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Neurodegenerative diseases (NDD) are a range of debilitating conditions of the brain involving pro-
gressive loss of neurons, many of which are still currently incurable despite enormous efforts on drug
discovery and development in the past decade. As NDD is closely linked to old age, the rapid worldwide
growth in the aging population contributes to an increasing number of people with one of these
incurable diseases and therefore it is considered a significant global health issue. There is an urgent need
for novel effective treatments for NDD, and many new research strategies are centered on traditional
medicine as an alternative or complementary solution. Several previous findings have suggested that
glutamate toxicity drives neurodegeneration in many NDD, and the medicinal plants with anti-glutamate
toxicity properties can be potentially used for their treatment. In order to obtain data relating to natural
products against glutamate toxicity, six candidate plant species of Thailand were identified. Studies
utilizing these herbs were searched for using the herb name (Latin and common names) along with the
term “glutamate” in the following databases across all available years: PubMed, Scopus, and Google
Scholar. This review emphasizes the importance of glutamate toxicity in NDD and summarizes individual
plants and their active constituents with the mechanism of action against glutamate toxicity-mediated
neuronal cell death that could be a promising resource for future NDD therapy.
Taxonomy (classification by evise): Alzheimer’s disease, Neurodegenerative diseases, Cell culture, Mo-
lecular Biology, Traditional herbal medicine, Oxidative stress, Glutamate neurotransmitter.
© 2020 Center for Food and Biomolecules, National Taiwan University. Production and hosting by Elsevier
Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. Introduction

multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS). As
the world population ages, these age-dependent NDD are

Neurodegenerative diseases (NDD) is a generic term used for a
wide range of incurable and debilitating conditions, characterized
clinically, by loss of neurological function (e.g., dementia, loss of
movement control, paralysis), and pathologically, by progressive
degeneration of nerve cells, particularly those in the central ner-
vous system (CNS).! The most common type of NDD is Alzheimer’s
disease (AD), accounting for approximately two-thirds of all cases
and typically found in people 65 years old and above.”> Other NDD
include Parkinson’s disease (PD), Huntington’s disease (HD),
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becoming one of the leading public health concerns with increasing
prevalence worldwide, and there is currently no cure. At best, the
available treatments are limited only for symptomatic
management.’

The WHO, defines the term ‘medicinal plant’ as any plant,
(including one or more of its organs) that contains substances that
can be used directly for therapeutic purposes or indirectly as useful
precursors for drug synthesis.* Since ancient times, various types of
medicinal plants have been utilized in traditional systems of herbal
medicine by different cultures around the world, including Thai
Traditional Medicine. Traditional Medicine still plays a crucial role
in the health care of many rural communities, with an estimated
70—95% of populations relying on them.* The global demand for
herbal medicine is also growing popularity due to the rise in pop-
ulation, inadequate drug supplies, high cost of modern medicines
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List of abbreviations

AP Amyloid-beta

AD Alzheimer’s disease

AIF Apoptotic-inducing factor
ALS Amyotrophic lateral sclerosis
CAT Catalase

CNS Central nervous system
CHOP C/EBP homologous proteins
EAAT Excitatory amino acid transporter
ER Endoplasmic reticulum

GPx Glutathione peroxidase

GR Glutathione reductase

GSH Glutathione

GST Glutathione S-transferase
HD Huntington’s disease
iGIuR Ionotropic glutamate receptor

mGIuR Metabotropic glutamate receptor
MS Multiple sclerosis

NDD Neurodegenerative diseases

NMDA N-methyl-p-aspartate

NO Nitric oxide

Nrf2 Nuclear factor erythroid 2-related factor 2
PD Parkinson’s disease

ROS Reactive oxygen species

SOD Superoxide dismutase

System Xc~ Cystine/Glutamate antiporter
VGLUT Vesicular glutamate transporter

and side effects of several synthetic drugs. Plants have become a
significant source of new medicines since there are now approxi-
mately 391,000 plant species in the world, while only a small
number has been explored for their medicinal properties.
Furthermore, nearly 50% of modern drugs are derived from plants.’

