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Abstract

The development of cancer is not just the growth and proliferation of a single transformed cell, 

but its surrounding environment also coevolves with it. Indeed, successful cancer progression 

depends on the ability of the tumor cells to develop a supportive tumor microenvironment 

consisting of various types of stromal cells. The interactions between the tumor and stromal 

cells are bidirectional and mediated through a variety of growth factors, cytokines, metabolites, 

and other biomolecules secreted by these cells. Tumor-stromal crosstalk creates optimal conditions 

for the tumor growth, metastasis, evasion of immune surveillance, and therapy resistance, and 

its targeting is being explored for clinical management of cancer. Natural agents from plants 

and marine life have been at the forefront of traditional medicine. Numerous epidemiological 

studies have reported the health benefits imparted on the consumption of certain fruits, vegetables, 

and their derived products. Indeed, a significant majority of anti-cancer drugs in clinical use are 

either naturally occurring compounds or their derivatives. In this review, we describe fundamental 

cellular and non-cellular components of the tumor microenvironment and discuss the significance 

of natural compounds in their targeting. Existing literature provides hope that novel prevention and 

therapeutic approaches will emerge from ongoing scientific efforts leading to the reduced tumor 

burden and improve clinical outcomes in cancer patients.
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1. Introduction

Cancer is one of the significant causes of death, affecting millions of people globally. About 

1,806,590 new cancer diagnoses and nearly 606,520 cancer-related deaths are expected in 

2020 in the United States alone [1]. To address this significant clinical problem, we have 

made extensive efforts on several fronts, including the basic biology of cancer. Over the past 

several years, we have witnessed significant progress in our understanding of cancer genetics 

and relevant signaling pathways affecting tumor phenotypes. We have also learned that 

tumors are not just a mass of transformed cells but are comprised of other non-malignant 

cells as well, ranging from fibroblasts, endothelial cells, and immune cells to even microbes 

[2–8]. As tumor cells progress to become highly malignant, their microenvironment also 

co-evolves. Indeed, tumor cells continue to corrupt the non-malignant stromal cells as 

they grow and use them to support their growth, metastasis, therapy resistance, and 

to evade the immune defense [9–15]. Tumor-stromal interactions are driven by growth 

factors, cytokines, metabolites, and other biomolecules secreted by the cells within the 

tumor microenvironment (TME). These interactions are often bidirectional and essential 

for optimal tumor growth, and thus provide targeting opportunities for effective clinical 

management.

Natural products are generated in abundance by plants and marine organisms and have 

been utilized for centuries in traditional medicines [16, 17]. Most of the bioactive natural 

products are secondary metabolites that aid in survival by often serving as mediators 

of innate defense mechanisms [18]. These compounds gained significant attention after 

different epidemiological studies reported the health benefits of the consumption of certain 

fruits, vegetables, and their derived products [19–22]. It also renewed the interest in ancient 

literature from Middle Eastern and South Asian countries that reports healing powers of 

natural compounds and associated practices. Over the years, bioactive constituents from 

natural sources have been isolated and experimentally validated for their anti-viral, anti-

bacterial, anti-inflammatory, anti-fungal, and anti-cancer properties [21, 23–25]. Indeed, 

about forty-seven percent of all anti-cancer drugs in clinical use are derived from 

the naturally-occurring compounds [26]. These natural compounds exhibit significant 

diversity in structure, function, and biosynthesis, and therefore it is hard to classify them 

under strict categories. However, they are broadly put under four structural classes that 

include terpenoids and steroids, alkaloids, fatty acid derivatives and polyketides, and 

phenylpropanoids [27]. While the majority of the earlier studies investigated the effect 

of natural compounds on the tumor cells [28, 29], the focus later expanded to include 

TME components as well. These efforts resulted in the demonstration of TME-modulating 

effects of natural agents in multiple cancer types, as reviewed in [30–35]. Recent years have 

witnessed significantly increased efforts towards understanding the roles of TME in cancer 

pathogenesis after the reported success of immunotherapy in some cancer types [36–38]. 
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Driven with this impetus, more and more natural compounds are now being evaluated for 

their TME-modulating properties in parallel investigations [39–41]. In light of the new data 

emerging from these efforts, it has become imperative that we revisit natural compounds 

to understand their broader significance in the modulation of TME as well as associated 

mechanisms. This review provides a comprehensive summary of the current literature 

on TME, especially highlighting its fundamental cellular and acellular components, and 

discusses their functions as well as the factors regulating the behavior and functional 

properties of the stromal cells. After that, we discuss the natural products of plant and 

marine origin that target TME via different mechanisms to confer their anti-cancer activity. 

The expectation is that the presented discussion would encourage cancer biologists and 

cancer chemoprevention and therapy experts to engage in cross-disciplinary collaborations 

to allow future translational advancements.

2. The cellular component of the tumor microenvironment

Principal non-malignant cells within the TME are fibroblasts, endothelial cells, and immune 

cells (macrophages,myeloid-derived suppressor cells (MDSCs), and lymphocytes. It has also 

recently been recognized that microbial cells are present within the TME and play an active 

role in pathobiology and therapy-resistance (Figure 1). Below we discuss in more detail 

about these cells, their functions, and their characteristics.

2.1. Cancer-associated fibroblasts

Fibroblasts are the quiescent mesenchymal cells that are present within the extracellular 

matrix (ECM) and play important roles in tissue repair. Upon injury, these cells are 

activated and differentiate into myofibroblasts through paracrine signaling [42, 43]. Their 

excessive proliferation can result in organ fibrosis and may have unwanted consequences 

[44, 45]. Within the context of the tumor, these myofibroblasts are referred to as cancer-

associated fibroblasts (CAFs) [3, 6]. In some cases, CAFs can also be derived from other 

precursor cells, such as endothelial cells, smooth muscle cells, and myoepithelial cells 

[2, 46]. Differentiation into the CAF phenotype is facilitated by factors derived from 

tumor cells or other cells within the TME, such as IL-6, transforming growth factor-beta 

(TGF-β), sonic hedgehog (SHH), and platelet-derived growth factor (PDGF) [12, 47, 48]. 

Microenvironmental stress (extracellular pH, hypoxia, radiation, and chemotherapy) can 

further aggravate this process likely to protect and support the tumor cells [49–51]. Recently, 

the role of tumor-derived exosomes in CAFs generation has also been reported [52].

Morphologically, CAFs have a large spindle shape and express a cytoskeletal protein, α-

smooth muscle actin (α-SMA). Some other markers, such as fibroblast activation protein 

(FAP), platelet-derived growth factor receptor-β, and S100 calcium-binding protein A4, are 

also used to identify CAFs [53, 54]. None of these markers are expressed exclusively by the 

CAFs because of their heterogeneous nature within tumor tissues [54, 55]. CAFs abundantly 

produce collagens, fibronectins, and hyaluronan, and these proteins, along with other ECM 

components, form a highly dense fibrotic covering around the cancer cells [55, 56]. Studies 

have suggested that CAFs can regulate tumor progression and therapy resistance by inducing 

EMT, metabolic reprogramming, activation of survival pathways, modulating anti-oxidant 
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system, or stemness in tumor cells [38, 55, 57]. CAFs also help in the recruitment of 

monocytes to the TME and promote their differentiation into immunosuppressive MDSCs 

[58].

