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Abstract Accumulation of secondary metabolites is a key

process in the growth and development of plants under

different biotic/abiotic constraints. Many studies high-

lighted the regulatory potential of UV-B treatment towards

the secondary metabolism of plants. In the present study,

we examined the impact of UV-B on the physiology and

secondary metabolism of Withania coagulans, which is an

important ayurvedic plant with high anti-diabetic potential.

Results showed that in-vitro UV-B exposure negatively

influenced chlorophyll content and photosynthetic

machinery. However, Fv/Fm ratio was found non-signifi-

cantly altered up to 3 h UV-B exposure. The maximum

lipid peroxidation level was recorded with 46.8% higher

malondialdehyde content in the plants supplemented with

5 h UV-B radiation, that was indicated the oxidative stress

in W. coagulans. Conversely, UV-B treatment significantly

increased the plant’s stress protective compounds like

carotenoids, anthocyanin, phenol and proline, in W. coag-

ulans. Free radical scavenging activity was also signifi-

cantly increased * 18% than the control with 3 h UV-B

treatment. The maximum antioxidative enzymes activities

were observed with the short-term (up to 3 h) UV-B

treatment. Specifically, UV-B radiation exposure signifi-

cantly increased the content of withaferin A and withano-

lide A in W. coagulans with maximum 1.38 and 3.42-folds,

respectively. Additionally, withanolides biosynthesis rela-

ted genes transcript levels were found over-expressed

under the response of UV-B elicitation. The acquired

results suggested that short-term UV-B supplementation

triggers secondary metabolism along with combating

oxidative stress via improving the antioxidative defense

system in W. coagulans. Also, UV-B can be used as an

efficient abiotic elicitor to increase pharmaceutical com-

pounds (withanolides) production.
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grown plantlets � Antioxidative defense system � Secondary
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Introduction

The most important source of energy on the earth is sun-

light, which is necessary for all the vital processes of living

organisms. Ultraviolet (UV) radiation is one of the major

components of the solar spectrum that can be reached on

the earth’s surface (Dotto et al. 2018). However, naturally,

various lines of defense are available to overcome the

reach/effect of hazardous natural radiations on biotic

components such as geomagnetic field, stratospheric ozone

layer etc. (Herndon et al. 2018). The stratospheric ozone

layer is preventing approximately 90% of UV-B

(290–320 nm) and 100% of UV-C (100–290 nm) radiation

to reach on the earth surface. Although from the last two

decades, stratospheric ozone layer depletion has come

under the light due to severe accumulation of environ-

mental pollutants that ultimately leads to penetration of

UV-B rays on the earth surface (Barnes et al. 2019; Neale

et al. 2021). Therefore, enhanced penetration of UV-B

radiation has hiked the concern about their consequences

on plants.

It has been now well proved that the impacts of UV-B

exposure on plants are directly influenced by different
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factors like dose, fluence rate, wavelength, duration of UV-

B exposure etc. (Escobar-Bravo et al. 2019). Various

studies have explained that based on these factors UV-B

radiation caused impacts on plants system can be beneficial

or deleterious (Schreiner et al. 2012; Parihar et al. 2015).

Lots of studies have been reported that exposure of plants

long term UV-B radiation can accelerates production of

reactive oxygen species (ROS), damage of macromolecules

and damage of photosynthetic machinery (Yokawa et al.

2016; Salama et al. 2011). While, low dose and short-term

UV-B radiation can work as a regulatory environmental

cue that modulates morphology, biochemistry and physi-

ology of plants to ameliorate the UV-B toxicity and acti-

vate defensive strategies (Inostroza-Blancheteau et al.

2016; Yadav et al. 2020).

Various Studies reported that UV-B exposure induced

photomorphogenic effects in plants via UV-photoreceptor

that ultimately influences multiple physio-biochemical

processes at vegetative and reproductive stages (Suchar

and Robberecht 2015; Mariz-Ponte et al. 2018). Under UV-

B supplementation, loss of photosynthetic pigments, loss of

integrity of thylakoid membrane, reduced Rubisco enzy-

matic activity, and down-regulation of the transcript level

of photosynthesis related genes belongs to the main rea-

sons responsible for physiological disorders that conse-

quently suppress plant growth and development (Jansen

et al. 1996; Hollosy 2002). To adapt against the hazardous

responses of UV-B, plants develop a variety of regulatory

mechanisms, like enhanced protective mechanisms and

activated repair mechanisms (Inostroza-Blancheteau et al.