Due to continued failure of NDD candidate drugs in clinical trials
in the past decades, especially for AD,® some researchers have
gradually turned their attention to herbal medicine as an alterna-
tive or complimentary approach to NDD treatment. Naturally, a
medicinal plant contains a large variety of several chemical con-
stituents. The major classes of phytochemicals include phenolics,
flavonoids, alkaloids, terpenoids, steroids, saponins, tannins, and
glycosides. These phytochemicals have been shown to possess a
broad range of biological activities. The multiple components of
herbal medicines and the multi-target nature of NDD suggests that
herbal medicines may achieve a more favorable clinical outcome by
dealing with the complex nature of NDD etiology. Although the
safety and toxicity of plants are still a paramount concern, they are
generally considered to have mild toxic effects, and that only
occurred in certain people.’

The development of effective medication for NDD is still chal-
lenging. Several recent efforts in searching for new treatments have
been focused on glutamate-induced neurotoxicity, which has been
implicated as a potential mechanism underlying neuro-
degeneration in several NDD.® Therefore, targeting glutamate-
mediated toxicity pathways along with other pathological mecha-
nisms may provide better therapeutic benefits in the treatment of
NDD. In this present review, we aimed to provide updated evidence
to support the potential use of promising plants for NDD thera-
peutics with an emphasis on their protective activities against
glutamate toxicity.

2. Glutamate neurotransmission in CNS

Glutamate is one of the most abundant amino acids in the hu-
man body. It is the anionic form of glutamic acid, which can be both
synthesized within the cells and derived from dietary sources such
as plants and animals. Glutamate acts as a cellular “multi-tool”
which is essential for a wide range of cellular functions, including
serving as a building block in the biosynthesis of proteins, an
essential compound in cellular metabolism, an intermediate in the
body’s disposal of excess nitrogen, and a precursor of glutathione
(GSH).?

Glutamate also plays a crucial role in the CNS as a principal
excitatory neurotransmitter and as a precursor to an inhibitory
neurotransmitter, gamma-aminobutyric acid (GABA). Glutamate is
known to be involved in a variety of normal brain functions,

including cognition, memory, and learning.'” Its common biosyn-
thetic pathway in astrocytes and neuronal cells was shown in Fig. 1.
In the normal process of neurotransmission,!! after being synthe-
sized from glutamine, glutamate is transported into synaptic vesi-
cles via vesicular glutamate transporters (VGLUTs). Upon
stimulation of the presynaptic neuron, the VGLUTs move to, and
fuse with, the plasma membrane, releasing their package of
glutamate into the synaptic cleft, where they can interact with
glutamate receptors on the postsynaptic cells. In order for signals to
be repeated, glutamate must be removed from the synaptic cleft. As
there is no known synaptic enzyme that can degrade glutamate,
removal of glutamate from the extracellular space is mainly ach-
ieved via cellular uptake by high-affinity glutamate transporters
(excitatory amino acid transporters; EAATs) on surrounding glial
cells (EAAT1/GLAST and EAAT2/GLT1) and to a lesser extent by
transporters on pre-and postsynaptic membranes (EAAT3/EAAC1
and EAAT4). Once inside glial cells, glutamate is transformed into
glutamine, and released again to the synapse where it is taken up
by the presynaptic terminal and finally converted back into gluta-
mate before repackaging into vesicles. This process is known as the
glutamate-glutamine cycle (Fig. 2).

In mammals, there are two classes of glutamate receptors found
in neurons, the ionotropic (iGluRs) and metabotropic glutamate
receptors (mGluRs).'? The iGluRs form ligand-gated ion channels,
which in the presence of glutamate (or its analog) allow ions such
as Na?*, K* or Ca®* to pass through the membrane resulting in
depolarization and action potentials which are what propagate
signals along neurons. By contrast, the mGluRs act in part of second
messenger signaling pathways coupled with G-proteins. The iGluRs
are, therefore, associated with fast excitatory signaling, whereas the
mGluRs mediate slower responses, thought to be involved in the
neuromodulatory action of glutamate.”> The iGluRs are divided
further into three subtypes depending on their pharmacological
responses to selective agonists; N-methyl-p-aspartate (NMDA), -
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA),
and kainate (KA). The NMDA subtype is particularly more perme-
able Ca®* than Na?* or K*, whereas the AMPA and KA subtypes are
less permeable to Ca>* and equally permeable to Na** and K*. The
mGluRs are separated into three groups, which are further divided
into eight subgroups depending on sequence homology, second-
messenger signaling mechanism and pharmacological ligand
selectivity. Group I (mGIuR1 & 5) is generally coupled to phos-
pholipase C and function to regulate intracellular Ca®>* signaling to
increase neuronal excitability, whereas group II (GluR2 & 3) and
group III (mGluR4, 6, 7 & 8) are coupled to adenylyl cyclase, which
functions to regulate neurotransmitter release negatively (inhibit-
ing signaling).
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Fig. 1. The biosynthetic pathway of glutamate synthesis and degradation in the human brain.
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Fig. 2. The glutamate-glutamine cycle. Diagram of glutamatergic neuron, showing glutamate enclosed in synaptic vesicles, before release and activation of glutamate receptors, and