2.2. Tumor-associated endothelial cells

To meet their high demand for oxygen and nutrients, actively dividing cancer cells recruit 

and activate the endothelial cells into the TME to facilitate the formation of new blood 

vessels from pre-existing blood capillaries [4]. Endothelial cells form the inner lining of the 

blood and lymphatic vessels [59, 60]. Single-cell RNA sequencing data has suggested that 

tumor-associated endothelial cells (TECs) are distinct from the normal ECs [61]. Normal 

ECs form uniform monolayer with few cytoplasmic projections, whereas TECs are irregular 

in shape and size with long fragile, or thin cytoplasmic projections extending across the 

vessel lumen [4]. TECs are CD31+ and CD105+ and appear in a mosaic pattern within 

the tumor tissues [62]. TME- derived cytokines and growth factors such as interleukin-8 

(IL-8), vascular endothelial growth factor A (VEGF-A), and basic fibroblast growth factor 

(bFGF) aberrantly activate the TECs, which makes resultant blood vessels fragile, leaky 

and of irregular shape [59, 63]. Tumor cell-derived VEGFA, IL-10, and prostaglandin E2 

also induce Fas ligand (FasL) expression in TECs, which causes FasL- mediated apoptosis 

of CD8+T cells. However, regulatory T cells (Tregs) are not affected much since they 

express a high level of anti-apoptotic protein, cellular FADD-like IL-1β-converting enzyme 

(FLICE)-inhibitory protein [64].

2.3. Tumor-associated macrophages

Macrophages are part of the innate immune system and play active and diverse roles due 

to their highly flexible nature. Based on the environmental stimuli, they can differentiate 

either into M1 (classical-activated macrophages, anti-tumor) or M2 (alternative-activated 

macrophages, pro-tumor) phenotypes; a process often referred as macrophage polarization 

[65, 66]. Innate or adaptive immune cell-derived interferon-γ (IFN-γ) or bacterial cell-

derived lipopolysaccharide (LPS) induces M1 polarization, while Th2-type cytokines (IL-4, 

IL-10, and IL-13) polarize macrophages into M2 phenotype [67]. In the context of cancer, 

M2 macrophages are often referred to as tumor-associated macrophages (TAMs), and they 

are the significant component of tumor-infiltrating immune cells within the TME [67, 

68]. Unlike M1 macrophages that rely mostly on glycolytic metabolism and produce 

pro-inflammatory signals [69, 70], M2 macrophages display oxidative phosphorylation 

and secrete anti-inflammatory cytokines [71, 72]. Moreover, it is possible to convert M2 

macrophages into the M1 subtype by altering mitochondrial respiration [70, 72]. Both M1 

and M2 macrophages express different markers. M1 subtype expresses inducible nitric 

oxide synthase (iNOS), suppressor of cytokine signaling 3 (SOCS3), CD68, CD80, CD86, 

IL-1, IL-16, IL-12, IL-23, TNF-α, IFN-γ, and CXCL-10 whereas M2 macrophages express 

arginase 1 (Arg-1), CD163, CD200R, IL-10 and TGF-β [73].

2.4. Lymphocytes

Lymphocytes are white blood cells that include T cells, B cells, and natural killer (NK) 

cells. T-and B- cells are the part of adaptive immune responses, whereas NK cells are 

part of the innate arm of the immune system [74, 75]. T lymphocytes play a critical 
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role in cancer immunity and are divided into four subtypes, CD4+ T helper cell, CD8+ 

cytotoxic T cell, memory T cells, and natural killer T cells (NKT) [76–78]. CD4+ T 

cells help in B cell maturation and can also activate macrophages and cytotoxic T cells 

[79]. They become functionally active after recognizing the antigen presented by major 

histocompatibility complex (MHC) class II molecules [79, 80]. On the other hand, CD8+ 

T cells respond through MHC class I molecules and involve in the killing of infected or 

malignant tumor cells [80, 81]. Tumor cells and TME factors desensitize tumor-infiltrating 

lymphocytes (TILs), and they, in turn, build a tumor supportive immune microenvironment 

[5, 82]. The direct anti-tumor activity of CD4+ T cells is less explored because a majority of 

the solid tumor cells do not express MHCII [79, 80]. However, these cells confer anti-tumor 

activity indirectly either by secreting type I cytokines or activating cytotoxic CD8+ T cells 

[79, 83]. More importantly, a subset of tumor supportive CD4+ T cells, Tregsarefound 

within the TME. The normal biological function of Treg cells is to distinguish between 

self and non-self-antigens that helps in the prevention of autoimmunity. Treg cells express 

the IL-2 receptor (CD25) and Forkhead Box P3 (FoxP3) transcription factor, which is a 

master regulator of Tregs functions [84]. Treg cells cause immune suppression in several 

ways. Notable among these are; i) secretion of immunosuppressive cytokines, IL-10, TGF- 

β and IL-35; ii) consumption of IL-2 from cellular milieu; and iii) cytotoxic T lymphocyte-

associated protein-4 (CTLA-4)-mediated suppression of antigen-presenting cells or by 

induction of T cell exhaustion [84]. Recently, it was demonstrated that Treg cells indirectly 

induce the M2 population of macrophages in TME by inhibiting IFN-γ secretion [85]. B 

cells infiltrated into the TME induce memory CD4+ T cell formation, promote proliferation 

and survival of activated CD8+ T cells, and can also directly induce apoptosis in tumor cells 

by secreting granzyme B [86]. Indeed, a high density of tumor-infiltrating B cell subtypes 

correlates with increased survival [87]. NK cells are innate immune cells, express CD56, 

and are involved in boosting the host immune defense against pathogens [88]. Overall, 

these cells mediate anti-tumor and anti-viral immune response by executing cytotoxic action 

through perforin and granzyme [89].

2.5. Myeloid-derived suppressor cells

Myeloid cells are derived from bone marrow and can be either mononuclear (MN) 

comprising of monocytes, macrophages, and dendritic cells, or polymorphonuclear (PMN) 

consisting of neutrophils, basophils, eosinophils and mast cells [90, 91]. During chronic 

inflammation, pro-inflammatory cytokines activate myeloid progenitor cells to proliferate 

and differentiate into MDSCs [92]. Therefore, the accumulation of MDSCs is usually seen 

when a pathological condition exists, and they are mostly absent in a healthy body [91]. 

MDSCs induce immune suppression and help cancer progression in several ways. These 

cells either enhance Treg cell recruitment into the TME or differentiate into TAMs [92–94]. 

MDSCs also promote the differentiation of fibroblasts into CAFs. Monocytic-MDSCs (M-

MDSCs) are recruited to TME by CCL-5 and CSF-1, while the TME infiltration of PMN-

MDSCs is stimulated by a different set of cytokines including chemokine (C-X-C motif) 

ligand 12 (CXCL-12), CXCL-1, CXCL5, CXCL-6 and CXCL-8 [90, 91, 95]. Interestingly, 

cytokine CCL-2 has the ability to attract both M-MDSCs and PMN-MDSCs [96]. Relatively 

larger extent of M-MDSCs is present in TME as compared to PMN-MDSCs. In solid 

tumors, hypoxia is shown to induce the differentiation of MMDSCs into TAMs in order 

Zubair et al. Page 5

Semin Cancer Biol. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to sustain immune suppression [94]. Studies havealso correlated the increased chance of 

cancer-associated death in patients who had greater abundance of circulating MDSCs [97–

99].

2.6. Microbiome

A microbiome is the community of microorganisms or microbes (bacteria, fungi, protozoa, 

and viruses) residing in a specific niche such as the human gut. The microbiome can 

modulate multiple cellular events such as host physiology, cellular metabolism, and 

immune function. Disturbance in the host-microbiota is often associated with pathological 

conditions such as inflammatory bowel diseases and cancer [7]. Microbiota regulates 

mucosal immunity and tissue remodeling, which collectively modulate TME to promote 

tumor growth [8, 100]. Microbes are associated with approximately 10–20% of human 

malignancies [101]. The effect of the intratumoral microbiome in cancer progression is 

not yet well explored. However, a study suggests that Fusobacterium nucleatum-derived 

Fap2 protein interacts with the immune receptor, T-cell immunoglobulin, and ITIM domains 

(TIGIT), and inhibits the activity of TIGIT-expressing NK and T cells [102].

