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Abstract: Several species from the genus Tragia L. in the family Euphorbiaceae are part of the eth-
nomedicine of traditional cultures, and have a variety of uses. Tragia volubilis L. is a species spread
through tropical America and Africa with several ethnomedical uses, particularly for wound healing
and reproductive issues. In this study, we assess the phytochemical composition and antioxidant
activity of the methanolic extract of the aerial parts of T. volubilis collected in southern Ecuador. The
phytochemical screening of the extract shows the preliminary presence of carbohydrates, alkaloids,
flavonoids, and tannins. The extract shows an Antioxidant Activity Index of 1.14, interpreted as
strong antioxidant activity. Four flavonoid compounds were isolated through chromatographic proce-
dures and identified through NMR spectroscopy: avicularin, quercitrin, afzelin, and amentoflavone.
The biological activity of these compounds matches the ethnopharmacological uses of the species.
This is the first phytochemical study of T. volubilis and supports its traditional medicinal uses.

Keywords: Tragia volubilis L.; Euphorbiaceae; Ecuadorian medicinal plants; phytochemicals; flavonoids

1. Introduction

Utilizing plants for medicinal purposes is prevalent among several animal species;
great apes and humans are but examples of a widespread practice [1]. Humanity has
harnessed the health-enhancing properties of plants since prehistoric times. Early evidence
shows the use of medicinal plants by our Neanderthal ancestors [2]. Even today, about
80% of the world’s population relies on herbal medicines to preserve and promote their
well-being [3].

Ethnopharmacology is an interdisciplinary field that studies the biologically active
agents recognized and used by man and the cultural heritage that surrounds their use. It is
an important drug discovery approach. Traditional wisdom has converged with modern
research methods and tools, resulting in the validation of many ethnopharmacological
claims and the development of new and improved drugs and treatments from traditional
medicinal plants [4].

The Genus Tragia (Euphorbiaceae)

Euphorbiaceae is a plant family abundant in medicinal species. This abundance is
attributed to the vast geographical distribution and, thus, the variety of environmental
stressors that affect the species of the family, to which they react through the production of a
variety of secondary metabolites [5]. Within this family, the Tragia Plum ex L. genus, present
worldwide in the intertropical region, is traditionally used in African and Asian traditional
medicinal systems, i.e., Ayurveda and Siddha [6], for a wide spectrum of ailments [7],
as food [8], and for other uses, such as a low-toxicity irritant, evaluated as a riot control
agent [9]. The species native to America are less studied, and, while traditionally used,
do not seem to be part of documented medicinal systems. Around 26 of the more than
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150 species in the genus are reported as medicinal, mostly as treatments for conditions of
the genitourinary, nervous, and digestive systems, infections, and cancer. Most research to
date focuses on four Asian and African species: Tragia involucrata Linn., Tragia spathulata
Benth., Tragia benthamii Baker, and Tragia plukenetii Radcl. Research on the genus centers
on antidiabetic and anti-inflammatory activity. Additionally, investigations have revealed
significant biological activity and low toxicity in relation to its antimalarial, antibacterial,
antitumor, and diuretic effects [10].

More than sixty New World Tragia species comprise almost 40% of the total species in
the genus. Despite this abundance, less research has been conducted on the New World
than on the Old World Tragia species, even though there is evidence of its use by First
Nations [11] before the Hispanic contact [12]. The eight New World medicinal Tragia species
mentioned in the literature and their uses are shown in Table 1, along with their uses.

Table 1. Traditional uses of New World Tragia species.

Species Region Uses Refs.

Tragia cordata Michx. USA Urinary tract conditions [13]

Tragia geraniifolia Klotzsch ex Müll. Arg. Bolivia, Paraguay, Uruguay,
Argentina Emollient [14]

Tragia nepetifolia Cav. USA, Mexico Snakebite [11]

Tragia pinnata (Poir.) A. Juss. Brazil, Argentina Emollient [15]

Tragia ramosa Torr. USA, Mexico Ant bite [16,17]

Tragia uberabana Müll. Arg. Brazil NS [18]

Tragia volubilis L. Mexico to Argentina See below [10]

Tragia yucatanensis Millsp. Mexico, Belize, Honduras Burns, rheumatism [19]

In addition to medical uses, there are other reported activities of the New World
species: T. biflora is allelopathic against water plants; pounded, boiled T. brevispica taken
orally is reportedly aphrodisiac in Uganda [20]; and T. gracilis is used in Cuba for Santería
religious uses [21].

