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Abstract

Turmeric, the rhizome of Curcuma longa plant belonging to the ginger family Zingiberaceae, has a history in Ayurvedic
and traditional Chinese medicine for treatment of chronic diseases, including metabolic and cardiovascular diseases (CVD).
This parallels a prevalence of age- and lifestyle-related diseases, especially CVD and type 2 diabetes (T2D), and associated
mortality which has occurred in recent decades. While the chemical composition of turmeric is complex, curcuminoids and
essential oils are known as two major groups that display bioactive properties. Curcumin, the most predominant curcuminoid,
can modulate several cell signaling pathways involved in the etiology and pathogenesis of CVD, T2D, and related morbidi-
ties. Lesser bioactivities have been reported from other curcuminoids and essential oils. This review examines the chemical
compositions of turmeric, and related bioactive constituents. A focus was placed on the cellular and molecular mechanisms
that underlie the protective effects of turmeric and turmeric-derived compounds against diabetes and CVD, compiled from
the findings obtained with cell-based and animal models. Evidence from clinical trials is also presented to identify potential
preventative and therapeutic efficacies. Clinical studies with longer intervention durations and specific endpoints for assess-
ing health outcomes are warranted in order to fully evaluate the long-term protective efficacy of turmeric.
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Go6P Glucose 6-phosphate PIP, Phosphatidylinositol-4,5-bisphosphate
GATA4 GATA-binding factor 4 PIP; Phosphatidylinositol-3,4,5-trisphosphate
GCK Glucokinase p.o. Oral administration (Latin per os)
GLP-1 Glucagon-like peptide -1 PPAR-y Peroxisome proliferator-activated
GLUT Glucose transporter receptor-y
GPR G-protein-coupled receptor RCT Randomized clinical trials
GR Glutathione reductase SIRT-1 Sirtuin-1
GSH-Px Glutathione peroxidase SOD Superoxide dismutase
GSIS Glucose-stimulated insulin secretion SP1 Specific protein 1
HAT Histone acetyltransferase SR-A Scavenger receptor class A
HbAlc Hemoglobin Alc (glycated hemoglobin) SREBP Sterol regulatory element-binding protein
HDL-c High-density lipoprotein cholesterol STAT Signal transducer and activator of
HFD High-fat diet transcription
H/R Hypoxia/reoxygenation T2D Type 2 diabetes
hs-CRP High-sensitivity C-reactive protein TC Total cholesterol
ICAM-1 Intercellular cell adhesion molecule-1 TG Triglyceride
IxB Inhibitor of NF-xB TGF-p1 Transforming growth factor beta 1
IL Interleukin TLR Toll-like receptor
L.p. Intraperitoneal injection TNF-a Tumor necrosis factor a
IR Insulin receptor VCAM-1 Vascular cell adhesion molecule-1
I/R Ischemia/reperfusion VCP Valosin-containing protein
IRS Insulin receptor substrate WwC Waist circumference
JAK Janus kinase %BF Percent body fat
Keapl Kelch-like ECH-associated protein 1
LC3 Microtubule-associated protein 1 light
chain 3 Introduction
LDH Lactate dehydrogenase
LDL Low-density lipoproteins Curcuma longa Linn. (Syn. Curcuma domestica Valeton)
LDL-c Low-density lipoprotein cholesterol belongs to the ginger family Zingiberaceae, a perennial plant
LDL-R Low-density lipoprotein receptor that grows in tropical and humid climates and originates
Lp(a) Lipoprotein a from the Indian Subcontinent and Southeast Asia [1, 2]. The
LXRa Liver X receptor o term longa refers to the elongated shape of the rhizome,
MAPK Mitogen-activated protein kinase where turmeric is derived from the rhizome of the plant
MCP-1 Mast cell protease 1 having a characteristic orange-yellow color. The term for
MDA Malondialdehyde turmeric varies among languages, but most often it refers to
MetS Metabolic syndrome “yellow colour” or “bright colour” [3]. The Latin word cur-
MI Myocardial infarction cuma is believed to be derived from the Arabic root kurkum
miR-7a/b MicroRNA-7a/b meaning “saffron,” in reference to similar coloring proper-
MMP-2 Matrix metalloproteinase-2 ties [4]. Turmeric is also known as “Indian saffron.”
NAD Nicotinamide adenine dinucleotide The history of using turmeric dates back to more than
NF-xB Nuclear factor kappa B 4000 years during the Vedic age of India, where it was ini-
Nrf2 Nuclear factor erythroid 2-related factor 2 tially used as a dye and a culinary spice, due to its bright
NT-pro-BNP  N-terminal pro-B-type natriuretic peptide yellow color and aromatic flavor [2, 3]. Turmeric also has
oxLDL Oxidized low-density lipoproteins a spiritual significance, where with the Hindu religion, tur-
PAB Pro-oxidant-antioxidant balance meric was connected with South East Asian countries by
PDK1 3-Phosphoinositide-dependent protein 700 AD, migrating later to West and East African coun-
kinase-1 tries during 800 to 1200 AD [2, 3]. Turmeric has become
PDX-1 Pancreatic and duodenal homeobox-1 a commonly cultivated seed in many of these countries and
p-ERK1/2 Extracellular signal-regulated kinase 1/2 regions. Along with the history of use, turmeric has had an
PGC-1a Peroxisome proliferator-activated important role in folk medicine, especially Ayurveda and
receptor-y coactivator-1la traditional Chinese medicine where it was used as a remedy
PGN Peptidoglycan for various diseases that range from simple ailments to more
PI3K Phosphatidylinositol-3-kinase complex chronic illnesses, such as digestive (e.g., abdominal
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pain and bloating, dyspepsia), cardiovascular (e.g., heart
burning, heart pain), respiratory (e.g., runny nose, sinusitis,
asthma), and hepatic disorders [1, 5-8]. On the other hand,
turmeric although arriving in Europe in the 13th century
by Arab traders currently remains a minor spice in Western
countries. Until more recently, turmeric has been recog-
nized, and since gained popularity as a dietary supplement
and a nutraceutical thus becoming one of the most success-
ful natural health products sold in the US since 2013 [9].
Recent studies that have also shown therapeutic potential of
turmeric against coronavirus disease 2019 (COVID-19) [10]
and the potential to modulate cytokine storm in COVID-19
patients [11] have produced formidable renewed interest in
this herb.