3. Non-cellular components of the tumor microenvironment

In addition to cellular components, TME is also highly abundant in the secreted material 

consisting of mostly matrix proteins, cytokines, growth factors, nucleic acid, and metabolites 

[103]. This acellular material is derived from various cell types and supports the growth of 

the tumor by enabling bi-directional tumor-stromal interactions [103, 104]. ECM makes the 

scaffold of tissues and organs and is a collection of biomolecules secreted by different cell 

types and provides structural and biochemical support to the microenvironment. Specialized 

ECM (basement membrane) is enriched with fibronectin, collagen, and laminin, whereas the 

other ECM (interstitial matrix) mostly contains proteoglycans, glycoproteins, and collagen. 

Importantly, a proteoglycan such as hyaluronic acid (HA) abundantly present in ECM of 

some solid cancers has gained significant interest as a drug target due to its direct and 

indirect roles in tumor growth and chemoresistance [105, 106]. Other ECM proteins such 

as fibulins, secreted protein acidic and rich in cysteine (SPARC), osteopontin, periostin, 

tenascin(s), and thrombospondins also have an active involvement in tumor pathobiology 

besides serving as a scaffold for ECM structural proteins [107–109].

4. Role of the tumor microenvironment in cancer pathobiology and 

therapy-resistance

Several lines of evidence suggest that TME plays a critical role in tumor growth, metastatic 

progression, and failure of the therapeutic intervention [13, 110, 111]. Tumor cells develop a 

bidirectional functional association with the surrounding stromal cells during their malignant 

progression[10, 14, 112]. For instance, pancreatic tumor cells utilize CXCL12, a chemokine 

secreted by the stromal cells, to not only promote tumor growth and metastasis but 

also resist the cytotoxic effects of chemotherapy [10, 111, 113]. Interestingly, activation 

of the CXCL12/CXCR4 pathway in pancreatic tumor cells also promotes synthesis and 

secretion of sonic hedgehog (SHH) that preferentially acts on the stellate cells to promote 
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desmoplasia [10]. Desmoplastic TME plays a diverse and significant role in pancreatic 

cancer pathobiology and chemoresistance [9, 114–116]. In a study on breast cancer, CAFs 

were shown to induce proliferation of CD44+CD24− cancer stem-like cells via the activation 

of CXCL12/CXCR4 signaling [117]. Tumor cells also utilize CAFs to fulfill their energy 

requirements in a limited or nutrient deficient TME. CAFs-derived alanine provides an 

alternate carbon source to the pancreatic tumor cells under a nutrient-deprived environment 

[118]. In another report, CAFs-derived IL-6 is shown to induce epithelial to mesenchymal 

transition (EMT) and confers resistance to cisplatin in non-small cell lung carcinoma [119]. 

CAFs exposed to chemotherapy have significantly increased the release of exosomes that 

enhance the expression of Snail in the recipient tumor cells and promote gemcitabine 

resistance [11]. Exosome-mediated transfer of miR-221 from stromal cells to breast cancer 

cells triggers the generation of hormonal therapy-resistant metastatic breast cancer [120]. 

Interestingly, it is shown that gemcitabine is preferentially taken and metabolized by CAFs, 

limiting its availability to the tumor cells [121]. Moreover, CAFs also secrete various 

pro-inflammatory molecules (IL-6, CCL2, and TGF-β), which help in the recruitment of 

immunosuppressive cells [122, 123]. In another study, CXCL12 secreted from FAP+-CAFs 

was shown to induce CTLA-4- and PD-L1-mediated immunosuppression in pancreatic 

cancer [124].

High accumulation of TAMs and other immune-suppressive cells in the TME has 

been suggested to induce aggressive cancer progression and therapy-resistance. CD163+ 

TAMs induce immune suppression, and their depletion promotes robust infiltration of 

cytotoxic T cells into the TME, leading to the inhibition of melanoma growth [125]. 

In multiple myeloma patients, high CD163+TAMs in TME correlate with worse clinical 

parameters [126]. In breast cancer, TAMs enhance aerobic glycolysis in tumor cells 

by transferring hypoxia-inducible factor-1alpha (HIF-1α) stabilizing lncRNA (HISLA) 

through extracellular vesicles [127]. In clinical settings, HISLA expression associated with 

inadequate drug response and reduced survival of breast cancer patients [127]. Likewise, 

pancreatic tumors exhibit increased infiltration of TAMs and low presence of cytotoxic 

T cells in their TME [128, 129]. TAMs induce the expression of cytidine deaminase, 

a gemcitabine catabolizing enzyme, in pancreatic tumor cells leading to decreased 

chemotherapeutic efficacy [130]. Pancreatic tumor educated-TAMs also produce different 

pyrimidine species, of which deoxycytidine competes with gemcitabine for uptake and 

metabolism and compromises the therapeutic outcome [131]. In hepatocellular carcinoma 

(HC), EMT hotpots are the sites of high TAMs infiltration, and HC cells co-cultured 

with TAMs exhibit induced expression of EMT related genes [132]. Itis also reported that 

TAMs induce the expression of SPARC, which is a crucial mediator for tumor cell growth, 

migration, and chemoresistance [133].

The role of TAMs in angiogenesis has also been elucidated. The depletion of TAMs results 

in a significant reduction in vessel density [134]. TAMs also promote lymphangiogenesis, 

which is critical for the dissemination of tumor cells to lymph nodes and metastasis via 

the VEGF-C/VEGFR-3 signaling axis [135]. TAMs secrete various MMPs and interleukins, 

VEGF, PDGF, and TGF-β in TME that facilitate the vascularization in the tumor tissues 

[136]. In some cases, NK cells are shown to secrete tumor supportive cytokines and activate 

pro-angiogenic response [137]. TME of glioblastoma is heavily infiltrated with MDSCs, 
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which activate B cell-induced immune suppression by blocking CD8+ T-cell activation 

[138]. MDSCs in breast TME promote metastasis by supporting EMT of tumor cells 

[139]. In osteosarcoma, the majority of the MDSCs are CXCR4 positive, and activation 

of this signaling axis promotes their survival and hamper with the programmed death 

ligand-1(PDL-1) targeted immunotherapy [140]. PDL-1 expressing tumor cells interact 

with its receptor, programmed death-1 (PD-1) present on the T cells leading to their 

desensitization and a suppressed host immune response. Emerging studies also provide 

compelling evidence for a significant role of TME microbiome in cancer pathogenesis 

and therapeutic outcome. The intra-tumoral burden of F.nucleatum correlates with poor 

response to neoadjuvant chemotherapy in esophageal squamous cell carcinoma patients 

[141]. Moreover, the comparative analysis of the tumor microbiome associated with the 

short- and long-term survival of pancreatic cancer patients suggested that the intra-tumoral 

signature of microorganisms can be used as a prognostic marker [142].

Non-cellular components of the TME also play important roles in cancer progression, 

aggressiveness, and chemoresistance. ECM stiffness upregulates integrin signaling and 

promotes tumor cell survival and proliferation [104]. The high amount of osteopontin 

in the TME of triple-negative breast cancer patients serves as a prognostic marker and 

promotes growth and metastasis [143, 144]. Hyaluronic acid, abundantly present in TME 

of various cancers, is a receptor for CD44, and their interaction leads to the activation of 

several cancer-promoting signaling pathways and upregulation of various non-coding RNA 

species (miR-10b/miR-302/miR-21 and lncRNAs) [106, 145]. Pancreatic cancer stroma is 

highly reactive and contains a large amount of HA, which creates extensive interstitial fluid 

pressures leading to the collapse of vasculature and poor outcome of chemotherapy [146]. 

Indeed, enzymatic targeting of pancreatic tumors with recombinant hyaluronidase, which 

degrades HA, is shown to provide therapeutic enhancement by decreasing metastasis and 

increasing survival [146].