recycling through glial cells.

3. Mechanisms of cellular glutamate toxicity

When glutamate is acting as a mediator of excitatory signals, its
concentration at the synapse must be tightly controlled in order to
prevent neurotoxicity from persistent activation of the GluRs on
postsynaptic neurons.'” Glutamate is usually sequestered inside the
cells by the EAATs and VGULTSs, resulting in intracellular glutamate
levels several thousand times greater than outside.'* However,
when the glutamate concentration regulatory mechanisms go
awry, with excess glutamate release or ineffective glutamate
removal, glutamate can contribute to neuronal cell death. Neuro-
toxicity related to glutamate has been implicated in a range of NDD,

including AD, PD, HD, MS, and ALS.%!>16

Neurotoxicity mediated by glutamate occurs through two
separate pathways; The glutamate receptor-dependent and -inde-
pendent pathways'” (Fig. 3). Notably, reactive oxygen species (ROS)
are a critical factor in neuronal cell death in both pathways. The
“classical” receptor-mediated pathway, known as excitotoxicity,
occurs when there is excessive activation of the glutamate re-
ceptors, especially with the NMDA subtype. Overstimulation of
these receptors leads to an excess of Ca®* influx into the neurons,
triggering a cascade of signaling events that can result in cell death.
These downstream effects include the promotion of cellular-
structure degrading agents (e.g. nucleases, proteases, and lipases),
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cell death signaling molecules (e.g. caspases), endoplasmic reticu-
lum (ER) stress, mitochondrial depolarization and the production of
ROS.'® The other glutamate toxicity pathway is independent of the
glutamate receptor, which involves oxidative glutamate toxicity or
oxytosis.'” In this toxicity pathway, the extracellular glutamate
build-up saturates the cystine-glutamate antiporter (system Xc~),
thus preventing cellular uptake of cystine. Cystine is the rate-
limiting molecule in the production of GSH, which results in a
shortage of GSH and thereby an increase in ROS and cellular
oxidative stress. Excessive ROS has a detrimental effect on mito-
chondria’s structure and function that facilitates programmed cell
death, where mitochondrial apoptosis-inducing factor (AIF)
signaling, rather than caspase activation, is the underlying
mechanism.”®

4. Glutamate impairment in neurodegenerative diseases

In recent years, glutamate has become seen as a critical mole-
cule underlying the pathogenesis of NDD, which a dramatic rise in
the extracellular concentration of glutamate can eventually
contribute to neuronal death.® The glutamatergic hypothesis of
neurodegeneration in NDD has emerged out of the observations of
disturbance of normal glutamate neurotransmission in AD, PD, HD,
MS, and ALS, supporting the involvement of glutamate in their
pathophysiology. AD is characterized by progressive deterioration
of neuronal cells and loss of cognitive function such as learning and
memory. The activity of glutamine synthetase and the glutamate
transporters were found to decrease in the brains of individuals
with AD, particularly the hippocampal and neocortex regions.?' As