Notwithstanding the long history of using turmeric in tra-
ditional medicine to treat various diseases, the mechanism or
scientific basis for its bioactivity has remained unclear, until
more recently when pharmacological assessments demon-
strated safe use for modern medicine [3]. Curcuminoids and
essential oils (mainly terpenoids) are two major components
present in turmeric, the former being responsible for the
orange-yellow color of the herb and the latter accounting
for the aromatic flavor [12]. These components also possess
a wide range of bioactivities (Table 1), for which evidence
has been substantiated at all levels of inquiry that range from
in vitro and in vivo experiments to human clinical studies
[12, 13]. Curcumin, a principal and abundant curcuminoid
in turmeric, has been extensively studied for bioactivity in
pharmaceutical studies [14]. Albeit a majority of preclinical
and clinical studies have focused on the efficacy of turmeric
extracts and isolated curcumin, relatively less information
exists on bioactivity of other curcuminoids and essential

Table 1 Major bioactivities of turmeric and its bioactive constituents
that relate to specific health disorders

Health disorder Reported bioactivity References
Oxidative stress Antioxidant [15-18]
Inflammation and inflamma-  Anti-inflammatory [19-21]
tory diseases Immunomodulatory
Allergy Anti-allergic [22-24]
Cardiovascular diseases Hypolipidemic [25-28]
Atheroprotective
Cardioprotective
Diabetes Hypoglycemic [29-32]
Antiglycation
Antidiabetic
Cancer Antitumor [33-36]
Pro-apoptotic
Antimetastatic
Anticancer
Neurodegenerative diseases Neuroprotective [37-39]
Depression Antidepressant [40-42]
Liver diseases Hepatoprotective [43-45]

oils present from turmeric for potential use in modern-day
medicinal and nutraceutical industries [12].

Among the various bioactivities possessed by turmeric
and its bioactive components listed in Table 1 [15-45],
the antidiabetic and cardioprotective effects have attracted
pronounced attention from numerous researchers with a
common interest in understanding the role of turmeric and
related bioactives in the protection against cardiovascular
diseases (CVD), that currently exists as a leading cause
of mortality worldwide. Diabetes is also one of the top 10
causes of death and is often associated with onset of CVD
[46]. Although a number of therapeutic strategies for dia-
betes and CVD have been developed and tested, there are
limited applications because of the high costs, low acces-
sibility, and complications [14].

This review provides an overview on the complex chemi-
cal composition of turmeric and its bioactive constituents
that are involved in metabolic health benefits. Furthermore,
we review mechanistic preclinical (in vitro and in vivo) evi-
dence on the antidiabetic and cardioprotective effects attrib-
uted to turmeric constituents. A comprehensive discussion
on the cellular and molecular mechanisms that corroborates
the beneficial outcomes observed from human clinical trials
is given.

Chemical composition of turmeric

Proximate analysis (Fig. 1) of turmeric reveals that the herb
contains 6—13% moisture, with 60-70% carbohydrate, 6-8%
protein, 5-10% fat, 3—7% minerals (potassium, sodium, cal-
cium, iron, phosphorus), and trace amounts of vitamins
[47-49]. Essential oils obtained by steam distillation rep-
resent 3—7% of the turmeric rhizome and mainly consist of
terpenoids, including sesquiterpenoids (e.g., a-phellandrene,
zingiberene), monoterpenoids (e.g., sabinene, cineol), and
norsesquiterpenoids [12, 49]. There is also 3—5% curcumi-
noids, which comprises more than 50 structurally related
compounds; the three principal ones being curcumin,
demethoxycurcumin, and bisdemethoxycurcumin [47]. In
general, turmeric composition varies according to the soil
conditions used in cultivation, with Indian turmeric being
regarded as having superior quality and high curcumin con-
tent [3]. Curcuminoids and essential oils are classified as
secondary metabolites produced by Curcuma plants, with
well-defined bioactivity [50].

Curcuminoids
Curcuminoids are bioactive phenolic compounds and consist
of more than 100 individual curcuminoids that have been

isolated and identified from genus Curcuma, about 50 of
which are present in C. longa (turmeric). Turmeric contains
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Fig. 1 Composition of turmeric
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Fig.2 Skeleton structure of diphenylheptanoids

three major curcuminoids: curcumin (CUR; 77%), dem-
ethoxycurcumin (DMC; 17%), and bisdemethoxycurcumin
(BMC; 3-6%) [12, 47].

Strictly speaking, curcuminoids only refer to linear diphe-
nylheptanoids with a skeleton structure that has two aromatic
rings linked by a heptane chain (Fig. 2) [51]. By this defini-
tion, there are 15 curcuminoids isolated and identified in
turmeric (C. longa).

The definition of curcuminoids has expanded to include
any orange-yellow-colored compounds present in turmeric
that are structurally related to the principal constituent
curcumin [51]. Specifically, there must be two aryl groups
(aromatic rings) linked by an aliphatic chain, which is usu-
ally a heptane (7C) chain (Compounds 1-15), or a pentane
(5C) chain (Compounds 16-18). Alternatively, a cyclic
chain structure exists (Compounds 19-21). Cyclization of
the heptane chain leads to the formation of a furanone ring,
as shown in curcumalongin A and B (Compounds 20, 21),
or a pyrone ring present in cyclcocurcumin (Compound 22).
These are generally not common and found only in C. longa.
The structures and names of these compounds are presented
in Table 2 [52-56]. More recently, uncommon structures
of curcuminoids that are conjugated with monoterpenes or
sesquiterpenes have been isolated from turmeric and have
been termed terpecurcuminoids or terpenoid-conjugated
curcuminoids [57].