5. Natural anti-cancer agents and their TME targeting properties

Natural products have been widely explored for their multi-targeted mechanisms of actions 

on the tumor cells and the TME (Table 1). Several lines of evidence from laboratory and 

preclinical studies demonstrate the anti-tumor potential of natural agents, of which some 

have also been evaluated in clinical trials (Table 2). The following section discusses some of 

the most promising plant- and marine-based natural agents that confer anti-cancer properties 

through their targeting of not only the tumor cells but also the TME (Figure 2).

5.1. Plant-based products

Several plant-derived molecules possess a broad spectrum of pharmacological properties. 

The principal components recognized to impart the health benefits are the secondary 

metabolites. Plants have an almost limitless ability to synthesize secondary metabolites, 

which mainly serve as a defense mechanism against predation. Some of these that have 

been shown to alter TME and have undergone extensive preclinical evaluation are discussed 

below:
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5.1.1. Honokiol—Honokiol is a small lignan with two phenolic rings. It is isolated from 

various parts of the plants of Magnolia species and has been used in traditional medicine 

to treat anxiety, stroke, and gastrointestinal conditions [147]. The extensive attention to 

honokiol’s anti-cancer property stems from its desirable spectrum of bioavailability and high 

potency in preclinical studies [148]. We have demonstrated that honokiol induces cell cycle 

arrest and apoptosis, and sensitizes the pancreatic cancer cells to chemotherapy by targeting 

the NF-κB activation [149]. Honokiol enhances the therapeutic efficacy of other anti-cancer 

drugs as well both in vitro and in vivo [149–151]. Honokiol induces autophagy in KRAS 

mutant cancer cells through the modulation of the AMPK-mTOR signaling pathway [152]. 

It inhibits the growth and aggressiveness of breast cancer cells in vitro and in vivo through 

the activation of the AMPK/LKB axis [153, 154]. An earlier study reports the modulation of 

TME upon exogenous expression of KRAS in mouse ovarian cancer cells [155]. Enhanced 

levels of immunomodulatory cytokines (IL-6 and TNF-α) and neutrophils were found in 

the ascetic fluid of mice injected with KRAS-expressing mouse ovarian cancer cells [155]. 

Another preclinical study suggested that c-Rel, a subunit of NF-κB, controls the activity of 

Tregs, which are vital contributors in immunosuppressive TME. In another study, the role 

of mTOR signaling in modulating immune cell response by regulation of differentiation/

activation of TAMs, T cells, and antigen-presenting cells has also been demonstrated [156]. 

Thus, targeting mTOR signaling by honokiol could be useful in activating the immune 

response. Honokiol also induces cholangiocarcinoma cell apoptosis and increases the release 

of damage-associated molecular patterns (DAMPs). These DAMPs have the potential to 

stimulate T-lymphocyte proliferation and type I cytokine production suggesting yet another 

mechanism for immune modulation by honokiol [157]. In an orthotopic mouse model of 

pancreatic cancer, we demonstrated that honokiol inhibited tumor growth and metastasis 

by targeting the crosstalk of tumor and stromal cells [151]. Pancreatic tumor cells treated 

with honokiol showed reduced synthesis and secretion of sonic hedgehog (SHH) as well as 

decreased expression of CXCR4 in the tumor cells, which was associated with decreased 

desmoplastic reaction in the TME [151]. In other studies, honokiol and its derivative (H2P) 

are shown to alter the TME by inhibiting angiogenesis [158–161]. These findings indicate 

that honokiol is an important modulator of TME and should be explored further in various 

combination therapies to improve the therapeutic outcome.

5.1.2. Hydroxytyrosol—Olive oil, a major constituent of the Mediterranean diet, is 

considered one of the healthiest dietary supplements with multiple proven health benefits 

[162]. The major components identified to impart these health benefits potentially are 

the phenolic alcohols, particularly the 3,4-dihydroxyphenyl ethanol, also referred to as 

hydroxytyrosol (HT). HT is found in red wines and may also be produced endogenously 

as well, through dopamine metabolism [163, 164]. Multiple preclinical studies have 

demonstrated the anticancer properties of HT in various cancers including prostate [165], 

breast [166–168], pancreas [169], liver [170, 171], leukemia [172, 173], and colon [174–

176]. HT possesses significant reactive oxygen species (ROS) scavenging ability, which 

decreases oxidative DNA damage in mammary cells [177]. In contrast, HT was shown to 

increase the ROS levels in human colon and prostate cancer cells and inhibited their growth 

[178]. ROS acts as a double-edged sword. At low levels, it promotes cancer pathogenesis, 

but at higher levels, it induces cell death by causing DNA damage or other cellular 
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mechanisms [179–181]. All tumors exhibit a variable degree of hypoxia and the anti-oxidant 

action of HTis particularly effective under the hypoxic TME [182]. Furthermore, it is shown 

that the TME-dependent action of HT involves differences in mRNA translation by a yet 

undefined mechanism. Thus, HT not only affects the TME, but its response is modulated 

by different TME conditions as well. Studies from our group and others have demonstrated 

that HT inhibits Akt phosphorylation, leading to suppression of NF-κB activation [165, 

170]. Anti-cancer activity of HT against prostate tumor cells has also been reported via 
inhibition of other cancer-relevant signaling pathways, including STAT3 and androgen 

receptor [165, 183–186]. It is significant as published data also demonstrate that olive oil 

components could inhibit pro-angiogenic and pro-inflammatory signaling in prostate cancer 

by modulating the IL-6/STAT3 axis and downregulating the expression of growth factors 

and cytokines (CXCL8, VEGF, CXCL12) [182]. Tumor-derived CXCL8 augments CCL2 

and CXCL12 secretion by stromal cells, which in turn promote the growth and invasion of 

prostate cancer cells [187]. It is shown that HT interferes with the tumor-stromal interaction 

by inhibiting CCL5 expression in fibroblasts [188]. Further, the role of CXCL8, CCL2, 

CCL5, and CXCL12 in immune modulation is also reported in several cancers [189]. Thus, 

HT can potentially abrogate tumor cell-TME crosstalk to exert its diverse anti-tumor activity.

5.1.3. Resveratrol—Resveratrol (3,4′,5-trihydroxy-trans-stilbene), a phytoalexin 

isolated from the grapevine, peanuts, and pines, exhibits chemopreventive and therapeutic 

properties against several cancers [190, 191]. A preclinical study also demonstrated that 

resveratrol could reduce high-fat diet-induced obesity, improve insulin sensitivity, and 

lower glucose levels in blood [192]. Multiple mechanisms are proposed for the anti-tumor 

activities of resveratrol including (i) acting as an anti-oxidant/pro-oxidant and anti-mutagen, 

(ii) inducing activation of phase II drug-metabolizing enzymes, (iii) mediating anti-

inflammatory effects, (iv) inhibiting cyclooxygenase (COX) and hydroperoxidase functions, 

and (iv) inducing tumor cell differentiation [24, 193–196]. With regard to its effect on 

TME, resveratrol is shown to counter the upregulation of carbonic anhydrase through the 

modulation of metastasis-associated lung adenocarcinoma transcript 1expression [197]. CA 

regulates the intracellular pH in cancer cells under hypoxia or during intense glycolytic 

dependence to maintain it at physiological levels [197]. Resveratrol also imparts anti-cancer 

properties through copper-mediated inter-nucleosomal DNA fragmentation at low pH that 

mimics stringent cancer cell growth conditions [198]. Resveratrol could suppress hypoxia-

driven ROS-induced pancreatic cancer progression by inhibiting SHH upregulation, thus 

supporting its potential role in the interference of the tumor-stromal crosstalk [199]. In 

addition, resveratrol is shown to induce the activation of transient receptor potential ankyrin 