Among the American species, the most widely distributed, and the lectotype chosen
by Linnaeus for the genus [22], is T. volubilis, present not only in intertropical America and
the Caribbean but also in West and Central Africa, where it is presumably an introduced
species [23,24]. Its distribution is shown in Figure 1, encompassing the seasonally dry
tropical biome from southern USA to Central Argentina in America and from Sudan to
Zimbabwe in Africa.
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The species is called “twining Tragia” in Jamaica due to its growth habit, and Pring-
amoza morada in Cuba due to its purple flowers [26]. Most of its vernacular names, such
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as “fireman” or “cowitch,” stem from the intense irritation it produces, due to its stinging
hairs (raphides) tipped with calcium oxalate crystals that cause a painful, transient contact
dermatitis that disappears, leaving no trace [27]. On contact irritation tests, the intensity of
its sting is one out of three, equivalent to low intensity [28].

T. volubilis is a perennial, climbing herb or subshrub, either totally voluble or with
voluble apexes, with simple, alternate, usually serrated leaves and simple, urticant hair
pubescences. Paniculoid inflorescences are positioned terminally and opposite the leaves
with 1- ∞ pistillate flowers. They consist of a main terminal axis with 3- ∞ staminate
flowers and persistent bracts [29]. Figure 2 shows the serrated leaves and stinging hairs of
the plant.
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CC-BY-NC-4.0. French Guiana, France.

The species is part of the Maya tradition in Mesoamerica, where it is called “Quetzalcoatl’s
herb,” where Quetzalcoatl or Kukulkan—the feathered serpent—is the supreme Maya deity.
The plant twines like a serpent and is covered in “feathers”—actually raphides—to resemble
the supernatural being [30]. In the sixteenth-century “History of the Plants of New Spain”
by Francisco Hernández, it is said that its leaves “cure madness when drunk” [12]. The
species is considered urticant, rubefacient, and medicinal. Its published ethnomedical uses
are listed in Table 2.

Table 2. Ethnomedical uses of Tragia volubilis L.

Use Plant Organ Country Preparation/Administration Refs.

Analgesic Stem, leaves Cameroon Decoction [31]

Antirheumatic Leaves, branches Colombia Lightly whip affected joints [32]

Anti-ulcer NS Brazil NS [33]

Blood pressure Leaf Brazil Infusion; oral [34]

Cancer prevention Leaf DutchCaribbean Infusion, oral [35]

Diuretic NS Argentina NS [36]

Fertility Stem, leaves Cameroon Decoction [31]

Skin ulcers Aerial parts Cuba Plant juice mixed with salt,
topical [37]

Sudorific Root Cuba Decoction, oral [37,38]
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Table 2. Cont.

Use Plant Organ Country Preparation/Administration Refs.

Venereal diseases Leaves Mexico Decoction, NS [30]

Venereal diseases Root Cuba Decoction, NS [37]

Wound anti-infective Branches with leaves Colombia NS, oral [39]

Wound anti-infective Branches with leaves Colombia Decoction, topical [32]

NS: not specified.

T. volubilis is an insufficiently studied species. Most research on the species, searched
through Dimensions [40] using “Tragia volubilis” on a full-text search, shows the species is
mentioned in 168 publications, with ecology (78), plant biology (23), and both agriculture
and environmental science (19) as major disciplines. There are no health sciences or
chemical studies reported for the species directly. There is as yet no phytochemical study
on this species, and there is no verification of its reported medicinal properties beyond its
confirmed use as a diuretic [41,42].

The objective of this work is to provide a first phytochemical study of the species and
to suggest preliminary molecular grounds for the reported ethnopharmacological uses.