Curcuminoids are readily soluble in polar organic
solvents, such as dimethyl sulfoxide (DMSO), acetone,
methanol, and ethanol, but are poorly soluble in water,
lipids, and hydrocarbons, like cyclohexane and hexane
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Curcuminoids

2 Demethoxycurcumin
isdemethoxycurcumin

Other curcuminoids

[47, 58]. The 1,3-diketone group in curcumin and some
curcuminoids (Compounds 1-8) exhibit keto—enol tau-
tomerism, and therefore exist in keto and enol tautomeric
forms (Fig. 3). The diketo form predominates in crystal
curcumin or in acidic and neutral solutions, whereas the
keto—enol form is exclusively present in alkaline condi-
tions [47-49]. Water solubility increases under alkaline
conditions when curcuminoids assume ionic forms upon
dissociation of enolic and phenolic protons [47].

Curcuminoids are subject to chemical degradation in
aqueous-organic solutions, especially under alkaline pH,
or in dilute solutions of curcuminoids. Binding to macro-
molecules, such as albumins, lipids, and liposomes, will
increase curcuminoid stability [59, 60]. Although the deg-
radation mechanism is not fully understood, it is generally
believed that hydrolysis of the o,p-unsaturated p-diketone
moiety, which is a common structure in curcuminoids, is
involved in the reaction. Major degradation products of
curcuminoids that have been identified include vanillin,
vanillic acid, ferulic acid, ferulic aldehyde, and others
[60].

An even more significant and rapid degradation of cur-
cuminoids occurs when exposed to photooxidation, as is
the case when curcuminoids are exposed to sunlight. Pho-
tochemical degradations of curcuminoids occur in both solid
form and in solution [58, 60]. The products of photodegra-
dation are almost identical to those that are produced from
chemical degradation, thereby indicating similar decomposi-
tion pathways. Photodegradation is initiated by photoexci-
tation resulting in the formation of triplet excited states of
curcuminoids, which subsequently act as principal photosen-
sitizers of singlet oxygen. The curcuminoids in turn undergo
self-photosensitization, a reaction that is not dependent on
the presence of oxygen [60, 61]. To prevent photodegrada-
tion of curcuminoids from ultraviolet light sources, com-
mercial products are typically packaged in brown or amber
containers for shelf-storage.
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Fig. 3 Different forms of curcumin depending on pH conditions

Besides degradation, bioavailability of phytochemi-
cals is also an important factor limiting pharmaceutical
applications. The efficacy of curcumin toward antioxidant,
anti-inflammatory, and anti-angiogenic activities is gov-
erned by factors that limits bioavailability, or accelerates
metabolism and elimination. Low bioavailability of cur-
cumin, due to its poor water solubility, has received con-
siderable attention to find ways to enhance bioavailability
using novel encapsulation delivery strategies that include
liposomes, polymeric micelles, micro-emulsions, and
nano-particle technologies [62—64]. Moreover, improved
gastrointestinal absorption and bioavailability of curcumin
has been observed using other plant bioactive components,
such as piperine [65], and genistein [66] as adjuvants to
increase permeability of curcumin, whereas tea catechins,
namely, epigallocatechin-3-gallate-EGCG, are known to
counteract certain curcumin activities [67].

Turmeric oil (essential oils)

Turmeric oil (TO) is a group of essential oils which mainly
consists of more than 250 diverse terpenoids, identified from
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Curcuma species [68]. TO represents another major group of
bioactive compounds in turmeric. Table 3 summarizes the
major and most commonly reported terpenoids isolated from
turmeric (C. longa) [69-88], which have been categorized
into sesquiterpenoids (Compounds 22-81), monoterpenoids
(Compounds 82-86), norsesquiterpenoids (Compounds
87-89), and norditerpenes (Compound 90) [12].

Monoterpenes, with a molecular formula C, H,¢, con-
sist of two isoprene units existing in either linear (acyclic)
or ring structure (mono- or bi-cyclic) forms. Monoterpe-
noid derivatives are produced through modification, such
as oxygenation or demethylation [51]. Sesquiterpenes,
with a molecular formula C,sH,,, and associated sesquit-
erpenoid derivatives consist of three isoprenoid units.
As is the case with monoterpenes and monoterpenoids,
sesquiterpenes and sesquiterpenoids also exist in either
acyclic or cyclic form [68]. Sesquiterpenoids are the domi-
nant group of terpenoids in the turmeric rhizome and are
further sub-categorized into several types; the major three
being bisabolane, guaiane, and germacrane types, and the
minor ones being carane, elemane, spironolactone types,
and others [12]. Turmerones («, p, and aromatic) that fall
into the bisabolane-type sesquiterpene category are the
predominant constituents that contribute to approximately
50% of the total TO [68]. A broad spectrum of biologi-
cal activities has been reported in all the sesquiterpenoid
classes.

Terpecurcuminoids (terpenoid-conjugated
curcuminoids)

Terpecurcuminoids are a minor group of bioactive com-
pounds recovered from turmeric and are distinguished by
having a curcuminoid moiety that is conjugated with a
terpenoid moiety [89-93]. Out of the 29 identified terpe-
curcuminoids (Compounds 91-119), 20 compounds have
a curcumin moiety, while others possess DMC, BDMC,
and curcuminoid derivatives; bisabolene-type sesquiter-
penoids are the most common terpenoid moiety, existing
in 24 terpecurcuminoids (Table 4). The curcuminoid and
terpenoid moieties in 17 of these compounds are conju-
gated via one or two C—C bonds, while in 12 compounds
they are conjugated via C—O—C bonds [92, 93].