1 in prostate CAFs leading to an increase in the intracellular calcium and secretion of HGF 

and VEGF [200]. Resveratrol also alters the “senescence-associated secretory phenotype” 

of senescent stromal fibroblasts associated with melanoma by reducing expression of TGF-

β, CXCR4, and others [201]. In another study, resveratrol inhibited the proliferation and 

aggressiveness of human breast cancer cells treated with CAF-CM through downregulation 

of several growth- and EMT- promoting genes and signaling pathways [202]. Resveratrol 

treatment of spleen cells isolated from the tumor-bearing mice exhibited a dramatic decrease 

in the number of CD4+CD25+ cells, along with a significant reduction in the ratio of 

CD4+CD25+ to CD4+ cells. In addition, the FoxP3+ cells within the CD4+CD25+ cell 
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population also decreased in numbers [203]. Treatment of a breast cancer preclinical model 

with resveratrol analog, HS-1793, significantly inhibited the growth of implanted tumor 

cells with a substantial increase in IFN-γ-secreting cells in the splenocytes and decreased 

CD206+ macrophage infiltration in the TME [204]. Resveratrol also reduced lung cancer 

growth by inhibiting macrophage infiltration and its polarization into M2 like phenotype 

[205]. Thus, resveratrol controls tumor growth through its direct effect on the tumor cells as 

well as by targeting the pro-tumorigenic TME.

5.1.4. Curcumin—Curcumin (diferuloylmethane) is a polyphenolic compound isolated 

from Curcuma longa (the turmeric plant). Turmeric powder has been widely used in 

Ayurvedic therapies for its potent anti-oxidant, anti-inflammatory, anti-viral, anti-bacterial, 

and anti-fungal activities [23, 206, 207]. Studies suggest that the hydroxyl groups in 

curcumin are essential for its anti-oxidant activity, while methoxy groups are required 

for anti-inflammatory and anti-proliferative activities [208]. Curcumin has also been used 

as a lead molecule to generate semi-synthetic derivatives exhibiting improved anti-cancer 

efficacy and desired pharmacological properties [209, 210]. In colorectal cancer, curcumin 

administration caused the apoptosis of tumor cells in a p53-mediated manner and also 

improved the general health of the patients [211]. On the contrary, in a lymphoma cell line, 

curcumin-induced the growth arrest via downregulation of p53, c-Myc, and early growth 

response 1 [212]. This context-dependent action could be cell-specific or attributed to TP53 

mutational status. Studies from switchable mouse models of Myc-induced β-cell and skin 

malignancies suggest that Myc regulates tumorigenesis by impacting the tumor cell as well 

as by remodeling the tumor stroma and angiogenesis [213, 214]. Activation of Myc in β-cell 

tumors induces the secretion of chemoattractant cytokines and promotes the infiltration 

of inflammatory immune cells and mast cells to the islet-associated stroma. Furthermore, 

Myc-induced β-cells fail to expand in mice lacking mast cell function, thus suggesting 

an essential role for tumor-stromal crosstalk [215]. Treatment of pancreatic cancer cells 

with curcumin also decreases the secretion of inflammatory cytokines, including TNF-α, 

IL-1β, IL-6, and IL-8, due to the repression of NF-κB [216]. Curcumin also inhibits the 

expression of matrix metalloproteinases, which are responsible for ECM degradation to 

facilitate cellular movement and promote tumor angiogenesis [217]. The anti-inflammatory 

property of curcumin is also attributed to its ability to modulate the expression of COX-2 

within the TME cells [218, 219]. Recently, single-cell transcriptome analysis of primary 

prostate tumor and lung metastases from an orthotopic mouse model was performed to 

delineate the role of tumor-stromal interaction in tumorigenesis. It was demonstrated that 

tumor-derived COX-2 product, prostaglandin E2, induced upregulation of prolactin in lung 

stromal cells, and in return, prolactin promoted proliferative signaling in tumor cells [220].

It has also been demonstrated that the anti-tumor activity of curcumin in metastatic breast 

cancer involves the infiltration of macrophages at the tumor site, predominantly of the 

M1 phenotype [221]. Similarly, in glioblastoma, curcumin treatment led to an increase 

in macrophage polarization towards the Arginase-1low, iNOShigh M1-type tumoricidal 

microglia with high activation of microglial NF-κB and STAT1 [222]. Curcumin also 

improved anti-tumor immunity in lung cancer patients by decreasing Tregs in TME with a 

concomitant increase in Th1 cells [223]. It was determined ex vivo that potential conversion 
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of Tregs to Th1 cells by curcumin resulted from the repression of FoxP3 and an increase in 

IFN-γ [223]. Curcumin also increased the accumulation and function of CD8+ T cells in the 

TME by blocking multiple immunosuppressors [224]. In another study, curcumin treatment 

of tumor-bearing mice prevented the overall loss of T cells with an expansion of the central 

memory T cell/effector memory T cell populations. Curcumin treatment also inhibited the 

suppressive activity of Tregs cells by downregulating the production of TGF-β and IL-10 

[225].

5.1.5. Berberine—Berberine is a bioactive isoquinoline alkaloid found in many herbal 

substances. It is a common part of the Indian and Chinese traditional medicine and 

possesses multiple desirable pharmacological properties [226, 227]. Despite low plasma 

bioavailability of berberine, its metabolic derivatives are capable of exerting similar 

biological activities [228]. Berberine’s chemopreventive properties have been reported in 

colon cancer, where it inhibits the growth of intestinal polyp in animals as well as in 

patients with familial adenomatous polyposis [229]. Chemopreventive efficacy of berberine 

is also attributed to its ability to regulate macrophage polarization, as evidenced in the 

Apc (min/+) mouse model. Treatment of berberine in these mice led to a decrease in the 

number and size of polyps with a concomitant decrease in the levels of F4/80, mannose 

receptor (MR), and COX-2 and increase in the level of iNOS [229]. Berberine has been 

shown to promote chemotherapeutic efficacy in hypoxic breast cancer cells by inducing 

the downregulation of AMPK and HIF-1α [230]. AMPK is activated in hypoxic TME and 

maintains energy homeostasis [220]. In a study, berberine was predicted to bind Lys395 and 

Tyr394/Phe484 of Smo, a downstream effector of hedgehog signaling, through hydrogen 

bonding and π- π interactions, respectively [231]. In a similar approach, candidates 

for immunotherapy potentiation were tested for their ability to repress IFNγ-induced 

indoleamine 2,3-dioxygenase (IDO) promoter activity. IDO regulates the activation of Tregs 

cells in the TME and IDO+plasmacytoid dendritic cells (pDCs) from mouse tumor-draining 

lymph nodes. It activates resting CD4+CD25+Foxp3+ Tregs and upregulates PD-L1 and 

PD-L2 expression on DCs[232]. Twenty-five new berberine derivatives tested in silico and 

structure-activity assays identified a subgroup to have potential anti-cancer activity. These 

compounds could decrease IDO expression and enhanced NK cell-mediated specific lysis of 

A549 cells [233].

5.1.6. Epigallocatechin-3-gallate—Next to water, tea is the most served beverage 

around the globe. Catechins are the bioactive constituents of tea and considered to be 

one of the most active molecules for cancer chemoprevention and therapy [21]. Among 

these, epigallocatechin-3-gallate (EGCG) is the most potent apoptosis-inducer in cancer 

cells. EGCG has both anti-oxidant and pro-oxidant properties and is capable of inducing 

cell cycle arrest, apoptosis, and autophagic cell death in multiple cancer cell lines [234–

237]. EGCG inhibits the proliferation and aggressiveness of thyroid carcinoma cells in 
vitro and in a mouse xenograft model by downregulating proteins of the EGFR and RAS 

signaling pathways [238]. Another mechanism of anti-cancer actions of EGCG is their 

ability to alter the expression of long, non-coding RNAs and mRNAs [239]. In a study 

with the endometrial cancer xenograft model, EGCG-treatment reduced VEGFA expression 

through downregulation of the HIF-1α protein. Moreover, in the host stromal cells, EGCG 
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induced a reduction in CXCL12 expression and release, which, in turn, led to a decrease 

in macrophage infiltration and polarization [240]. miR-16 was found to be abundantly 

present in exosomes from EGCG-treated cancer cells, which reversed the polarization of 

TAMs to the M1 phenotype by inhibiting IKKα [241]. In another study, EGCG-treatment 

improved the immunotherapeutic response in a leukemic xenograft mouse model [242]. 