2. Results and Discussion

The results of this phytochemical study of T. volubilis are as follows.

2.1. Extract

In total, 1987 g of fresh plant material yielded 1287 g of dried aerial parts of T. volubilis,
from which 62.87 g of methanolic extract was obtained (yield: 7.39%). The yield is similar
to those of methanolic extracts of other Euphorbiaceae species (4.11–8.85%) [43], and also
comparable to T. involucrata leaf extract at 6.75% [44]. Most methanolic Tragia extracts
reported are root extracts, mainly those of T. involucrata [45].

2.2. Phytochemical Screening

The methanolic extract of aerial parts of T. volubilis was subject to a preliminary
phytochemical screening to show the compound classes present (Table 3). Terpenoids
showed a scant presence; flavonoids and carbohydrates exhibited a moderate presence;
and alkaloids and tannins showed a strong presence. These compound families are similar
to those found in other Tragia species, such as Tragia involucrata L. [46,47], Tragia pungens
(Forssk.) Müll. Arg. [48], and Tragia benthamii Baker [49].

Table 3. Phytochemical screening of T. volubilis methanolic extract.

Compound Family Presence Test

Protein − Biuret
Carbohydrates ++ Fehling

Fats − Sudan
Alkaloids +++ Dragendorff

Terpenoids + Lieberman Burchard
Flavonoids ++ Shinoda
Saponins − Foam
Quinones − Bornträger
Tannins +++ Ferric Chloride Assay

−: Absence. +: Small presence. ++: Medium presence. +++: Strong presence.

Terpenoids, alkaloids, and flavonoids exhibit biological activity consistent with the
ethnopharmacological uses reported for the species, notably antimicrobial action that
could underlie wound healing, anti-STD, and anti-ulcer activity [50]. Flavonoids [51]
and terpenoids [52] also exhibit blood-pressure-lowering effects. Flavonoids and tannins
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are phenolic compounds with well-known antioxidant biological activity, which could
contribute to the reported anti-cancer properties.

2.3. Antioxidant Activity

The extract exhibits strong antioxidant activity measured through the Antioxidant
Activity Index (AAI > 1). The antioxidant activity analysis is shown in Table 4.

The high antioxidant capacity of the extract can be ascribed to its phenolic content,
similar to the polar extracts of other species (T. involucrata) [53].

Table 4. Antioxidant activity of T. volubilis methanolic extract.

TPC
mg GAE/
g Extract

ABTS
µmol TE/
g Extract

FRAP
µmol TE/
g Extract

DPPH
µmol TE/
g Extract

IC50
mg Extract/
mg DPPH

AAI
[DPPH]

(µg mL−1)/IC50

127 ± 2 2004 ± 36 1250 ± 15 585 ± 5 1.30 ± 0.06 1.14 ± 0.01
All values are average ± SD of three repetitions. TPC: Total Phenolic Content. GAE: Gallic acid equiva-
lent. TE: Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) equivalent. ABTS: 2,2′-azino-bis
(3-ethylbenzothiazoline-6-sulfonic acid) method. FRAP: Ferric reducing antioxidant power. DPPH: 2,2-diphenyl-
1-picrylhydrazyl method. IC50: Half maximal inhibitory concentration. AAI: Antioxidant Activity Index [54].

2.4. Compounds

From the dechlorophyllated methanolic extract, four compounds, (1) avicularin,
(2) quercitrin, (3) afzelin, and (4) amentoflavone, were isolated through chromatographic
techniques and identified through NMR spectroscopy. The structures are shown in Figure 3.
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Avicularin was isolated by preparative TLC on direct silica F254 using 120 mL EtOAc:
HOAc:H2O 18:1:1 (2.1 mg). Its RF was 0.65. The compound is a quercetin 3-O glycoside,
where the sugar moiety is an arabinose unit. It was first isolated from the common knotgrass
(Polygonum aviculare) and is considered to contribute to the hypoglycemic activity of Psidium
guajava [55] and to the antibacterial and antifungal activity of Hypericum perforatum [56].