both enzyme and transporter activities are required for clearance of
glutamate from the synapse, it could be implicated that there was
likely an excessive accumulation of glutamate outside of the neu-
rons, that subsequently lead to neurotoxicity. Additionally, pro-
longed exposure of high glutamate levels to the cell was found to
increase the production of toxic amyloid beta (AfB), a hallmark of
AD, via regulation of amyloidogenic processing. On the other hand,
AP could also influence the concentration of glutamate in the
synaptic cleft via the inhibition of glutamate uptake.’” There is
more evidence of altered glutamate homeostasis in other neuro-
degenerative diseases. Impaired glutamate reuptake and over-
activation of glutamate receptors were implicated in the degener-
ation of dopaminergic neurons in the substantia nigra, which is a
hallmark of PD.'®23 Inherited NDD like HD was found involved with
reduced EAAT2/GLT1 expression and enhanced receptor NMDA
activation by the action of mutant Huntingtin, and result in neu-
rodegeneration.”® Elevated glutamate levels and impaired gluta-
mate clearance were found in the brains of patients suffering from
MS, a chronic inflammatory demyelinating disease of the CNS."”
The increase of glutamate in cerebrospinal fluid along with the
decreases in protein expression and functional activity of glutamate
transporters were reported in patients who have ALS, a fatal disease
caused by irreversible degeneration of motor neurons.”*

5. Potential Thai medicinal plants with anti-glutamate
toxicity

In the pursuit of herbal medicines for NDD therapy, various
neuronal cell lines have been employed as a model of glutamate-
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mediated neurodegeneration for investigating medicinal plants
with anti-glutamate toxicity.”” Among them, the HT-22 murine
hippocampal neuronal cell line is the most widely used model for
studying glutamate toxicity and researching the plants’ activities
counteracting glutamate-induced neuronal damage. The HT-
22 cells are devoid of NMDA-type iGluRs, making it a suitable
model of glutamate toxicity via non-receptor dependent pathway.
In addition, the hippocampus is the AD-associated brain region
where a significant loss of neurons occurs. Here six promising
plants for NDD treatment based on their neuroprotective proper-
ties against glutamate toxicity, majorly in HT-22 cells, are
summarized.

5.1. Acanthus ebracteatus

Acanthus ebracteatus Vahl. is a medicinal mangrove plant
belonging to the Acanthaceae family. This plant is widely cultivated
in Southeast Asia, as well as India, Australia, and the western Pacific
islands. It is called by various common names, including Sea Holly,
Holly-leaved Mangrove, and “Nguak Pla Mo” (Thai). Several parts of
A. ebracteatus have been historically used for a variety of medicinal
purposes, such as hair root nourishment, blood purification,
reduction of cough and fever, relief of rheumatoid arthritis pain and
inflammation, treatment of hypertension, cancer, skin diseases
such as rash, chronic wounds, and snakebites.?” In Thai traditional
medicine, this plant is used as an essential ingredient in rejuve-
nating and neuro-tonic remedies for improving brain and body
functions.

There are several groups of phytochemical compounds found
in A. ebracteatus, including phenylethanol glycosides (e.g., ver-
bascoside), megastigmane glycosides (e.g., ebracteatoside A),
aliphatic glycosides (e.g., ebracteatosides B-D), flavonoids (e.g.,
apigenin 7-0-B-D-glucuronide), alkaloids (e.g., benzoxazin-3-one
glucosides) and terpenoids (e.g., lupeol).?® Among these com-
pounds, verbascoside (or acteoside) is a molecule of interest for
neuroprotection as it showed protective function in various
neuronal cell models.?”

The usefulness of A. ebracteatus as a neuroprotective agent
was highlighted due to the pharmacological significance one of
the main bioactive components; verbascoside. It has been shown
that this compound exerts an effect on memory and cognitive
function.?® Verbascoside possesses antioxidant activity via direct
free radical scavenging and up-regulation of the endogenous
antioxidant defense system.?® It also showed protective activity
against neuronal cell death induced by different neurotoxins
such as 1-methyl-4-phenylpyridinium ion (MPP+),® AB,® lipo-
polysaccharide (LPS)/interferon (IFN)-y>C as well as glutamate.’'
A recent study from our laboratory showed the crude ethanolic
extract of A. ebracteatus leaves provides protection against
glutamate toxicity, in which 50 pg/mL of the extract could
completely restore the viability of HT-22 hippocampal neuronal
cells treated with 5 mM glutamate.>” This neuroprotective action
was likely due to the activation of Nuclear factor erythroid 2-
related factor 2 (Nrf2) antioxidant system, leading to attenua-
tion of ROS accumulation and, thereby, inhibition of the AIF-
mediated apoptotic pathway. Another study on anti-glutamate
toxicity of verbascoside in primary rat cortical cells has demon-
strated that the protective mechanisms of A. ebracteatus could
also be related to the alleviation of glutamate excitotoxicity
(100 pM) through reduction of Ca?* influx, nitric oxide (NO) and
ROS levels as well as enhancing the expression of antioxidant
enzymes (e.g., GSH, SOD, glutathione reductase (GR), glutathione
peroxidase (GPx)).>! Moreover, the study using a mouse model of
AD induced by a combination of p-galactose and AlCl; has shown
the memory enhancing effects of verbascoside.>*