2016; Piccini et al. 2020). On UV-B exposure, enhanced or

upregulated activities of antioxidative defense (enzymatic

and non-enzymatic) systems in plants are known to cope up

from the excess accumulation of ROS and lipid peroxida-

tion (Jaiswal et al. 2020; Rai et al. 2011). Many studies

have reported the induction of secondary metabolites

biosynthesis under UV-B supplementation and suggesting

its protective role against UV-B stress (Schreiner et al.

2012; Yadav et al. 2020). Terpenoids comprise a large

group of secondary metabolites, that help to protect plant

leaves from UV-B-induced rapid heating (Liu et al. 2017).

As a response to UV-B exposure, the induction of ter-

penoids biosynthesis has been previously reported in var-

ious commercially / medicinally important plant species

such as Vitis vinifera L., Cuminum cyminum L., Curcuma

caesia Roxb., Artemisia annua L. etc. (Gil et al. 2012;

Ghasemi et al. 2019; Jaiswal et al. 2020; Li et al. 2021).

Withania coagulans (L.) Dunal (family- Solanaceae) is

an endangered medicinal plant that is grown in temperate

and tropical regions of Asia. In Ayurveda, it is used for the

treatment of a hyperglycemic conditions from very ancient

times. Apart from this, it is also having great potential to

work as a good antilipidemic, anti-cancerous, anti-

microbial and immune suppressive agent (Tripathi et al.

2018). The major bioactive chemical constituents of this

plant are withanolides which are chemically C28 triter-

penoid steroidal lactone and responsible for its medicinal

virtue. Recently, it has also been reported that withanolides

can be potentially used to cure novel coronavirus (SARS-

CoV-2) as an immune booster and anti-viral agent (Maurya

and Sharma 2020). Biosynthesis of withanolides takes

place utilizing two different pathways, one is mevalonate

pathway which is localized in cytosol and another is 2-C-

methyl-D-erythritol-4-phosphate (MEP) pathway localized

in the plastid. The upstream part of both the pathways

involves the process of isoprenogenesis, which later

diverges into triterpene and sterol biosynthesis. Secondary

metabolites biosynthetic pathways are often inducible by

the exogenous addition of various biotic and abiotic elici-

tors (Bulchandani and Shekhawat 2020). Previously,

biosynthesis of withanolides has been reported to be gov-

erned with different elicitors in W. somnifera and Physalis

peruviana (Singh et al. 2015; Şahin 2019). Many studies

have been carried out to improve the sustainability of W.

coagulans in nature, but the study about the impact of

abiotic elicitors (such as- drought, light, UV radiation etc.)

on secondary metabolism of W. coagulans is still in

the infancy stage which can enhance the medicinal effi-

ciency of this plant with enhanced biosynthesis of with-

anolides. Therefore, in this study, we aim to understand the

impact of short-term UV-B exposure as an abiotic elicitor

on physiology, antioxidative defense system, and sec-

ondary metabolites production of W. coagulans under in-

vitro conditions.

Materials and methods

Plant material and UV-B exposure

Shoot apical meristems (SAM, 1 cm) of W. coagulans (as

explants) were collected from Botanical Garden, Depart-

ment of Botany, Banaras Hindu University (BHU), Var-

anasi- India, and established under in-vitro conditions

according to Tripathi et al. 2018. In-vitro grown rooted

plantlets were further acclimatized in sterilized soil and

sand, 1:1 ratio at 25 ± 2 8C temperature and 80–90%

relative humidity (RH) (Fig. S1). One-month acclimatized

plants (with 6–7 nodes) were taken for UV-B treatment. In-

vitro UV-B exposure was given in 6 sets of plants as

control, 1 h, 2 h, 3 h, 4 h, and 5 h treated plant sets,

respectively. The UV-B (2.8 W m-2 dose) exposure was

given by G15T8E UV-B lamps (Sankyo Denki co., Ltd,

Japan) as similar as Pandey and Pandey-Rai (2014a).
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Estimation of chlorophyll, carotenoids

and anthocyanin

Photosynthetic pigments were measured in following Porra

et al. (1989). For the estimation of photosynthetic pig-

ments, fresh leaves (0.3 g) were homogenized with 10 ml

80% (v/v) acetone and centrifuged for 10 min at

12,000 9 g. The supernatant was taken to measure optical

density at 663, 645, 480, and 510 nm. Anthocyanin was

estimated by the procedure of Mancinelli et al. (1975).