The terpecurcuminoids show cytotoxicity against vari-
ous human cancer cell lines (e.g., human breast cancer cell
lines MDA-MB-231 and MCF-7, human liver cancer cell
line HepG2, and human lung cancer cell line A549), and
some have exhibited greater cytotoxic potency compared
to curcumin, thereby suggesting a promising anti-cancer
activity of these compounds that requires more investiga-
tion on clinical efficacies [89, 90].
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Table 3 Terpenoids present in the rhizome of C. longa

No. Compound Reference
Sesquiterpenoids

Bisabolane-type sesquiterpenes

22 o-turmerone

23 B-turmerone

24 Aromatic (ar)-turmerone

25 ar-dihydroturmerone

26 B-sesquiphellandrene

27 ar-curcumene

28 Curlone

29-32 Curculonone A-D

33 fB-atlantone

34-35 (2)/(E)-a-atlantone

36 (6S,7R)-bisabolone

37 (6R,7R)-bisabolone

38 B-bisabolene

39 a-zingiberene

40 2-methoxy-5-hydroxybisabola-3,10-diene-9-one

41 2,8-epoxy-5-hydroxybisabola-3,10-diene-9-one

42 4-methylene-5-hydroxybisabola-2,10-diene-9-one

43 Bisacurone

44-46 Bisacurone A-C

47 (6S5)-2-hydroxy-6-(4-hydroxy-3-methylphenyl)-2-methylheptan-4-one

48 (6S5)-6-(4-hydroxy-3-methylphenyl)-2-methoxy-2-methylheptan-4-one
Bisabolane-type sesquiterpenoids

49-50 (5a/5p)-hydroxyl-1p-bisabolon-9-one

51-52 Turmeronol A-B

53 (6S)-2-methyl-6-(4-hydroxyphenyl)-2-hepten-4-one

54-57 Turmerone A-D

58 Turmerone Q

59 Bisabola-3,10-diene-2-one

60 2,5-dihydroxybisabola-3,10-diene

61 4,5-dihydroxybisabola-2,10-diene

62 ar-tumerol (bisacumol)

63, 64 Longpene C, D

65 Intermedin B
Guaiane-type sesquiterpenoids

66 Curcumenol

67 Procurcumadiol

68 Procurcumenol

69 Isoprocurcumenol

70 Epiprocurcumenol

71 Zedoaronediol

72 1,10-dehydro-10-deoxy-9-oxozedoarondiol
Germacrane-type sesquiterpenoids

73 Dehydrocurdione

74 Germacrone-13-al

75 (45,58)-germacrone-4,5-epoxide

Carane-type sesquiterpenoid

76 Curcumenone

[69]
[69]
[70]
[71]
[72]
[73]
[74]
[75]
[75]
[76]
[76]
(771
[72]
[72]
[78]
(78]
(78]
[79]
[78]
[80]
[80]

[81]
[82]
[83]
[84]
[85]
[79]
[79]
[79]
[79]
[86]
[86]

[79]
[79]
[79]
[79]
[79]
[79]
[75]

[79]
[79]
[79]

[79]
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Table 3 (continued)

No. Compound Reference
Elemane-type sesquiterpenoid

77 Curzerenone [86]
Spironolactone-type sesquiterpenoid

78 6a-hydroxycurcumanolide A [75]
Other sesquiterpenoids

79 Bicycloturmeronol [87]

80 Longpene B [86]
Novel sesquiterpene with new skeleton

81 (6S)-2-methyl-6-(4-hydroxy-3-methylphenyl)-2-hepten-4-one [83]
Monoterpenoids

Linear monoterpene
82 (Z)-pB-ocimene [88]

Monocyclic monoterpene

83 2-(2,5-dihydroxy-4-methylcyclohex-3-enyl)-propanoic acid [78]

84 p-cymene [77]
Monocyclic monoterpenoid

85 1,8-cineole [77]
Bicyclic monoterpenoid

86 a-pinene [77]
Norsesquiterpenoids

87 4-hydroxybisabola-2,10-diene-9-one [79]

88 4-methoxy-5-hydroxybisabola-2, 10-diene-9-one [79]

89 (6R)-[(1R)-1,5-dimethylhex-4-enyl]-3-methylcyclohex-2-en-1-one [75]
Norditerpene

90 Longpene A [86]

Table 4 Terpecurcuminoids in the rhizome of C. longa

No Compound Curcuminoid moiety Terpenoid moiety Reference
C—C conjugation

91 Bisabocurcumin Curcumin Bisabolane-type sesquiterpenoid [92]
92,93 Terpercurcumin H, I [89]
94-100 Terpercurcumin L-P, R, T [90]
101 Terpercurcumin Q Curcumin Other sesquiterpenoid [90]
102 Terpercurcumin X Tetrahydrocurcumin Bisabolane-type sesquiterpenoid [91]
103 Terpercurcumin Y Cyclocurcumin Bisabolane-type sesquiterpenoid [91]
104, 105 Terpercurcumin J, K Dihydro-BDMC Other sesquiterpenoid [90]
106, 107 Terpercurcumin V, W Curcumin Monocyclic monoterpenoid [90]
C—O—-C conjugation

108 Bisabolocurcumin ether Curcumin Bisabolane-type sesquiterpenoid [93]
109-114 Terpercurcumin A-F [89]
115 Demethoxybisabolo-curcumin ether DMC Bisabolane-type sesquiterpenoid [93]
116 Terpercurcumin G [89]
117 Terpercurcumin U [91]
118 Didemethoxybisabolo-curcumin ether BDMC Bisabolane-type sesquiterpenoid [93]
119 Terpercurcumin S [91]
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Bioactivities of turmeric and its constituents
against diabetes and CVD

Reference
[136]

Cellular and molecular mechanisms of the bioactivities
of turmeric and several constituents reported from both
in vitro (Table 5) and in vivo studies (Table 6) point to
chemoprotection against onset of chronic diseases, such
as diabetes and CVD. Human clinical trials (Table 7) have
also provided positive evidence to recognize clinical effi-
cacy of turmeric and turmeric-derived compounds. Table 8
summarizes the few current meta-analyses that reported
on clinical effects of these compounds against CVD and
related conditions.

ANF and p-MHC promoter activities,
p300-GATA4 association,
ANF and p-MHC promoter activities

& Phenylephrine (PE)- or p300-
GATAA4 acetylation,

induced increases in:

cell surface area,
¥ p300-induced increases in:

cell surface area,

Main outcomes
GATA4-DNA binding;

Hypoglycemic and antidiabetic activities

Curcumin and other related bioactive compounds present
in turmeric have been proposed to protect against type 2
diabetes (T2D) through different mechanisms that involve
a hypoglycemic effect attributed to upregulation of insulin,
enhanced insulin sensitivity, and lower cellular uptake of
glucose.