5.2. Cleistocalyx nervosum var. paniala

Cleistocalyx nervosum var. paniala (the Myrtaceae family) is a
native plant cultivated in the northern provinces of Thailand,
commonly known as “Ma Kiang” in Thai. Another scientific name of
this plant is Syzygium nervosum A. Cunn. ex DC. The fruit of
C. nervosum, when it is ripe, is edible and tastes sweet and sour like
a berry. It is locally consumed as fresh fruit or processed products
(tea, juice, wine or jam). Previous studies on the effects of
C. nervosum revealed the safety and many health benefits of this
plant. The administration of aqueous fruit extract in the dose of
5,000 mg/kg did not cause any appearance of acute toxicity in
rats.>* The C. nervosum extract was shown to have potent in vitro
antioxidant properties®® and in vivo protective activity against
chemical-induced oxidative damage.>®*’ In addition, the anti-
genotoxicity,>* the immune stimulating,*® and the tyrosinase
inhibitory effects>> of this plant have been identified.

It has been reported that the ripe fruit of C. nervosum is found to
be rich in flavonoids and polyphenolic compounds, especially an-
thocyanins (majorly cyanidin-3-glucoside, cyanidin-5-glucoside,
and cyanidin-3,5-glucoside),>*>° which are known to possess a
wide range of biological activities including antioxidant, anti-
inflammatory, anti-cancer, anti-diabetic, anti-microbial, anti-
cardiovascular and anti-obesity effects.*

The potential of C. nervosum extract as a neuroprotectant has
been primarily documented through the study in a rat model of
cerebral ischemic stroke. It was found that the water extract of
C. nervosum fruit, administered daily at 500 mg/kg daily, markedly
improved spatial cognitive function, cerebral infarction size, and
neuronal densities in hippocampal regions.*! Moreover, in a recent
study from our laboratory, C. nervosum fruit water extract showed
antioxidant and anti-glutamate toxicity activities in the HT-22
hippocampal neuronal cell line.*> We found that crude aqueous
extract of C. nervosum fruit (0.05—1 pg/mL) protects neuronal HT-
22 cells from 5 mM glutamate-induced cell apoptosis through
suppression of ROS generation and the ER stress pathway. The
expression of ROS and several signaling molecules involved with ER
stress-mediated apoptotic cell death including calpain, caspase-12
and C/EBP homologous proteins (CHOP) were decreased in paral-
lel with the increase in the increase in mRNA expression of
antioxidant-related genes (e.g., SOD, catalase (CAT), Glutathione S-
transferase (GST), GPx) in response to the extract treatment.
Additionally, chronic administration of cyanidin-3-glucoside has
shown to alleviate learning and memory deficits in diabetic rat
model.*?

5.3. Pueraria mirifica

Pueraria candollei Graham ex Benth. var. mirifica (Airy Shaw &
Suvat.) Niyomdham (commonly shortened to Pueraria mirifica) is
an indigenous Thai medicinal plant with broad-spectrum phar-
macological properties. P. mirifica, locally known as White “Kwao
Krua,” belongs to the family Leguminosae and naturally grows in
deciduous forests in the Northern and Western parts of Thailand.
This plant has long been used as a natural dietary supplement for
rejuvenation and enhancing vitality, particularly among older
women. It has been extensively used to alleviate menopausal
symptoms and osteoporosis, promote breast growth, and improve
memory as well as skin/hair health.**

P. mirifica is well recognized as a great source of active phy-
toestrogens or plant-derived estrogen-like substances with a
similar structure to 17-f-estradiol. A study on the chemical
composition of this plant revealed that it contains three major
groups of compounds with potent estrogenic activity, namely,
isoflavonoids, coumestans, and chromenes.** These compounds
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include ten isoflavonoids (e.g., genistein, daidzein, and puerarin),
four coumestans (coumestrol, mirificoumestan, mirificoumestan
glycol and mirificoumestan hydrate) and three chromenes (mir-
oestrol, deoxymiroestrol and isomiroestrol).