Quercitrin was isolated by preparative TLC on direct silica F254 using 120 mL DCM:
MeOH 90:10 and two drops of water (5.6 mg). Its RF was 0.42. The compound is a quercetin
3-O glycoside, with rhamnose—a deoxy sugar—unit as the sugar moiety. It was isolated
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from oak (Quercus spp.), hence its name. It is used as a yellow dye and also as a bioactive
product with varied biological effects [57].

Afzelin was isolated by preparative TLC on reverse-phase silica using MeOH:H2O
65:35 (3.3 mg). Its RF was 0.5. The compound is a kaempferol 3-O rhamnoside. It was first
isolated from the fragrant water lily (Nymphaea odorata) [58]. It shows antibacterial and
antitumor activity.

Amentoflavone was isolated as a yellow solid on Sephadex LH-20 on a microcolumn
using MeOH:H2O 60:40 as eluent (2.2 mg). Its RF was 0.34. The compound is a biflavonoid:
3′-8′′ apigenin, originally isolated from Ginkgo biloba. It is considered a multifunctional
compound [59].

The 1H and 13C NMR spectra information of the identified compounds follows.
Avicularin (1): 1 H–NMR (500 MHz, CD3OD, δ ppm, J in Hertz): 3.50 (2H, m, H-5′′),

3.86 (1H, m, H-4′′), 3.91 (1H, dd, 5.4; 3.0, H-3′′), 4.33 (1H, dd, 1.1; 3.0, H-2′′), 5.47 (1H, d,
1.1, H-1′′), 6.21 (1H, d, 2.1, H6), 6.40 (1H, d, 2.1, H-5′), 6.40 (1H, d, 2.1, H-8), 7.49 (1H, d, 8.4,
H-6′), 7.53 (1H, d, 2.1, H-2′).

13C NMR (125 MHz, CD3OD, δ ppm, Carbon number): 61.3 (5′′), 77.3 (3′′), 82.0 (2′′),
86.6 (4′′), 93.4 (8), 98.6 (6), 104.3 (10), 108.2 (1′′), 115.1 (2′), 115.6 (5′), 121.6 (1′), 121.7 (6′),
133.5 (3), 145.0 (3′), 148.9 (4′), 157.6 (9), 159.1 (2), 162.6 (5), 165.4 (7), 177.3 (4).

Quercitrin (2): 1H–NMR (500 MHz, CD3OD, δ ppm, J in Hertz): 0.93 (3H, d, 6.2, H-6′′),
3.33 (1H, m, H-4′′), 3.41 (1H, m, H-5′′), 3.74 (1H, dd, 9.5 3.3, H-3′′), 4.21 (1H, m, H-2′′), 5.30
(1H, d, 1.1 H-1′′), 6.19 (1H, d, 1.5, H-6), 6.35 (1H, brs, H-8), 6.90 (1H, d, 8.3, H-5′), 7.30 (1H,
dd, 8.4 1.9, H-6′), 7.33 (1H, d, 1.8. H-2′).

13C NMR (125 MHz, CD3OD, δ ppm): 16.2 (6′′), 70.5 (2′′), 70.6 (3′′), 70.7 (5′′), 71.8 (4′′),
93.4 (8), 98.5 (6), 104.5 (1′′), 104.5 (10), 115.0 (5′), 115.5 (2′), 121.5 (6′), 121.6 (1′), 134.8 (3),
145.0 (3′), 148.5 (4′), 157.1 (9), 157.9 (2), 161.7 (5), 164.5 (7), 178.3 (4).

Afzelin (3): 1 H–NMR (500 MHz, Acetone D6, δ ppm, J in Hertz):
0.89 (3H, d 6, H-6′′), 3.3 (1H, m, H-4′′), 3.32 (1H, m, H-5′′), 3.67 (1H, m, H-3′′), 4.21 (1H,

m, H-2′′), 5.54 (1H, d 1.5, H-1′′), 6.26 (1H, d 2.0, H-6), 6.47 (1H, d 2.0, H-8), 7.01 (1H, d 9,
H-3′), 7.02 (1H, d 9, H-5′), 7.84 (1H, d 8.5, H-6′), 7.86 (1H, d 8.5, H-2′), 9.71 (1H, s, 5-OH).

