition. In case of ACE2 drug target, only Thr27 (hot-
spot residue) of ACE2 had interactions with bioactives
(Veeramachaneni et al., 2020).

Orientin possesses wide range of pharmacological effects
such as antioxidant, antiaging, antibacterial, anti-inflamma-
tion, free radical scavenging, cardioprotective, radioprotec-
tive, neuroprotective, antidepressant, anticancer and
thrombocytopenia activities (Lam et al, 2016; Sharma et al.,
2016; Yadav et al, 2018). It has also been documented for
antiviral activity against parainfluenza type 3 virus (PIV-3) (Li
et al, 2002). Like Orientin, the compound Vitexin was also
reported for multiple drug targets including antioxidant,

anticancer, anti-inflammatory, antihyperalgesic and neuropro-
tective effects (He et al,, 2016). It has also been reported for
antiviral activity against several viruses such as herpes sim-
plex virus type 1 (HSV-1), Hepatitis A Virus (HAV-H10), PIV-3
and rotavirus (Fahmy et al., 2020; Knipping et al, 2012; Li
et al., 2002). Bryonolic acid, a pentacyclic triterpenoids, exhib-
its biological activities such as antiallergic, antitumor, antioxi-
dant and anti-inflammatory (Gatbonton-Schwager et al,
2012; Khallouki et al., 2018; Tanaka et al., 1991). An apor-
phine alkaloid, Magnoflorine, has been reported for antidia-
betic and anticancer property (Patel & Mishra, 2012). In
addition, Magnoflorine has been previously reported for their
antiviral effects against HSV-1 and poliovirus type-1
(Mohamed et al., 2010). Berberine, an organic hetero penta-
cyclic compound has been reported for numerous thera-
peutic values such as antioxidant, anti-inflammatory,
antidiarrhea, antilipemic, antibiofilm, immunomodulatory,
cardioprotective, nephroprotective, hepatoprotective and
glucose metabolism (Neag et al.,, 2018; Zhang & Shen, 1989).
Most importantly, it has been reported for antiviral activity
against numerous viruses such as influenza virus (Wu et al.,
2011), enterovirus 71 (Wang et al., 2017), human cytomegalo-
virus (Hayashi et al., 2007), hepatitis C virus (Hung et al,,
2019), HSV-1 (Dkhil & Al-Quraishy, 2014) and chikungunya
virus (Varghese et al., 2016). Besides, it has been proven to
be an antibacterial agent against multiple drug resistance
bacteria such as methicillin-resistant Staphylococcus aureus
and Streptococcus agalactiae (Chu et al., 2016; Peng et al.,
2015; Tan et al,, 2019; Yu et al, 2005) and antifungal agent
against Candida spp. (Xie et al., 2020).

The compounds Piperine, Cucurbitacin B, Cucurbitacin E,
Isocucurbitacin B and Bis-andrographolide have also been
reported for numerous pharmacological effects (Chao & Lin,
2010; Derosa et al., 2016; Kaushik et al., 2015). In addition,
Piperine has been reported for antiviral activity against
Hepatitis B (Jiang et al., 2013). Cucurbitacin B showed anti-
viral activity against HSV-1 (Hassan et al., 2017) and Bovine
viral diarrhea virus (BVDV) (Alsayari et al., 2012). Cucurbitacin
E was reported against BVDV (Alsayari et al., 2012) and Bis-
andrographolide against HIV virus (Reddy et al., 2005).

The multiple pharmacological effects exhibited by these
components strongly suggest that these phytochemicals
would certainly find their way into the arsenal of antiviral
drugs. Moreover, the active components Vitexin, Berberine,
Bryonolic acid, Magnoflorine, Cucurbitacin, Piperine,
Palmatine, Stigmasterol, Andrographolide, Sitosterol and 2-
monolinolenin were FDA approved drugs. Hence, these phy-
tochemicals can be further taken for preclinical studies to
treat COVID-19 infection (Lobo-Galo et al., 2020). The docking
studies expounded with MD simulation and binding affinity
analyses strongly suggest that the compound Cucurbitacin E
and Orientin are promising drug candidate to combat
COVID-19 infections. However, in vitro and in vivo experimen-
tal evidences are further required to substantiate the postu-
lations observed from the present study. In conclusion,
consumption of NKC will helps in developing an immune
response, elimination of toxins from the system, soothes the
body and improves the overall health condition.



Conclusion

The present study explored the important bioactive constitu-
ents of Siddha medicine, especially NKC through molecular
docking and simulation analysis for the prevention and cure
of COVID19 infection. The compounds Cucurbitacin E,
Orientin, Bis-andrographolide, Cucurbitacin B, Isocucurbitacin
B, \Vitexin, Berberine, Bryonolic acid, Piperine and
Magnoflorine were identified as potential lead molecules
that have been shown to possess the ability to interact with
the components that block the viral replication in SARS-CoV-
2. Moreover, the immune-enhancing properties of these
compounds without any adverse side effects could provide
natural immune power to resist COVID-19 infections.
However, preclinical studies would provide deep insight into
mechanism of actions and also drugability of these bioac-
tives for the treatment of COVID19 infection.
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