The possible beneficial role of P. mirifica in neuroprotection
seems to be attributed to the function of its phytoestrogen content.
Since it has been well documented that memory deficits are linked
to a decline in estrogen level,*> phytoestrogen, as an estrogen-like
substance, has been claimed to enhance cognitive performance in
older adults, menopausal women, and possibly in people with AD,
for which menopause and oophorectomy are implicated as risk
factors.*® Several previous findings from both in vitro and in vivo
studies have strengthened the neuroprotective role of P. mirifica. It
was reported that, through activation of the estrogen receptor, the
isoflavonoid puerarin was able to protect against AP induced
neuronal death and promote neurite growth.*’ In addition, the
ethyl acetate extract of P. mirifica tuberous roots was found to in-
crease the level of synaptophysin, a presynaptic vesicle protein, in
primary rat hippocampal neurons, which this effect is dependent
on the activity of estrogen receptor.*® In the studies of ovariecto-
mized rodents, the ethanol extract of this plant roots along with its
active components, puerarin, and miroestrol, were shown to
ameliorate cognitive impairment, at least via the downregulation of
genes associated with AP production, hyperphosphorylated Tau,
brain-derived neurotrophic factor (BDNF) and cyclic AMP-
responsive element-binding protein (CREB).***° Furthermore,
another study on the neuroprotective mechanism of P. mirifica
revealed the involvement of anti-glutamate toxicity. The ethyl
acetate-ethanol extract of P. mirifica root at concentrations of 10
and 50 pg/mL could protect HT-22 cells against excessive glutamate
(3.5 mM), which was likely mediated through decreasing ROS
accumulation. However, two active constituents of P. mirifica,
daidzein and genistein, both individually and in combination, did
not show any protection in this cell model.”!

5.4. Rhinacanthus nasutus

Rhinacanthus nasutus (L.) Kurz is a member of the Acanthaceae
family and is native to Southeast Asian countries, as well as India
and China. This plant is more commonly known as Snake Jasmine,
named from its flower shape and traditional use as an antidote
against snake bites. Different parts of R. nasutus have been reported
in traditional medicine for the treatment of a wide range of ail-
ments such as pulmonary tuberculosis, diabetes, hypertension,
hepatitis, and several types of skin diseases. Its root extract also has
potential anti-cancer effects against various tumor cells.”?

Several groups of phytochemical compounds have been identi-
fied in R nasutus, which include flavonoids, steroids, terpenoids,
naphthoquinones, anthraquinones, glycosides, and lignans.>?
Among them, naphthoquinones are reported to be the primary
active constituents of R. nasutus with several analogs (rhinacan-
thin-A to -Q and rhinacanthone) demonstrating different phar-
macological activities.>>

The neuroprotective properties of R. nasutus were first identified
in experiments from our laboratory using cultured neuronal cell
line.”* Pretreatment of its ethanolic root extract (1 and 10 pg/mL)
could protect against the death of HT-22 cells caused by a hypoxia
(18 h)/reoxygenation cycle (6 h). Subsequent study into the role of
R. nasutus in neuroprotection revealed that the ethanol extracts
from the root and the leaf parts were also capable of attenuating the
HT-22 cell death induced by glutamate (5 mM) and A toxicity
(both of which are involved in the pathogenesis of AD) through
decreasing ROS accumulation.®® This anti-glutamate toxicity ac-
tivity of R. nasutus could be a cumulative or synergistic effect of the
active compounds such as lupeol, stigmasterol, B-sitosterol, and f-

amyrin.”>> Whereas, rhinacanthin-C is a protective molecule for Ap-
mediated cellular toxicity and neurite degeneration.”® The goal of
ongoing research is to elucidate the neuroprotective mechanisms of
R. nasutus as well as its phytochemical components to ascertain
their usefulness as therapeutic agent against AD.