13C NMR (Acetone D6, δ ppm): 16.9 (6”), 70.4 (5”), 70.6 (2”), 71.2 (3”), 72.1 (4”), 93.6
(8), 98.6 (6), 101.8 (1”), 104.5 (10), 115.4 (3′), 115.4 (5′), 121.7 (1′), 130.8 (2′), 130.8 (6′), 134.8
(3), 157.1 (4′), 157.5 (9), 159.9 (2), 162.4 (5), 164.2 (7).

Amentoflavone (4): 1 H–NMR (500 MHz, CD3OD, δ ppm, J in Hertz):
6.20 (1H, d, 2.4, H-6), 6.32 (1H, s, H-6′′), 6.43 (1H, d, 2.4, 8), 6.60 (1H, s, H-3), 6.68 (1H,

s, H-3′′), 6.76 (1H, d, 8.2, H-3′ ′ ′), 6.76 (1H, d, 8.2, H-5′ ′ ′), 7.12 (1H, d, 8.2, H-5′), 7.70 (1H, d,
8.2, H-2′ ′ ′), 7.70 (1H, d, 8.2, H-6′ ′ ′), 7.94 (1H, dd, 2.2 8.4, H-6′), 8.22 (1H, d, 2.2, H-2′),

13C NMR (CD3OD, δ ppm): 94.9 (8), 99.9 (6), 100.9 (6′′), 103.4 (3), 103.4 (3′′), 104.3 (8′′),
105.0 (10), 105.6 (10′′), 116.3 (3′ ′ ′), 116.3 (5′ ′ ′), 118.5 (5′), 121.5 (3′), 123.3 (1′ ′ ′), 123.4 (1′),
127.5 (6′), 128.7 (2′ ′ ′), 128.7 (6′ ′ ′), 132.2 (2′), 159.0 (7), 159.0 (9), 159.0 (9′′), 161.8 (4′ ′ ′), 162.1
(7′′), 162.4 (2), 162.4 (4′), 164.4 (2′′), 164.5 (5), 165.6 (5′′), 183.0 (4′′), 183.1 (4).

All the identified compounds exhibit potent antioxidant activity, which is summarized
in Table 5.

Table 5. Antioxidant activity of compounds 1–4.

Compound DPPH IC50 (µM) Refs.

1 71.68 ± 0.06 [60]
2 68.26 ± 1.37 [60]
3 14.89 ± 1.71 [61]
4 10.64 ± 0.15 [62]

The structure of the isolated compounds supports the antioxidant activity: they are
all B-ring hydroxylated compounds, which is the most significant indicator of ROS and
RNS scavenging activity, and the vicinal double OH groups in the B-ring of compounds 1
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and 2 indicate strong lipid peroxidation inhibition [63]. Rhamnosides, though, present less
metal-chelating activity than 6′′OH glycosides [64].

Structure-activity relationships for cellular antioxidant effects are 3′,4′ o dihydroxyl
group, 2,3 double bond conjugated with 4-keto group, and 3-hydroxyl group. Compounds
1 and 2 satisfy all the conditions.

Flavonols, such as compounds 1, 2, and 3, are among the most potent antibacterial
flavonoids through mechanisms including interference with fatty acid elongation and are
capable of synergistically reducing antibiotic resistance. Flavones such as 4 inhibit bacterial
growth by forming complexes with cell wall components [65].

The isolated flavonoids show promising biological activity, which is exemplified in
Table 6. There is a good overlap between the ethnopharmacological uses of T. volubilis and
the biological activity of the identified compounds.

Table 6. Selected biological activities of isolated compounds from T. volubilis.

Compound Activity Biological Model Effect Refs.