Fresh leaves (100 mg) in acidified methanol (1:99, HCl:

methanol) were used for anthocyanin extraction. After 24 h

extract incubation at 0̊C, the final volume was made up to

10 ml and absorbance was taken at 530 nm using a double

beam spectrophotometer (Hitachi U-2910, Tokyo- Japan).

Chlorophyll fluorescence and gas exchange

measurements

Chlorophyll fluorescence parameters were determined by

using pulse amplitude modulation (PAM)—2500

portable chlorophyll fluorometer connected with data

acquisition software Pam-Win3. Before the data estima-

tion, a dark condition was provided to plants (control and

UV-B exposed) for 20 min. All the plant samples were

treated to a low irradiance of light for the estimation of the

minimal fluorescence (Fo) and a saturation pulse

(3,000 lmol m-2 s-1) for the maximum fluorescence (Fm)

measurement. Maximal quantum yield (Fv/Fm) was cal-

culated with the following formula:

Fv=Fm ¼ Fm� Foð Þ=Fm:

Leaf gas exchange analysis was performed on intact leaves

immediately after UV-B treatment. Gas exchange param-

eters such as photosynthetic rate, transpiration rate, stom-

atal conductance, and intercellular CO2 concentration were

measured with the help of LICOR-6400XT portable pho-

tosynthetic system.

Estimation of lipid peroxidation and free radical

scavenging activity

The oxidative stress level was recorded by calculating the

content of malondialdehyde (MDA). The lipid peroxidation

(LPO) level was calculated as the thiobarbituric acid

(TBA) method. For the extraction, leaf samples (200 mg)

were first homogenized in 5 ml of tri-chloroacetic acid

(TCA, 10%) containing 0.25% of TBA (Heath and Packer

1968). The reaction mixture containing plant extract was

then heated at 90 �C for 30 min. Followed by immediate

cooling, the mixture was centrifuged at 8000 rpm for

15 min and absorbance of the supernatant was measured at

532 nm.

Free radical scavenging activity of W. coagulans plants

(both control and UV-B exposed) was estimated by 2,2-

diphenyl picryl hydrazyl (DPPH) assay. Fresh leaves

(200 mg) were ground in 80% methanol (2 ml) and shake

for 2 days at 80 rpm per min. After centrifugation 300 ll
of supernatant was taken to make the final volume of 3 ml

with methanol. Then 150 ll of 0.1 mM DPPH was added

and after robust mixing samples were kept at normal room

temperature for 15 min. The absorbance of the reaction

samples was taken at 517 nm.

Measurement of total phenol and proline

Total phenol content was measured through the folin-

ciocalteu assay (Imeh and Khokhar 2002). Fresh 200 mg

leaves were collected and heated with 10 ml of 1.2 M HCl

(prepared in 50% aqueous methanol) at 90̊ C for 2 h. Then

20 ll of the boiled sample (or standards) were added with

1.58 ml distilled water and 100 ll folin reagent. After

2 min, 1.9 M sodium carbonate (Na2CO3, 300 ll) was

mixed in the reaction mixture and incubated for 30 min at

40˚C temperature. The absorbance of the samples was

recorded at 765 nm.

Proline concentration was estimated as per the protocol

of Bates et al. (1973). Fresh leaves (0.5 g) were homoge-

nized with 5 ml of 3% (w/v) sulfosalicylic acid and cen-

trifuged at 20,000 g for 5 min. The reaction mixture was

prepared with 0.5 ml of supernatant, 0.5 ml of glacial

acetic acid and 0.5 ml of ninhydrin reagent. This reaction

mixture was kept at 100˚C temperature for 1 h and reac-

tions were stopped using ice-bath. After cool down the

reaction mixture, toluene (1 ml) was supplemented and

vigorously mixed for 30 min until two separate layers were

visible. The chromophore contacting toluene (upper layer)

was utilized to take the absorbance at 520 nm.