Furthermore, EGCG treatment increased the percentage of CD3+ T-cells, CD19 B-cells, and 

Mac-3 macrophages. In a more direct effect on immunotherapy response, EGCG was shown 

to inhibit the expression of PD-L1 in non-small cell lung cancer cells [243]. These findings 

suggest that EGCG holds significant potential as a combination therapy drug to improve the 

clinical outcome.

5.1.7. Zerumbone—Zerumbone, a sesquiterpene isolated from the rhizomes of Zingiber 
zerumbet, has been shown to possess immunomodulatory and anti-cancer properties [244]. 

It inhibits the inflammatory response by several means, such as by suppression of MAPK 

and NF-κB signaling, and reduced ROS production [245–247]. Zerumbone reduces TPA-

induced ROS generation in leukemic and Chinese hamster ovary cells and induces the 

killing of tumor cells. Simultaneously, it also inhibits the expression of pro-inflammatory 

molecules (COX-2, TNF-α, and iNOS) in LPS- and IFN-γ- induced RAW macrophages 

[248]. Studies have shown that zerumbonecan block Toll-Like Receptors (TLRs)/MyD88-

dependent NF-κB activation leading to the downregulation of pro-inflammatory response 

in LPS-induced macrophages [249, 250]. Zerumbone inhibits ovarian tumor cell growth 

and reduces the secretion of IL-6 [251]. Zerumbone also downregulates the expression of 

CD1d by blocking the antigen presentation pathway, and treatment with anti-CD1d antibody 

augments the zerumbone-mediated killing of breast cancer cells [252]. An antiangiogenic 

role of zerumbone has also been reported in liver cancer, where it abrogates the 

expression of VEGF/VEGFR and matrix metalloproteinase-9 [253]. Similarly, another study 

demonstrates zerumbone-mediated inhibition of angiogenesis due to reduced expression 

and secretion of VEGF and IL-8 resulting from NF-Kb downregulation [254]. Recently, it 

was found that the oral administration of zerumbone in enterotoxigenic Bacteroides fragilis 
(ETBF)-colonized mice reduced colon carcinogenesis by decreasing ETBF-colonization and 

intestinal inflammation [255].

5.1.8. Genistein—Genistein is an isoflavone present in soybeans and soy food and 

confers immunomodulatory role in various pathological conditions [256, 257]. It induces 

an anti-tumor immune response (NKT cell activation) in ovarian cancer by reducing VEGF-

mediated upregulation of ganglioside [258]. In glioblastoma cells, genistein induces the 

upregulation of C/EBP homologous protein that impedes C/EBPβ interaction with IL-6 

promoter leading to the downregulation of IL-6 expression and release tumor growth 

reduction [259]. Further, genistein can inhibit the release of urokinase-type plasminogen 

activator (uPA), which is a promoter of ECM remodeling and angiogenesis. As a result, 

its intraperitoneal administration in mice implanted with melanoma or mammary tumor 

cells reduces angiogenesis and tumor cell migration [260]. Genistein also influences 

the expression of multiple matrix metalloproteinases (MMPs) in fibroblast and T-cells 

suggesting its broader functional impact [261, 262]. Besides, genistein inhibits the 

expression of multiple essential genes associated with cell cycle, DNA replication, and 
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growth in fibroblasts [263]. Treatment of transgenic mouse prostate adenocarcinoma mice 

with genistein decreased osteopontin expression in TAMs and prevented the development of 

advanced-stage prostate cancer [264]. Pancreatic tumor-bearing rats treated with genistein 

also exhibited a decrease in TAMs and reduced blood vessel density [265]. Genistein also 

abrogates M2 polarization of TAMs and decreased accumulation of IL-10, IL-8, and nitric 

oxide in the conditioned media of the macrophages and ovarian cancer cells co-culture 

with [266]. Another study demonstrated that genistein derivative, GEN-27, decreased 

LPS-induced secretion of IL-6 and IL-1β from THP-1 cells, which, in turn, reduce the 

proliferation of colon cancer cells [267].

5.1.9. Onionin A—Onionin A, a sulfur-containing compound isolated from Allium cepa 
(onion), has been used in the prevention of various chronic diseases [268, 269]. Oral 

administration of aqueous extract of onion boosts the immune response in the rat by 

increasing the immune cell count, especially white blood cell and CD4+T cells [270]. In 

other studies, onionin A is shown to inhibit macrophage polarization into the M2 phenotype 

by reducing the expression of CD163 as well as reduced the immunosuppressive functions 

of MDSCs by enhancing T cell activity [268, 271]. Onionin A also blocks the macrophage-

induced ovarian cancer cell proliferation by inhibiting M2 polarization of human monocyte-

derived macrophages (HMDMs) and reduces LPS-induced PDL-1 expression in HMDMs 

[272].

5.1.10. Naringenin—Naringenin is a flavonoid found in various citric fruits such 

as lemons, oranges, grapefruits, and tangerines [273]. It has emerged as a potent 

chemopreventive and therapeutic agent due to its anti-inflammatory, anti-cancer, and 

neuroprotective properties. Like other phytochemicals, it has an anti-oxidant property 

and can activate anti-oxidant signaling pathways [274, 275]. Naringenin ameliorated 

experimental autoimmune encephalomyelitis in mice by blocking effector T cell 

proliferation and secretion of IL-6, IFN-γ, and IL-17 [276]. Naringenin also inhibited 

the production of pro-inflammatory mediators such as TLR4, iNOS, COX-2, and NADPH 

oxidase-2 in LPS-treated murine macrophages and protected the mice from endotoxemia 

[277]. Naringenin prevented breast cancer metastasis by reducing the secretion of TGF-

β1 from tumor cells and inhibits TGF-β1-mediated immunosuppression in tumor-bearing 

mice via increased T cell activation [278]. A similar study demonstrated that naringenin 

inhibited lung metastases and increased the survival of tumor-bearing mice by attenuating 

immunosuppressive TME through the downregulation of TGF-β1 and Tregs [279]. 

Naringenin can also act as an antifibrogenic phytochemical and reduce the secretion of ECM 

proteins through downregulation of TGF-β1/Smad3 signaling axis in the rat hepatic stellate 

cells [280]. Moreover, naringenin could inhibit VEGF-mediated angiogenesis by blocking 

intracellular calcium signaling in the endothelial cells [281]. In another study, naringenin 

inhibited angiogenesis by upregulating SOCS-3 and inhibiting IL-6/STAT3 signaling in 

vascular endothelial cells [282].

5.2 Marine-based products

Like the plant world, the biological and chemical diversity of marine life is also immense, 

and therefore, it also serves as an excellent source for the discovery of anti-cancer agents 
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[283, 284]. In recent years, there has been an increase in the number of anti-cancer 

compounds from marine life being tested in preclinical studies and clinical trials [285, 286]. 

This brief section is intended to showcase some of these marine natural products that target 

the TME as a mechanism of their anti-cancer ability.