The mechanism of which curcumin evokes hypoglyce-
mic and antidiabetic effects involves the pancreatic B-cells
(Fig. 4). Curcumin attenuates high glucose-induced insulin
resistance in cultured rat insulinoma cells, INS-1, a model
by which insulin secretion by pancreatic -cells has been
studied [32]. The underlying mechanism therein is the
increased expression and secretion of insulin by activating
the phosphatidylinositol-3-kinase/protein kinase B/glucose
transporter 2 (PI3K/Akt/GLUT2) signaling pathway. In this
pathway, curcumin acts to upregulate phosphorylation of
the insulin receptor (IR), insulin receptor substrate (IRS)-1,
PI3K, and Akt, all of which in turn increase the expression
of pancreatic and duodenal homeobox-1 (PDX-1) and subse-
quent insulin mRNA. This effect is linked to increased levels
of GLUT2 and glucokinase (GCK) activity, which are both
required to regulate cellular glucose uptake and metabolism
[32]. These processes are otherwise suppressed in the pres-
ence of a high glucose concentration. Curcumin is effective
at attenuating oxidative stress that is induced by high glu-
cose levels and which triggers apoptosis in a dose-dependent
manner, and observation made using in mouse pancreatic
fB-cells [30]. This occurs by both a downregulated expression
of C/EBP homologous protein (CHOP) and an upregulated
expression of peroxisome proliferator-activated receptor-y
coactivator-1a (PGC-1a), along with a suppressing effect
on phosphorylation of extracellular signal-regulated kinase
1/2 (ERK1/2) [30].

In adipocytes and hepatocytes, curcumin reduces glucose
uptake by inhibiting the translocation of GLUT4 from the
cytosol to plasma membrane, and by interfering with the

5-10 pM

Dose

Treatment
Curcumin

Primary neonatal rat cardiomyocytes

Model

Phenylephrine-induced cardiomyo-
cyte hypertrophy

Table 5 (continued)
Disease/bioactivity

@ Springer
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IRS/PI3K/Akt signaling pathway [94, 95]. Curcumin has
also been shown to directly inhibit GLUT1, thus lowering
glucose uptake in GLUT1-expressing cells. It is noteworthy
that the selective binding of curcumin to GLUT1 overlaps
with the binding site of cytochalasin B, a mycotoxin that also
has been shown to inhibit glucose transport [96].

The in vitro antidiabetic potentials of the turmeric
extract, BDMC [97, 98], TO, and its major component
ar-turmerone [99] have in common a capacity to inhibit
the activities of a-amylase and a-glucosidase, two key
enzymes involved in glucose digestion and also linked to
T2D. These enzymes are the targets for specific antidia-
betic drugs that control postprandial increase of blood glu-
cose. Regardless of the forms of which turmeric is admin-
istered, for example, TO recovered from both fresh and
dried rhizomes, turmeric extracts using different solvents,
and the isolated ar-turmerone, there is sufficient evidence
that these compounds show inhibitory effects on both glu-
cose digestion enzymes; in fact they are relatively stronger
than the standard antidiabetic drug, acarbose, an inhibi-
tor of both a-amylase and a-glucosidase that reduces the
breakdown of complex carbohydrates to glucose [97-99].
In addition, the turmeric extract also has notable anti-
glycation effects [97]. Protein glycation is the formation
of advanced glycation end-products (AGEs) resulting in
structurally and functionally altered proteins that contrib-
ute to various metabolic complications; the process could
be accelerated by high levels of reducing sugars, such as
glucose [97]. Antiglycation activity refers to delaying pro-
duction of AGEs by suppressing oxidation of Amadori
products and metal-catalyzed glucose oxidation [100].

Ethanol-derived turmeric extracts yield both curcumi-
noids and sesquiterpenoids, whereas hexane extracts yield
mainly sesquiterpenoids. Further extraction of the hexane
extraction with ethanol has been successful to improve
recovery of DMC, BDMC, and ar-turmerone. These com-
ponents were also effective at significantly increasing per-
oxisome proliferator-activated receptor gamma (PPAR-y)
ligand-binding activity, whereas the turmeric ethanolic
extract stimulated human adipocyte proliferation in vitro
[101, 102]. In vivo studies using genetically diabetic KK-AY
mice showed that turmeric extracts suppressed diet-induced
increases in blood glucose level [101, 102]. Similarly, in
alloxan-induced diabetic mice, a hydroethanolic extract of
turmeric was effective to control blood glucose levels [103].

In genetically diabetic db/db mice, upregulation of
PPAR-y expression by dietary curcumin occurs in the liver
and is associated with the upregulation of 5’ adenosine
monophosphate-activated protein kinase (AMPK) expres-
sion and downregulation of p65 Nuclear factor kappa B
(NF-xB). These effects are regarded as being beneficial
to reduce T2D complications [104]. In other studies con-
ducted in mice, curcumin improved glucose tolerance by

Reference
[136]

ventricular systolic function

failure;
1 GATAA4 acetylation;
Prevented MI-deteriorated left

3 Hypertension-induced heart
3 p300/GATA4 complex

Main outcomes
In MI rats:

In DS rats:

Dose, administration manner;
-1
,

duration
50 mg kg™! day

p-o.;
7 weeks

Treatment
Curcumin

Salt-sensitive/resistant Dahl (DS/

DR) rats,

Model
MI rats

heart failure

Hypertension- and MI-induced

Table 6 (continued)
Disease/condition
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Table 7 Double-blind RCTs on antidiabetic and cardioprotective effects of turmeric and turmeric-derived bioactive compounds
Disease/condition Sample population Duration Treatment Dose, administration ~ Outcome Reference
(n=sample size) manner
Diabetes
Anthropometric Hyperlipidemic T2D 8 weeks  Turmeric rhizome 2100 mg day™!, p.o Compared to baseline: [112]
parameters and patients (n=72) powder 3 Body weight;
serum lipid profile 3§ Serum TG;
¥ Serum LDL-c
Compared to control:
3 BMI;
¥ Serum TG;
§ Serum TC
Serum lipid profile ~ T2D patients 10 weeks Curcumin capsule 1500 mg day~!, p.o Compared to baseline: [113]
and inflammation (n=44) (69.4% curcumin, ¥ Serum TG
status 16.8% DMC, 1.8% Compared to control:
BDMC, and 7.6% ¥ Serum hs-CRP
TO)
Serum lipid profile T2D patients 12 weeks Curcuminoids+pip- 1000 mg day ™! Compared to control:  [114]
(n=118) erine curcumi- ¥ Serum TC;
noids+10 mg day™' § Serum non-HDL-c;
piperine, & Serum Lp(a);
p.o 1 Serum HDL-c
Diabetic sensorimo-  T2D patients 8 weeks  Nano-curcumin 80 mg day~!, p.o ¥ Glycemic indices:  [29]
tor polyneuropathy  (n=2380) HbAlc,
(DSPN) FBS;
3§ DSPN severity:
total score of neuropa-
thy,
total symptom score,
total reflex score
Metabolic syndrome  Apparently healthy 8 weeks  Turmeric 2.4 gday™!, p.o At 4 weeks: [109]
(MetS) males screened posi- § BMI;
tive for MetS J WG
(n=250)  %BF
At 8 weeks:
§ LDL<;
CRP
MetS Individuals with MetS 6 weeks  Curcumin (native or 1 gday™!, p.o 1 Serum PAB [18]
(n=120) phospholipidated) (native curcumin, but
not phospholipidated
curcumin)
MetS Individuals with MetS 6 weeks  Curcumin (native or 1 gday™!, p.o No significant effects  [138]
(n=120) phospholipidated) on serum anti-Hsp
27 concentrations
MetS Individuals with MetS 6 weeks  Curcumin (native or 1 gday™!, p.o 1 Serum Zn; [110]
(n=120) phospholipidated) 1 Serum Zn/Cu ratio
Phospholipidated
curcumin resulted in
higher increases than
native curcumin
MetS Individuals with MetS 8 weeks ~ Curcuminoids+pip- 1000 mg day ™! 1 Serum SOD activ-  [111]
(n=117) erine curcumi- ity;
noids+ 10 mg day™!  § Serum MDA;
piperine, p.o 3§ Serum CRP
CVD
Atherogenic risk T2D patients 6 months Curcuminoid 750 mg day~, p.o ¥ Pulse wave veloc-  [126]
(n=117) ity;

¥ Serum leptin;
1 Serum adiponectin
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Table 7 (continued)

Disease/condition Sample population Duration Treatment Dose, administration ~ Outcome Reference
(n=sample size) manner
Acute myocardial Patients undergoing 8 days Curcuminoid 4 gday™!, p.o ¥ In-hospital MI [26]
infarction (MI) CABG without valve incidence;
associated with cor-  surgery ¥ Postoperative levels
onary artery bypass (n=121)z of:
grafting (CABG) CRP,
MDA,
NT-pro-BNP

stimulating secretion of the glucagon-like peptide-1 (GLP-
1), and also incretin from enteroendocrine L (GLUTag L)
cells [31]. These activities are connected to the stimulated
proliferation of B-cells and glucose-dependent insulin secre-
tion, both of which are important for T2D treatment and pre-
vention. Kato et al. [31] reported a similar finding regarding
curcumin stimulation of GLP-1 secretion in GLUTag L cells
in vitro. G-protein-coupled receptors (GPRs) are a group of
free fatty acid receptors (FFARSs) on the surface of p-cells,
among which GPR 40 and GRP 120 are important for p-cells
in the mediation of insulin secretion upon stimulation by
long-chain fatty acids [105]. Both in vivo and in vitro studies
have confirmed that activation of the GPR 40/120 pathway
is involved in the GLP-1-stimulating effect of curcumin; this
conclusion was reached by the observation that this effect
was also reduced when cells were treated with GW 1100, a
GPR 40/120 antagonist [31].

Obesity is a major co-morbidity of T2D, and strategies
that have been developed to treat this disorder by inhibit-
ing the sterol regulatory element-binding protein (SREBP)
pathway, important for regulating gene expressions that
stimulate fatty acid, triacylglyceride, and cholesterol bio-
synthesis [106]. Ding et al. [107] reported that curcumin
was an active inhibitor of triacylglyceride and cholesterol
synthesis by downregulating expressions of both SREBP-1
and SREBP-2, respectively. Curcumin also has been shown
to improve glucose homeostasis and insulin sensitivity by
upregulating the phosphorylation of IRS-1, IRS-2, and Akt
in these mice [107].

Metabolic syndrome (MetS), a term that refers to the
co-occurrence of morbidities that increase the risk of heart
attack, stroke, and T2D, engages several dysfunctional met-
abolic outcomes that include excess fat around the waist,
insulin resistance, hyperglycemia, atherogenic dyslipidemia,
and hypertension [108]. Randomized clinical trial (RCT)
studies conducted with MetS subjects reported that turmeric,
curcumin, and curcuminoids are effective at improving per-
tinent anthropometric and biochemical-metabolic param-
eters in these patients. Turmeric improves body mass index
(BMI), waist circumference (WC), and the percent body fat
(%BF) and also lowers serum low-density lipoprotein choles-
terol (LDL-c) and C-reactive protein (CRP) levels in MetS