Determination of antioxidative enzymatic assay

Fresh 0.5 g leaf tissues were harvested and homogenized in

5 ml of extraction buffer [containing 50 mM phosphate

buffer, 2 mM ethylenediaminetetraacetic acid (EDTA),

1 mM phenylmethylsulfoniyl fluoride (PMSF) and 1%

polyvinylpyrrolidone (PVP)] and centrifuged at

12,000 9 g at 4 8C for 15 min. The supernatant was col-

lected and immediately used for the antioxidative enzy-

matic assay. Superoxide dismutase (SOD) enzyme activity

was estimated as per the method of Beauchamp and Fri-

dovich (1971). For SOD estimation reaction mixture con-

taining 50 mM sodium-phosphate buffer (pH = 7.8),

13 mM methionine, 75 lM NBT, 100 nM EDTA, 2 lM
riboflavin and enzyme extract. SOD activity was recorded

via measuring the inhibition of photochemical reduction of

nitro-blue tetrazolium (NBT) at 560 nm. The catalase
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activity (CAT) was measured as reported by the method of

Aebi (1984). For CAT estimation, the reaction mixture

contained enzyme extract with 50 mM potassium- phos-

phate buffer (pH = 7.0) and 24 mM H2O2. Absorbance was

taken at 240 nm to measure the decomposition of H2O2.

Ascorbate peroxidase (APX) activity was calculated by the

method of Chen and Asada (1989). For APX estimation,

oxidation of ascorbic acid was started in the reaction

mixture by adding 10% H2O2. The oxidation rate was

recorded by measuring a decrease in absorbance at 290 nm.

Glutathione reductase (GR) activity was measured

according to the method of Schaedle and Bassham (1977)

via measuring the NADPH oxidation at 340 nm (coeffi-

cient of absorbance of 6.2 mM-1 cm-1). The reaction

mixture for GR activity assessment, contained 50 mM

potassium–phosphate buffer (pH = 7.8), 2 mM Na2EDTA,

0.15 mM NADPH (Initiator of reaction), 0.5 mM glu-

tathione oxidized (GSSG) and enzyme extract.

Extraction and estimation of withanolides

W. coagulans plant leaves were used for withanolides

extraction from both control and UV-B exposed plant sets.

Extraction of withanolides was completed as stated in the

method of Chaurasiya et al. (2008) with some modifica-

tions. 2.0 g fresh leaf tissues were crushed and extracted

with 10 ml of methanol: water (25:75 v/v) solution at room

temperature overnight and filtrate was separated. Repeat-

edly, the left sample residue was re-extracted with the same

volume of methanol [10 ml of methanol: water (25:75 v/v)]

for twice at 4 h intervals. The filtrate was collected and

extracted again with 10 ml n-hexane three times. The

fraction of methanol was further pooled and extracted three

times with10 ml chloroform. Then, the chloroform fraction

was collected and concentrated. Dry concentrated powder

(5 mg) of withanolides extract was dissolved in 1.0 ml

methanol (HPLC-grade). The HPLC analysis was carried

out using the 2707 autosampler 515 HPLC pump with auto

injector and 2998 Photodiode array detector. With anolides

standard (Natural Remedies Pvt. Ltd.- India) and millipore

filtered samples (30 ll) were injected to HPLC analysis

with a flow rate of 1.0 ml min-1 (Tripathi et al. 2018).

RNA isolation and gene expression pattern

Healthy leaf tissues (0.1 g) of UV-B treated and untreated

W. coagulans plants were harvested and ground in liquid

nitrogen for the extraction of RNA using TRIZOL reagent

(GIBCO-BRL). After centrifugation at 12,000 9 g for

15 min at 4 8C, the upper aqueous layer containing RNA

was carefully removed. Per 1 mL of TRIZOL, 0.5 ml

isopropyl alcohol was mixed and incubated for 10 min to

precipitate RNA. Again, RNA containing suspension was

centrifuged for 10 min at 12,000 9 g and the RNA pellet

was washed with 75% cold ethanol. The isolated RNA

pellet was re-suspended in 50 ll DEPC treated water and

quantified with the use of Nano Drop spectrophotometer

(Thermo scientific). Primer 3 software was utilized for the

withanolides biosynthesis genes expression related primers

designing, which are listed in Table S1. Semi-quantitative

RT-PCR was performed to analyse transcript level using

thermo cycler (Bio-Rad). RT-PCR produced amplified

bands intensity were measured on 2% agarose gel with the

help of Gel-DOC EZ imager (Bio-Rad) using Quantity One

software (Bio-Rad). To confirm the equal concentration of

RNA in different samples, ACTIN was used as a control.