5.2.1. Trabectedin—Trabectedin was first isolated from the marine ascidian, 

Ecteinascidia turbinate, and can now be prepared synthetically. It is the first marine-derived 

anti-cancer drug currently being used in advanced soft-tissue sarcoma (STS) after the failure 

of anthracyclines and ifosfamide in STS patients [287, 288]. It is also used to treat patients 

with relapsed, platinum-sensitiveovarian cancer [289]. The most widely studied mechanisms 

of its anti-cancer property include the inhibition of active transcription by direct blocking 

of the transcribing RNA polymerase II. It can also act by causing the displacement of the 

transcription factors mediated through the structural changes in the DNA that hinder the 

recognition of transcription factor- specific DNA consensus sequence [290]. Trabectedin 

has targets the key members of the TME. A recent study showed that trabectedin-treated 

multiple myeloma cells had upregulation of NK activating receptor ligands leading to 

the activation of the NK cells [291]. In a study utilizing in vitro assays and four tumor 

models, trabectedin caused selective depletion of mononuclear phagocytes as well as splenic 

and tumor-infiltrated macrophages with a simultaneous decrease in angiogenesis [292]. 

Moreover, sub-cytotoxic concentrations of trabectedin significantly inhibited macrophage 

differentiation in vitro and reduced the production of inflammatory mediators, IL-6, and 

CCL2 [292]. Similar to solid tumors, leukemic cells also enhance the frequency of 

immunosuppressive cells to create a favorable microenvironment [293–295]. Trabectedin 

conferred cytotoxicity to human primary leukemic cells by inhibiting the myeloid and 

lymphoid immunosuppressive microenvironment mainly through the upregulation of the 

TRAIL/TNF pathway. Trabectedin also targeted the PD-L1+ CLL cells, PD-L1+ monocytes/

macrophages, and PD-1+T cells [296]. Similar to this observation, trabectedin induced the 

infiltration of CD8+T cells in the osteosarcoma site, and its co-treatment with α-PD-1 mAb 

led to a stronger anti-tumor immune response [297].

5.2.2. Plitidepsin—Plitidepsin is a cyclodepsipeptide that was first isolated from the 

Mediterranean tunicate Aplidiumalbicans. It is currently marketed by PharmaMar (Madrid, 

Spain) under the trade name Aplidin. Plitidepsin demonstrates intense anti-cancer activity 

against multiple types of human cancer cells in vitro and in preclinical mouse models 

[298–301]. It inhibits proliferation by inducing cell cycle arrest and mediate apoptosis 

through Rac1/JNK activation [298]. JNK knockout (Kras; JNK1−/−) mice develop low 

weight pancreatic tumors, and tumor-induced JNK activation in stroma reduces infiltration 

of effector T cells (CD8+) cells in the TME through downregulation of CCL20 [302]. 

Plitidepsin targets the eukaryotic elongation factor 1A2, which is frequently overexpressed 

in multiple myeloma cells [303]. Additionally, plitidepsin activates p38 and c-Jun signaling- 

mediated Fas/CD95 translocation to lipid rafts, ultimately causing the caspase activation 

[299–301]. The therapeutic activity of plitidepsin in chronic lymphocytic leukemia (CLL) 

is mediated through a direct effect on the leukemic cells as well as an indirect effect on 

monocyte-derived nurse-like cells [304]. The nurse-like cells protect the CLL cells from 

undergoing apoptosis by increasing CXCL12-mediated ERK activation [305]. Additionally, 
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plitidepsin inhibits angiogenic signaling by reducing the expression of VEGF and VEGFR 

[306–308].

5.2.3. Fucoidan—Fucoidan is a natural sulfated polysaccharide that exists in the cell 

wall matrix of various brown seaweed. It has multiple biological properties such as anti-

viral, anti-arthritic, and immunomodulatory potency, and its anti-cancer property has gained 

much attention in recent years. Fucoidan polymers induce cell cycle arrest and apoptosis in 

cancer cell lines [309–313]. They also induce the loss of mitochondrial membrane potential, 

release of cytochrome c, and increase ROS generation and ER stress, leading to DNA 

damage-induced apoptosis [309–311, 314]. Additionally, oligo-fucoidan has been shown to 

inhibit the expression of DNA methyltransferases, which leads to the upregulation of p21, 

a cell cycle inhibitor [315]. Fucoidan also enhances the expression of filamin A (FLNA)-

derived circular RNA, which leads to the alteration of multiple genes associated with cell 

cycle, proliferation, and survival [313]. Similarly, fucoidan has been demonstrated to elevate 

the expression of miRNA29b that inhibits EMT, and lncRNA-Saf and lncRNA-p21 that 

target apoptosis and cell cycle pathways in hepatocellular carcinoma cells [316]. Treatment 

of M2 macrophages with fucoidan resulted in the downregulation of chemokines, CCL22, 

which mediated the growth and aggressiveness of cancer cells through its interaction with 

the CCR4 [317]. Elevated expression of CCL2 is associated with poor prognosis in multiple 

cancers [318–320]. In another study, RAW macrophages stimulated with fucoidan had 

an increased anti-cancer potential against S-180 cells due to the ability of fucoidan to 

induce nitric oxide production through upregulation of nitric oxide synthase (NOS) [317]. 

Fucoidan-mediated decrease of M2 macrophages in the TME is synergistic with the p53 

wild type status of the cancer cells [321].

6. Conclusion and future perspective

Clinical management of cancer has been challenging due to the complex genetics and 

biology of cancer cells. Therefore, significant efforts have shifted towards the cancer 

microenvironment, which is relatively less diverse and yet plays essential roles in successful 

cancer progression and its resistance to therapies. In recent years, reactivation of the immune 

system has met remarkable success for some cancer types and has opened new avenues 

for cancer management. The studies briefly discussed in the above sections highlight the 

benefits of natural agents in cancer chemoprevention and therapeutic intervention either as 

a stand-alone treatment or through their enhancement of the efficacy of currently employed 

clinical therapies. There is substantial literature to suggest that natural agents target not 

only the transformed malignant cells but also effectively modulate the tumor-supportive 

microenvironment. It is, in most cases, achieved by blocking the bi-directional tumor-

stromal crosstalk and by empowering the body’s immune system. Clearly, the potential for 

their future clinical exploitation is immense in terms of the development of novel preventive 

and therapeutic approaches against cancer. It is, however, important to mention that most 

of the currently available information discussed here has been generated either in vitro, ex 
vivo or in preclinical mouse models. There is still a lot to be achieved before we could 

successfully translate this knowledge from the lab to the bedside.
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A major limitation with most natural agents is their low aqueous solubility leading to poor 

absorption and delivery to the tumor cells. Also, most compounds get quickly metabolized 

in the systemic circulation [322]. Also, although rare, some natural agents can pose toxicity 

concerns at pharmacological doses along with instances leading to the development of 

secondary diseases. For example, chronic consumption of a 2% caffeic acid-containing 

diet in rats led to the development of forestomach squamous cell papilloma with toxic 

lesions seen in the kidneys [323]. Similarly, high consumption of green tea catechins 

(1%) enhanced tumor development in rat colon [324]. Some dietary flavonoids also exhibit 

structural similarity to thyroid hormones and can interfere with hormone biosynthesis [325]. 