Avicularin (1) Anti-fungal Candida albicans. MIC: 4 µg/mL [66]

Antiproliferative SCC13 cells Dose and time-dependent apoptosis
induction [67]

Antirheumatic
Human synovial

Rheumatoid arthritis
cells

Dose-dependent viability inhibition
and apoptosis induction [68]

Quercitrin (2) Antidiabetic
Male albino Wistar rats,
streptomycin-induced

diabetes

Glucose homeostasis improvement
(p < 0.05) effect at 30 mg/kg dose. [69]

Anti-ulcer Female Swiss mice 1.38 mg/kg reduces MPO activity [70]

Afzelin (3) Antibacterial Pseudomonas aeruginosa MIC: 31 µg/mL [71]

Diuretic Female Wistar rats Calcium-sparing diuretic activity.
Nephroprotective [72]

Anti-ulcer Female Swiss mice 0.078 mg/kg reduces MPO activity [70]

Amentoflavone (4) Cytotoxic HeLa cells IC50 20.7 µM [73]

Antirheumatic Osteoarthritis-induced
Wistar rats

Improvements in incapacitation,
motor activity, allodynia, and

hyperalgesia parameters
[74]

Notes: MPO: Myeloperoxidase; MIC: minimum inhibitory concentration; IC50: 50% inhibitory concentration.

Compounds 2 and 3 exhibit biological effects in methanolic extracts due to their
antioxidant capacity [70]. Compound 3 has undergone pre-clinical studies against lung
cancer, also due to its antioxidant activity [75]. The antioxidant activity of Tragia spp.
extracts underlie several ethnopharmacological uses which have been validated in vivo
and have undergone clinical trials [76–78].

Extracts from the leaves of other Tragia species also contain potent antioxidant flavonoids,
which are quercetin and kaempferol glycosides, for example, T. plukenetii [76] and T. involu-
crata [79]. Quercetin and kaempferol—which are metabolic products of their glycosides—
are among the most frequently studied flavonoids and are recommended as dietary supple-
ments due to their high biological activity [80].

3. Materials and Methods
3.1. Plant Material

Aerial parts of Tragia volubilis L. were collected in El Tambo, -Catamayo, Loja province
in southern Ecuador. Coordinates: 04◦07′13.3′′ S; 79◦18′11.9′′ W; 1600 m ASL (Figure 4).
Species identification was performed by Fani Tinitana, PhDPh.D., and a voucher specimen
was deposited at the Herbarium of Universidad Técnica Particular de Loja, Ecuador. The
specimen was collected in compliance with the Framework Contract MAE-DNB-CM-
2016-0048 dated 20 September 2016. The plant material was dried for 7 days at 30 ◦C
under airflow.
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3.2. Preparation of the Extract

Because it is common for methanolic extracts to show higher biological activity than
aqueous extracts [81], and the fact that methanol is the primary solvent used to date in Tragia
species studies, with 47% of the studied Tragia spp. extracts [10], it was decideda decision
was made to focus the present study on the methanolic extract rather than the aqueous
extract, even though most ethnomedical uses employ aqueous extracts and decoctions.
The dry plant material was extracted by static maceration for 3 days with analytical-grade
methanol purchased from Merck, then filtered, and concentrated on a rotary evaporator
(Buchi R210, Flawil, Switzerland) to yield the Tragia volubilis methanolic extract, which was
stored at −18 ◦C.

3.3. Phytochemical Screening

The phytochemical screening of the extract was performed according to the method-
ology of Mandal et al. [82]. The Biuret copper -complex formation test was used for
the detection of proteins; positive controls used were powdered milk, egg albumin, and
glutamic acid. The Fehling test for reducing sugars was used for the detection of carbo-
hydrates; positive controls were sucrose and glucose. Sudan fat-soluble dye was used for
screening lipids; the positive control used was vegetable oil. The Dragendorff potassium
tetraiodobismuthate test was used for alkaloids; the positive control was caffeine. The
Lieberman Burchard acetic anhidride anhydride test was used for terpenoids; the: positive
control was Argentatin B. The Shinoda magnesium and hydrochloric acid test was used
for flavonoids; the positive control was hesperidin. The foam test was used for saponins;
the: posivitepositive control was grated raw potato. The Bornträger test was used for
quinones; the positive control was hydroquinone. The ferric chloride assay was used to
test for phenolics—tannins, with vanillin used as the positive control.