Statistical analysis

Minimum three biological replicates per treatment were

used for performing all the experiments and measurements

were repeated three times. Acquired data were presented as

mean value ± S. E. All the statistical analysis was

accomplished with SPSS (Version 16.0), through one-way

ANOVA statistical significance was assessed by Tukey’s

post-hoc mean separation test (P\ 0.05). The graphical

presentations were constructed with Sigma Plot (version

11.0). Pictorial correlation analysis was performed through

Past3 software. Further, a heat-map was prepared with

Bioconductor-R (http://www.bioconductor.org).

Results

Effect of UV-B on photosynthetic pigments

The photosynthetic pigments concentration of W. coagu-

lans was estimated under UV-B exposure (Fig. 1). UV-B

treatment significantly decreased total chlorophyll content

in W. coagulans in a time dependent manner. In the plants,

with 5 h UV-B exposure chl a, chl b and total chlorophyll

content were maximum reduced by 40.7%, 65.4% and

48.3% respectively. However, carotenoid content was sig-

nificantly improved with UV-B exposure with a maximum

1.36-fold increase under 5 h treatment (Table 1).

Impact of UV-B exposure on anthocyanin,

chlorophyll fluorescence and gas exchange

parameters

Our observations showed that UV-B exposed plant sets

produced significantly higher concentrations of antho-

cyanin as compared to the control plants. Maximum con-

centration of anthocyanin (0.59 ± 0.08 g FW-1) was

measured with 5 h treatment of UV-B exposure (Table 1).

The impact of UV-B exposure was also estimated on
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chlorophyll fluorescence parameters for analysing the

information with respect to plant photosynthesis. UV-B

exposure showed no significant effect on Fv/Fm ratio up to

3 h treatment, both control and short-term UV-B treated

plants exhibited almost identical Fv/Fm (0.79—0.84) ratio

(Table 1). Evaluation of gas exchange parameters showed

that UV-B exposure time leading to gradual decrease in W.

coagulans photosynthetic rate (Pn), stomatal conductance

(gs), transpiration rate (Tr) and internal CO2 (Ci) level

(Table 1). The photosynthetic rate was observed signifi-

cantly decrease after 1 h treatment of UV-B whereas the

lowest value was found at 5 h treatment with 7.6-fold

lesser than the control plant. The impact of UV-B on gs

was found significantly decreased respect with the control

plant. The minimum significant value of gs was recorded at

5 h UV-B exposure (0.015 ± 0.002 mmol�m-2�s-1). The

W. coagulans leaves supplemented with short-term UV-B

exposure exhibited significant minimum Tr compared with

Fig. 1 Effect of UV-B on photosynthetic pigment chlorophyll a,

chlorophyll b and total chlorophyll of Withania coagulans (L.) Dunal.
Bars represented mean value ± SE (n = 3). Different letters represent

significant difference P\ 0.05; by implementing Tukey’s multiple

comparison tests

Table 1 Effect of UV-B on physio-biochemical behavior of Withania coagulans (L.) Dunal

UV-B Treatment

Parameters Control 1 h 2 h 3 h 4 h 5 h

Carotenoid (mg g
-1 FW)

1.55 ± 0.10b 1.71 ± 0.12ab 1.72 ± 0.06ab 1.77 ± 0.12ab 1.95 ± 0.08ab 2.13 ± 0.05a

Anthocyanin (per

g-1 FW)

0.28 ± 0.03b 0.39 ± 0.01ab 0.50 ± 0.04ab 0.56 ± 0.07ab 0.57 ± 0.04ab 0.59 ± 0.08a

Fv/Fm 0.81 ± 0.007a 0.80 ± 0.011a 0.80 ± 0.018a 0.80 ± 0.012a 0.79 ± 0.008ab 0.73 ± 0.007b

Photosynthetic

rate (lmol�m -2

�s -1)

2.98 ± 0.19 a 2.93 ± 0.17 a 1.68 ± 0.33b 1.42 ± 0.18b 1.36 ± 0.19 b 0.39 ± 0.05c

Stomatal

conductance

(mmol�m -2 �s
-1)

0.037 ± 0.003a 0.032 ± 0.003a 0.026 ± 0.007ab 0.028 ± 0.005ab 0.025 ± 0.003ab 0.015 ± 0.002b