Epidemiological data also caution that the consumption of flavonoids by pregnant mothers 

could increase the risk of developing acute myeloid leukemia (MLL+) in the offspring 

[326]. To overcome these limitations, multiple approaches are being employed. One of 

them is to develop novel semi-synthetic derivatives of natural compounds to enhance their 

bioavailability and retention. In other cases, novel strategies are being developed to achieve 

their tumor-targeted, protected delivery using nanosystems. It is also being suggested that 

the use of natural compounds should also be tailored based on the molecular characteristics 

of the tumor. Of course, this requires a more in-depth understanding of their mechanisms 

of action. Despite these hurdles, discoveries are continuously being made to identify 

novel bioactive natural compounds and to highlight their molecular targets and underlying 

mechanisms. Furthermore, several natural agents and/or their derivatives have entered 

and/or continue to enter in clinical trials as new drugs or for therapeutic enhancement of 

existing drugs in combination therapiesIt is hoped that we will witness novel therapies and 

prevention approaches emerging from the scientific efforts being made with natural agents in 

not very distant future.
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Figure 1: Components of the tumor microenvironment.
The tumor microenvironment is a complex network of stromal cells (fibroblasts, endothelial 

cells, lymphocytes, macrophages, and myeloid-derived suppressor cells), and other acellular 

entities surrounding the tumor cells. Tumor and stromal cells actively interact and influence 

each other to support tumor growth by promoting desmoplasia, angiogenesis, and immune 

suppression.
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Figure 2: Targeting of the tumor and stromal cells by natural agents.
Plant- or marine-derived agents can either directly impact the tumor or stromal cells or 

confer their anti-tumor properties by interfering with the tumor supportive tumor-stromal 

interactions or both. CAFs:cancer-associated fibroblast cells, NK cells: natural killer cells, 

TECs: tumor endothelial cells, Treg cells: regulatory T cells, MDSCs: monocytes derived 

suppressor cells, M1/M2 MØ: M1/M2 macrophages.#CAFs are shown to have diverse 

or sometimes opposing functions. While the majority of the data suggest their tumor-

supporting roles, there are indications that they could also oppose tumor growth. Solid 

arrows indicate direct effect, and broken arrows show likely interactions through unknown 

mechanisms.
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Table1:

List of plant- and marine-based natural compounds and their TME targeting potential

Natural Agent (chemical 
category) Source Effect on TME References

Terpenoids 

Zerumbone 
(sesquiterpene)

Zingiber zerumbet Sm. 
(Ginger)

Downregulation of CD1d
Inhibition of angiogenesis via targeting
VEGF/VEGFR
Inhibition in the colonization of enterotoxigenic Bacteroides 
fragilis

[252, 253, 255]

Curcumin (curcuminoid) Curcuma longa (Turmeric 
plant)

Modulation of immunomodulatory cytokines
Modulation of the ECM
Disruption of tumor-fibroblast interaction
Polarization towards M1 macrophage phenotype
Decreased Tregs cells Increased central memory T cell

[221–225, 328, 
332–333]

Alkaloids 

Berberine 
(benzylisoquinoline 
alkaloids)

Berberis plants
Increased M1 macrophage polarization Active in a hypoxic 
microenvironment Disruption of tumor-fibroblast interaction
Decreased Tregs cells Increased NK cell activity

[230, 231, 233, 
334–336]

Trabectedin Ecteinascidia turbinate 
(Marine ascidian)

Activation of NK cells Inhibition of macrophage 
polarization Targeting of PD-L1 positive tumor cells and 
immune cells
Induction of CD8+ T cells infiltration

[291,292, 296, 337]

Phenylpropanoids 

Honokiol (lignan) Magnolia species

Activation of immunomodulatory cytokines
Inhibition of angiogenesis Inhibition of immunosuppressive 
Tregs Stimulation of T-lymphocytes
Disruption of tumor-fibroblast interaction

[157–160]

Hydroxytyrosol (catechol) Oleaeuropaea (Olive 
plant)

Inhibits remodeling of ECM and angiogenesis
Modulation of oxidative stress Active in a hypoxic 
microenvironment Modulation of immunomodulatory 
cytokines
Disruption of tumor-stromal interaction

[167, 168, 343–
345]

Resveratrol (stilbenoid)
Pine trees, peanut plants, 
grapevines, and vaccinium 
shrubs

Disables immunosuppressive Tregs Active in a hypoxic 
microenvironment Inhibition of cancer-associated fibroblasts
Modulation of oxidative stress Inhibition of M2 polarization 
of macrophages

[199–203]

Epigallocatechin-3-gallate 
(EGCG; catechin) Camellia sine sis (Tea)

Inhibition of metabolic circuitry in fibroblasts
Decreased M2 macrophage infiltration Inhibition of tumor 
angiogenesis Improvement of immunotherapy response via 
downregulation of PD-L1

[240, 241, 350, 
351]

Genistein (isoflavone) Genistatinctoria
Inhibition of tumor angiogenesis Modulation of the ECM 
Inhibition of fibroblast growth Disruption of macrophage-
tumor cell interaction

[261–263, 266]

Naringenin (flavones)
Grapefruit, bergamot, sour 
orange, tomatoes, coca 
and others

Decreased accumulation of ECM AbrogatesTGF-β mediated 
immunosuppression
Inhibitionof VEGF-mediated angiogenesis

[279–281]

Onionin A (flavonoids and 
phenols) Allium cepa (Onion) Inhibition of macophage polarization Inhibition of the 

MDSCs activity Inhibitionof PDL-1 expression [268, 270–272]

Others *

Plitidepsin 
(cyclodepsipeptide) Aplidiumalbica ns

(Mediterranean tunicate)

Inhibition of angiogenesis Activation of immunomodulatory 
cytokines
Induce CD8+T cell infiltraion

[302, 304, 306]

Fucoidan (sulfated 
polysaccharides )

Brown algae and brown 
seaweed

Inhibition of M2 macrophage activity Activation of 
macrophage-induced tumor cell killing
Activation of immunomodulatory cytokines

[317, 352, 353]

*
Nonribosomal polypeptides and modified polysaccharides.
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Table 2:

List of compounds alone or as a co-treatment with other compounds undergo clinical trials

Compound name Type of cancer Clinical trial phase Current status Clinicaltrials.gov 
Identifier

Hydroxytyrosol Breast cancer Phase 2 and 3 Active, recruiting NCT02068092

Resveratrol
Colon cancer
Liver cancer
Colorectal cancer

Phase 1
Phase 1 and 2
Phase 1

Completed
Withdrawn
Completed

NCT00256334
NCT02261844
NCT00433576

Curcumin
Prostate cancer
Breast cancer
Colorectal cancer

Phase 3
Phase 1
Phase 1

Active
Recruiting
Unkown

NCT03769766
NCT03980509
NCT00973869

Curcumin + Avastin/FOLFIRI Colorectal cancer Phase 2 Active, not 
recruiting NCT02439385

Curcumin + 5- Fluorouracil Metastatic colon cancer Early phase 1 Active, not 
recruiting NCT02724202

Berberine Hydrochloride

Colorectal Adenomas Phase 2 Recruiting NCT03281096

Colorectal cancer patients with 
ulcerative colitis remission Phase 1 Active, not 

recruiting NCT02365480

Berberine + Gefitinib Lung adenocarcinoma and 
EGFR mutation Phase 2 Not yet recruiting NCT03486496

EGCG

Colorectal cancer Early phase 1 Recruiting NCT02891538

Patients with Lung cancer 
receiving radical radiotherapy Phase 2 Recruiting NCT02577393

Trabectedin (ET 743) Prostate cancer
Pancreatic cancer

Phase 2
Phase 2

Completed
Completed NCT00147212

NCT01339754

Trabectedin+Bevacizumab Ovarian Epithelial cancer 
recurrent Phase 2 Completed NCT01735071

Plitidepsin + Sorafenib Advanced solid tumors
Phase 1 Completed NCT00788099

Plitidepsin + Gemcitabine Lymphomas

Plitidepsin + Dexamethasone Relapsed/Refractory Multiple 
Myeloma Phase 3 Completed NCT01102426

Oligo Fucoidan Advanced Hepatocellular 
Carcinoma Phase 2 Active NCT04066660

Genistein + FOLFOX or FOLFOX- 
Avastin

Colon cancer Rectal cancer 
Colorectal cancer Phase 1 and 2 Completed NCT01985763

Genistein + Gemcitabine Breast cancer Phase 2 Completed NCT00244933

Genistein Prostate cancer Phase 2 Recruiting NCT02766478

Genistein + Decitabine Non-Small Cell lung cancer Phase 1 and Phase 2 Completed NCT01628471
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