@ Springer

patients [109]. Curcumin significantly increases the serum
pro-oxidant-antioxidant balance (PAB) and the zinc-to-cop-
per (Zn/Cu) ratio, and in addition will also increase serum
Zn/Cu ratios without affecting PAB [18, 110]. Short-term
supplementation with a curcuminoid-piperine combination
also improves oxidative stress and inflammatory status in
MetS patients, as evidenced by increased serum superoxide
dismutase (SOD) activity and a decrease in serum malondi-
aldehyde (MDA) and CRP levels [111]. Piperine, a pungent
alkaloid recovered from black pepper, enhances bioavail-
ability of curcuminoids [111]. The CRP-lowering effect
observed in MetS patients fed various purified or standard-
ized preparations of curcumin or curcuminoids leads to a
final conclusion derived from a meta-analysis [111]. By alle-
viating MetS, turmeric and related curcuminoids actively
prevented the development of T2D. Notwithstanding this,
similar results that pointed to improved metabolic parame-
ters due to curcumin treatment were also reported in patients
with existing T2D. Three double-blind RCTs [112—114],
involving 44 to 118 T2D patients supplemented with tur-
meric rhizome powder, a curcumin capsule consisting of
curcuminoids and TO, or a curcuminoid-piperine combi-
nation over an 8- to 12-week treatment duration, showed
similar improvements in anthropometric parameters. These
parameters included lowered body weight and BMI, and pos-
itive changes in serum lipid profiles that included reduced
triglyceride (TG), total cholesterol (TC), LDL-c, and lipo-
protein a [Lp(a)], and increased high-density lipoprotein
cholesterol (HDL-c). In addition, the inflammation status
was amended by a reduction in serum high-sensitivity CRP
levels [112—114]. A systematic review and meta-analysis of
RCTs [115] has recently reported that curcumin or curcumi-
noids preparations are effective at lowering body weight and
BMI in subjects with obesity or T2D. Nano-curcumin, a
nano-formulation of curcumin with enhanced bioavailability,
can also improve glycemic indices in T2D subjects. This
finding was based on observed reductions in serum glycated
hemoglobin (HbAlc) and fasting blood sugar (FBS), and
improved severity of diabetic sensorimotor polyneuropathy
(DSPN), known to be a common T2D complication [29].
Taken together, the data are very convincing as to the ben-
efits of turmeric and curcumin to improve both the serum
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Fig.4 Pancreatic B-cell signal-
ing mechanisms involved in
hypoglycemic and antidiabetic
events attributed to curcumin
(created with https://BioRender.
com). Abbreviations are given
below
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lipid profile, glycemic indices, hemoglobin glycation, and
inflammatory conditions of T2D patients.

Hypolipidemic, atheroprotective,
and cardioprotective activities

Studies conducted in vitro, in vivo, and also in human clini-
cal trials have collected considerable evidence to indicate
that turmeric and associated bioactive components, espe-
cially curcumin, can protect against CVD; albeit underlying
mechanisms can differ (Fig. 5). A very strong line of evi-
dence for protection has been attributed to the antioxidant
and anti-inflammatory effects of curcumin that involve the
regulation cell signaling pathways, such as mitogen-acti-
vated protein kinase (MAPK), NF-xB, and nuclear factor
erythroid 2-related factor 2—Kelch-like ECH-associated
protein 1 (Nrf2-Keapl). These molecular redox signaling
pathways combat oxidative stress and inflammation—two
highly recognized factors associated with the etiology and
pathogenesis of CVDs [116, 117]. In addition, the onset of
MetS, as discussed previously in T2D subjects, is another
risk factor for the development of CVD which curcumin was
effective to mitigate. Of particular interest is that turmeric,
curcumin, and curcuminoids are all effective in preventing
CVD in both healthy individuals, as well as those individuals
that have underlying CVD risk factors. The biomarkers that

@ Springer

have been used to indicate these outcomes include reduc-
tions in serum LDL cholesterol, TG, and CRP [118, 119].
Atherosclerosis associated with CVD involves the nar-
rowing or hardening of coronary arteries due to the dep-
osition of cholesterol plaques initiated by an increase in
serum oxidized low-density lipoproteins (oxLDL) [120].
Curcumin activates increased expression of low-density
lipoprotein (LDL) receptors, both in cultured human liver
cancer cell line HepG2 [121] and mouse macrophage [122],
thus contributing to increased LDL uptake, an important
step in protection against atherosclerosis. In the apolipo-
protein E knockout (ApoE™") mouse model, dietary cur-
cumin prevented the incidence and progression of athero-
sclerosis [27, 28, 123]. Coban et al. [123] reported that
curcumin was effective at inducing significant changes in
aortic gene expression, in particular those associated with
monocyte adhesion to aortic endothelial cells and transmi-
gration through to the aortic endothelium. Curcumin also
downregulated the expression of vascular cell adhesion
molecule-1 (VCAM-1) and intercellular cell adhesion mol-
ecule-1 ICAM-1) in vitro [123] and in vivo [27]. VCAM-1
and ICAM-1 have important roles in the adhesion of mono-
cytes to aortic endothelial cells in the early formation of ath-
erosclerosis, and both are upregulated by NF-xB [124]. Cor-
respondingly, curcumin increases inhibitor of NF-xB (IkB)
expression [123], while also decreasing NF-xB activation
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and tumor necrosis factor a (TNF-«) [27], in aortic tissue.
Expression of toll-like receptor 4 (TLR4), an upstream
mediator of NF-xB, was shown to be suppressed by cur-
cumin [27]. Serum levels of NF-kB-associated inflamma-
tory cytokines were also significantly reduced by curcumin
treatment in ApoE’/’ mice [27, 28]. These researchers found
that the atheroprotective capacity of curcumin was due to
an affinity to reduce oxLDL-stimulated foam cell develop-
ment, a crucial step in the initiation and progression of ath-
erosclerosis. Curcumin suppresses intracellular cholesterol
accumulation in macrophages by decreasing both oxLDL
internalization and increasing cholesterol efflux. Further-
more, molecular studies revealed that these two effects are
attributed to downregulation of scavenger receptor class A
(SR-A) expression, via proteasome activation, and upregu-
lation of adenosine triphosphate (ATP)-binding cassette
transporter A1 (ABCAL1) expression, via liver X receptor o
(LXRa) pathway, respectively [28].

The affinity of curcumin to upregulate Forkhead box O3a
(FOXO03a) activity, a central transcription factor that regu-
lates lipid transport genes in macrophage LDL, and recov-
ered from LDL receptor knockout (LDL-R™) mice fed a
high-fat diet [125], is important for recognizing its poten-
tial role to prevent atherosclerosis. Curcumin improves the
serum lipid profile of ApoE™™ mice by reducing TC, TG,
non-HDL-cholesterol, and increased HDL-cholesterol [28].
These activities correspond to an early retarded progression
of atherosclerosis by alleviating oxidation and inflammation
and by supporting cholesterol homeostasis through stabiliz-
ing the serum lipid profile and preventing endothelial dys-
function. Although human clinical trials designed to show
the efficacy of curcumin/curcuminoids to treat atherosclero-
sis have not yet been established, a daily intake of curcumi-
noids at 750 mg effectively reduced atherogenic risk in T2D
patients in a 6-month double-blind RCT [126].