Transpiration rate

(mmol�m -2 �s
-1)

2.03 ± 0.17a 1.84 ± 0.16 ab 1.50 ± 0.40b 1.48 ± 0.23b 1.15 ± 0.14bc 0.56 ± 0.07c

Internal CO2

(mmol�mol -1
)

347.9 ± 5.9a 345.7 ± 5.9a 344.3 ± 12.4a 280.6 ± 14.5ab 293.2 ± 4.3ab 229.2 ± 11.2b

Free radical

scavenging

activity (DPPH

% inhibition)

69.62 ± 1.54b 71.40 ± 2.59b 78.10 ± 2.01ab 87.96 ± 2.24a 70.41 ± 1.28b 46.15 ± 0.74c

Lipid

peroxidation

(MDA mm g -1

FW)

1.59 ± 0.05c 1.66 ± 0.09c 1.70 ± 0.05c 2.39 ± 0.05b 2.83 ± 0.03a 2.99 ± 0.06a

Phenol (mg g -1

FW)

396.2 ± 17.17c 483.3 ± 27.77bc 541.9 ± 21.32b 552.8 ± 12.20b 680.9 ± 18.93a 699.2 ± 18.10a

Proline (lmole g
-1 FW)

5.01 ± 0.41b 6.42 ± 0.29ab 6.21 ± 0.22ab 6.51 ± 0.16ab 6.99 ± 0.37ab 7.08 ± 0.50a

Each value represents the mean value ± SE. Mean followed by the same letters in each column are not significantly different at P\ 0.05

according to Tukey’s multiple range tests
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the control plants. Similarly, Ci was also found decreased

with UV-B treatment in comparison to control plants but

non-significant difference was evaluated in Ci concentra-

tion up to 2 h UV-B exposure.

Impact on lipid peroxidation and free radical

scavenging activity

Lipid peroxidation level (with reference to MDA concen-

tration) was found consequently elevated in a time

dependent manner of UV-B exposure. As compared to

control plants, up to 2 h UV-B treatment non-significant

alteration was recorded in MDA concentration. However,

maximum significant enhancement in MDA concentration

was estimated in 4 and 5 h UV-B treated plants up to 41.5

and 46.8%, respectively, in contrast to the control plant sets

(Table 1). Percent (%) inhibition of DPPH was signifi-

cantly increased in W. coagulans leaves with gradual

increase in UV-B exposure time up to 3 h. In response to

UV-B exposure, free radical scavenging activity was found

to be maximum (87.96 ± 2.24%) in plants treated under

3 h UV-B light, which was * 18% higher than the control

(Table 1).

Impact of UV-B on total phenol and proline content

Total phenol and proline contents both were elevated in W.

coagulans under UV-B exposure as a part of defense

strategy. Phenol content was found significantly high with

4 h and 5 h UV-B treatment as 1.72 and 1.76-fold

enhancement, respectively than the control plants

(Table 1). Similarly, proline concentration was also found

significantly increased with UV-B exposure, where maxi-

mum proline content was recorded for 5 h UV-B treated

plants set (7.08 ± 0.50 lmole g -1 FW) (Table 1).

Correlation analysis

The physiological and biochemical parameters of UV-B

treated and untreated plants were subjected to correlation

analysis. Figure 2 clearly depicting a symbolic and sig-

nificant correlation between treated and nontreated plant’s

physiology and biochemical parameters. A significant

positive correlation was found among total chlorophyll

content, Fv/Fm ratio and free radical scavenging activity of

plant. Anthocyanin and carotenoids were also found posi-

tively correlated with phenol and proline contents. Signif-

icant negative correlation was also found between

chlorophyll and lipid peroxidation.

Impact of UV-B radiation on antioxidative enzymes

activity

The data shown in Fig. 3 illustrate that the activities of

antioxidative defense enzymes were significantly modified

in W. coagulans under UV-B exposure. SOD enzyme

activity was significantly enhanced with the initial short

period (up to 2 h) UV-B exposure. After 3 h UV-B treat-

ment, non-significant difference was observed in SOD

activity compared with the control plants. Similarly, sig-

nificant activity increase was observed for the APX and

CAT activity with the UV-B exposure. Maximum activities

of APX and CAT were recorded under 3 h UV-B exposure,

which were * 1.87 and 2.36-fold, respectively higher than

the control plants. A significant variation was acquired

between UV-B treated and untreated plant sets in response

to GR enzyme activity. The significant maximum GR

activity was recorded against short-term UV-B exposure in

W. coagulans. In contrast to control plant, 2, 3 and 4 h UV-

B exposed plants, GR activity was found to be maximum

5.66, 6.02 and 5.08-fold, respectively.