5.5. Streblus asper

Streblus asper Lour. is a well-known medicinal plant in tradi-
tional Indian medicine (Ayurveda). This plant belongs to the Mor-
aceae family. It is widely distributed in several Asian countries and
generally called by various names such as Toothbrush tree, Siamese
rough bush, and “Khoi” (Thailand). Almost every part of S. asper has
been traditionally used for the treatment of different diseases, e.g.,
filariasis, syphilis, fever, diarrhea, toothache, epilepsy, heart dis-
ease, wounds, inflammatory swellings, and cancer.”’ This plant is
also one of the ingredients in a traditional Thai longevity formula
used for health promotion and restoration.

Previous studies on the phytochemical constituents of S. asper
showed that this plant contains a large number of cardiac glyco-
sides such as strebloside, mansonin, and asperoside.”” Other com-
ponents identified include lignans (e.g., strebluslignanol),
flavonoids (e.g., myricetin), terpenoids (e.g., B-sitosterol) and al-
kaloids (e.g., flazine).”®

Apart from the effects related to its traditional usage mentioned
above, S. asper was first demonstrated for its neuroprotective
property in 2015 by Singsai et al.>° The administration of S. asper
leaf water extract (200 mg/kg) was able to reverse not only motor
but also social recognition deficits in Parkinson’s mice model
induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP). Moreover, this plant was recently re-
ported to have anti-glutamate toxicity capacity on neuronal cells.®°
Crude ethanolic extract of S. asper leaves was shown to prevent
glutamate-induced apoptotic cell death in the HT-22 neuronal cell
line. The 50 pg/mL of the extract could completely restore the
viability of HT-22 cells that was declined by 5 mM glutamate
treatment. This protective mechanism was mediated through the
attenuation of ROS production, the inhibition of nuclear trans-
location of AIF, and the up-regulation of antioxidant-related genes
under the control of Nrf2. Subsequent fractionation of crude etha-
nolic leaf extract showed that neutral fraction possessed the most
potent anti-glutamate toxicity activity. It is noteworthy that the
anti-cholinesterase activity was also exhibited in this fraction.®’
These dual actions suggest the potential therapeutic effect of
S. asper leaf for AD.

5.6. Bacopa monnieri

Bacopa monnieri (Linn.) Wettst is a medicinal herb native to
South and Southeast Asia, and is known for its memory-enhancing
properties. There have been many clinical studies investigating the
memory-enhancing properties of this plant in healthy volunteers of
varying ages, as well as some studies in patients suffering from
memory 10ss.5%%% Behavioral studies in mice have shown
B. monnieri’s neuroprotective effects with potential effects on the
glutamatergic and cholinergic systems.* The neuroprotective
mechanisms of B. monnieri in AD have been widely studied, with
many pathways thought to be affected, including reducing beta-
amyloid deposition in the brains of mice,®® and the reduction of
beta-amyloid toxicity in primary cortical neurons.®® Studies from
our laboratory have shown that the hexane and dichloromethane
extracts of B. monnieri can protect against glutamate toxicity
(5 mM) in HT-22 cells, and improve the lifespan as well as the
“health-span” of C. elegans.%” Our study indicated that B. monnieri
provided protection against endoplasmic reticulum stress, and
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oxidative stress caused by mitochondrial damage.

Furthermore, there is much interest in B. monneri, for its neu-
roprotective effects, that are associated with other neurodegener-
ative diseases than AD with regard to glutamate toxicity. In a rat
model of PD, where the disease was induced by intraperitoneal
injection with rotenone, causing an increase in glutaminase activity
and decreased glutamate dehydrogenase, and glutamine synthase,
whereas treatment with B. monnieri reversed these effects, in a
similar manner to that of levodopa.®®

6. Conclusions

This review highlights the significance of glutamate toxicity on
neurodegeneration in NDD. Since NDD is incurable, understanding
the underlying mechanisms of glutamate-induced toxicity that
leads to the discovery of herbal neuroprotectants against glutamate
toxicity may benefit for improving NDD therapy. This work sum-
marizes the promising findings based on the mechanistic studies of
plant extracts from six species and their chemical constituents.
Their potential as anti-glutamate toxicity evaluated by the health-
span and lifespan of neuronal cells has shed light on preventing and
curing NDD, yielding encouraging results for future research and
applications.
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