Myocardial infarction (MI) is frequently associated
with underlying atherosclerotic conditions, due to a sud-
den diminished supply of oxygenated blood caused by nar-
rowing of blood vessels [120]. Hong et al. [127], using an
experimental MI rat model, demonstrated numerous benefits
of curcumin that included significant protection of cardiac
function and reduced cardiac infarction size. Connected with
these observations were anti-inflammatory responses related
to regulation of genes involved in cytokine—cytokine recep-
tor interaction, extracellular matrix (ECM) receptor interac-
tion, and Janus kinase (JAK)/signal transducer and activator
of transcription (STAT) pathway [127]. In particular, the
activation of JAK2/STAT3 signaling pathway by curcumin
is associated with reduced infarction size in rats injured with
cardiac ischemia/reperfusion (I/R) and curcumin induced
reduction in oxidative stress, inflammation, and cardiomyo-
cyte apoptosis [25]. The anti-apoptotic effect of curcumin
on cardiomyocytes was also reported to be mediated through
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the downregulation of NF-kB expression and upregulation
of expression PPAR-y and B-cell lymphoma-2 (Bcl-2), an
apoptotic factor [128]. Others have reported that curcumin
induced upregulation of microRNA-7a/b (miR-7a/b), while
also downregulating specific protein 1 (SP1) [129]. Kim
et al. [130] reported that curcumin was able to protect car-
diac contractibility and cardiac function in I/R-injured rats,
and this effect could be mediated by decreasing toll-like
receptor 2 (TLR2) expression and macrophage infiltra-
tion. TLR2, a key mediator of the innate immune system, is
involved in MI by activating the NF-kB pathway that results
in cardiomyocyte inflammation and contractile dysfunction
[131, 132]. An in vitro model of neonatal rat cardiomyo-
cytes treated with curcumin confirmed the downregula-
tion of TLR2 expression, when MI cells were challenged
with hypoxia/reoxygenation (H/R) to mimic the in vivo I/R
process [130]. Post-MI cardiac fibrosis was prevented by
curcumin, restoring MI-induced downregulation of nicoti-
namide adenine dinucleotide (NAD)-dependent deacetylase
sirtuin-1 (SIRT-1) expression, and collagen deposition in
heart tissues [133]. Taken together, these findings show that
the capacity of curcumin to ameliorate MI and MI-induced
injury is by attenuating oxidative stress, inflammatory sta-
tus, cardiomyocyte apoptosis, and collagen deposition in the
infarcted area, all of which contribute to a reduced infarction
size and improved cardiac function. An RCT study reported
that curcuminoid administration at 4 g day™' for 3 days
before coronary artery bypass grafting (CABG) surgery and
5 days after the surgery, significantly reduced the incidence
of in-hospital MI events associated with CABG [26]. In this
study, postoperative levels of CRP, MDA, and N-terminal
pro-B-type natriuretic peptide were also improved. These
biomarkers indicate a direct involvement of antioxidant and
anti-inflammatory effects of curcuminoids in the protection
against CABG-associated MI. The efficacy of curcumi-
noids, or other turmeric bioactives, on prevention and treat-
ment of MI in a more general population has not yet been
established.

Cardiac hypertrophy is characterized by abnormal
enlargement or thickening of heart muscle caused by
increased cardiomyocyte size. The more intensive sarcomere
is an adaptive response to hemodynamic stresses that results
from various pro-hypertrophic stimuli [134]. Although it
is compensatory to improve cardiac performance under a
stress-induced condition, persisted hypertrophy can cause
cardiac decompensation and contractile dysfunction, which
will eventually lead to heart failure [134]. Curcumin, DMC,
and BDMC have protective effects against cardiac hypertro-
phy, and one of the most critical mechanisms involves the
inhibition of p300-specific histone acetyltransferase (HAT)
activity [135]. p300-HAT is a transcriptional coactivator of
several transcription factors, e.g., GATA-binding factor 4
(GATAA4), critically important for both the development and
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differentiation of cardiomyocytes, which precede the pro-
gression of cardiac hypertrophy and heart failure. Indeed,
histone acetylation is a notable transcriptional modifica-
tion that mediate the activation of these transcription fac-
tors. Inhibition of p300-HAT activity was associated with
reduced histone acetylation and hypertrophic responses in
rat cardiomyocytes [135]. Curcumin, DMC, and BDMC
had positive effects on p300-HAT inhibitory activity and
anti-hypertrophic effects to a similar extent. In cardiomyo-
cyte models, curcumin inhibited not only p300-HAT but
also the nuclear localization and DNA-binding activity of
GATA4 [136, 137], and p300-GATA4 interaction [136].
These effects were associated with repressed hypertrophic
responses of the cardiomyocytes, and prevention of heart
failure in both hypertension-induced and MI-induced heart
failure rat models [136].

Associated with these protective effects of curcumin on
molecular signaling of myocardial health is the observation
that curcuminoid supplementation reduced circulating CRP
levels, a chronic inflammatory biomarker that predicts risk
to atherothrombosis and CVD in both normal healthy indi-
viduals and individuals with chronic health conditions [119].
However, more human clinical evidence for turmeric having
protective and therapeutic efficacies against CVD, in particu-
lar, is needed. Furthermore, well-designed and longer-term
RCTs with specific CVD outcome measures are required to
confirm the potential health benefits of curcumin in lowering
incidence of CVD.

Conclusion

This review summarized the complex chemical composition
and specific bioactivities of turmeric and turmeric-derived
constituents, such as curcumin, DMC, BMC, and TO. A
focus was placed on describing cellular and molecular mech-
anisms that underlie the etiology and pathogenesis of diabe-
tes, and CVD disorders, and how the protective properties of
turmeric and its constituents can lessen these chronic disease
conditions. Favorable results generated from human RCTs
on the efficacies of these bioactives that mitigate risk fac-
tors for the aforementioned health conditions further support
the use of turmeric constituents as ingredients in functional
food and nutraceutical preparations. To fully evaluate the
long-term preventative and therapeutic efficacies of these
compounds, RCTs with subjects from a more general popu-
lation, having longer intervention durations and a specific
endpoint for reduction in disease outcomes are warranted.
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