3.4. Antioxidant Activity

Total phenolic content was determined through the Folin—Ciocâlteu method [83]. To
a diluted sample of the extract, Folin—Ciocâlteu reagent was added, and the wells were
homogenized for 10 min. A total of 7.5% w/w Na2CO3 solution was added, and the wells
were homogenized again for 5 min. Absorbance was measured at 760 nm on a Bio Tek
Epoch 2 microplate reader (Winooski, VT, USA), and values were compared to a gallic
acid calibration curve. Results are expressed in gallic acid equivalents (GAE) per gram
of extract.

Antioxidant capacity was measured through the following tests: ABTS (2,2′-azino-bis
(3-ethylbenzothiazoline-6-sulfonic acid)) [84], FRAP (Ferric reducing antioxidant power) [85],
and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods [86]. All antioxidant activity was
determined against a Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid)



Plants 2023, 12, 3139 9 of 13

standard. Antioxidant Activity Index (AAI) was calculated as the quotient between the
final DPPH concentration and the IC50, providing a value that is independent of both the
nature of the sample and DPPH concentrations [54]. AAI relates to antioxidant activity in
plant extracts as follows: AAI < 0.5 is considered poor antioxidant activity. An AAI between
0.5 and 1.0 is considered moderate antioxidant activity. Values between 1.0 and 2.0 are
considered high antioxidant activity, and an AAI > 2.0 is considered very high antioxidant
activity. All tests were repeated three times, and the average values and standard deviation
was were recorded.

3.5. Isolation of Secondary Metabolites

A sample of the methanolic extract was dechlorophyllated by open column chromatog-
raphy on reverse phase silica RP-18 (40–63 µm) with methanol-:water 80:20 as eluent. A
series of 20 mL portions were collected and then combined according to chromatographic
similarity in eight fractions, of which fraction 2 was the most abundant. This fraction
was further separated in open column chromatography using direct phase silica and ethyl
acetate: methanol: water 90:4:1 as eluent. Fraction 4 was subject to further separation steps
through Flash chromatography (Buchi Reveleris® PREP, Flawil, Switzerland) using an RP-
18 silica column, and a methanol: water elution gradient from 40:60 to 70:30. From fraction
13, four compounds were isolated by preparative thin layer chromatography (PTLC).

3.6. Characterization and Identification of Secondary Metabolites

Isolated secondary metabolites were identified through 1H and 13C NMR spectra
in a Bruker 500/125 MHz (Billerica, MA, USA) spectrometer using deuterated solvents:
methanol and acetone. The spectra were complemented by 2D experiments: Homonuclear
Correlation Spectroscopy (COSY), Total Correlation Spectroscopy (TOCSY), Heteronuclear
Multiple Bond Correlation (HMBC), and Heteronuclear Multiple Quantum Correlation
(HMQC), to aid with the structural elucidation. The candidate compound identity was
confirmed by comparison with published results [87–90].

4. Conclusions

The phytochemical composition of T. volubilis has been partially determined for the
first time. The phytochemical screening of the methanolic extract of the aerial parts of the
species shows the presence of alkaloids, terpenoids, tannins, and flavonoids, similar to the
composition of polar extracts from other species of the genus.

The methanolic extract shows strong antioxidant activity, which can be partially at-
tributed to the presence of phenolic compounds. Four bioactive flavonoid compounds,
avicularin, quercitrin, afzelin, and amentoflavone, have been isolated from the extract.
These compounds exhibit biological activity that supports the reported ethnopharmacologi-
cal uses of the plant, both in vitro and in vivo, and can be associated with their antioxidant
bioactivity.

More studies are needed to completely determine the phytochemical makeup of T.
volubilis, and to establish its biological activity and potential therapeutic use to fully validate
the existing ethnopharmacological claims and develop better, low-toxicity treatments.
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