Withanolides quantification and expression analysis

of their biosynthesis related genes under UV-B

exposure

Figure 4 depicting a significant increase was found in

withanolide A and withaferin A content in UV-B treatedW.

coagulans plants. After that 1 h UV-B exposure, the

maximum withanolide A concentrations were measured in

3 and 4 h treated plants which were approximately 3.42-

fold higher than the control plants. Withaferin A content

was also found elicited with UV-B exposure and the

highest concentration was recorded with 3 h treatment that

was 1.38-fold maximum as compared to untreated plants.

The transcription pattern of six key withanolides

biosynthetic pathway genes such as HMG-CoA reductase

(HMGR), Farnesyl pyrophosphate synthase (FPPS), Squa-

lene synthase (SQS), 1-deoxy-D-xylulose-5-phosphate

reductoisomerase (DXR), 1-deoxy-D-xylulose-5-phosphate

synthase (DXS) and Cytochrome P450 51G1 (CYP51G1)

were analysed via semi-quantitative RT-PCR in the UV-B

treated and non-treated plants (Fig. 5a). It was observed

that HMGR gene transcripts level was up-regulated with

the treatment of in-vitro UV-B. The significant maximum

over-expression of HMGR was found in 3 h UV-B treated

plants which was 1.78-fold higher than the control plants.

In the MEP pathway, DXR and DXS genes exhibited over-

expression in the plants after 2 h UV-B exposure. DXR was

upregulated 1.37, 1.21 and 1.27-folds with the treatments 3,

4 and 5 h UV-B respectively. Similarly, DXS was also

analysed significantly over express (2.0 and 2.17-folds

higher than the control) in 3 and 4 h UV-B treated plants.

1828 Physiol Mol Biol Plants (August 2021) 27(8):1823–1835

123



After isoprenogenesis, steroids biosynthesis related genes

such as FPPS, SQS and CYP51G1 were also found up-

regulated with the treatment of UV-B. The FPPS gene

transcript was highly expressed (1.95-fold) when UV-B

irradiation given for 3 h. The obtained results clearly

showed that the relative expression of SQS was increased

by 1.16 and 1.20-folds with 3 and 4 h treatments, respec-

tively. Among, all the tested genes only CYP51G was

maximum up-regulated with 1 h UV-B exposure, whereas

rest of genes transcript levels were found maximum with 3

and 4 h UV-B. The pattern of withanolides biosynthetic

pathway genes expression in different UV-B treated plant

sets has also been by heat-map analysis using complete

linkage and euclidean distance matrix (Fig. 5b). Heat-map

shows two major clusters of UV-B treated plants, in which

one major cluster having 3, 4 and 5 h UV-B treated plant

sets, while another cluster having control, 1 and 2 h UV-B

treated plant sets. Heat-map also depicting that 3 and 4 h

UV-B radiation exposed plant sets forms a separate clus-

ter from all other UV-B treated and untreated plant

groups with regard to high transcript level of withanolides

biosynthesis related genes.

Discussion

The present work has shown that UV-B exposure given for

a short time period might be used to modulate physiolog-

ical and biochemical parameters of pharmacologically

important endangered plant W. coagulans with the

enhancement of bioactive compounds. We strengthen the

concept of elicitation of secondary metabolites production

with the perception of UV-B, which had been previously

reported in other medicinally important plants (Takshak

and Agrawal 2019; Zhang et al. 2018; Ghasemi et al.

2019). To the best of our observation, this is the first

information that deciphering the physio-biochemical

changes in W. coagulans to counteract and recover UV-B

exposure given under in-vitro conditions. A number of

investigations have pointed out that the effects of UV-B

radiation are species specific and depend on interaction

with other environmental factors (Zlatev et al. 2012).

Hence, to understand the particular consequences of UV-B

radiation on plants, experiments were performed under in-

vitro conditions.

In our study, total chlorophyll concentration was sig-

nificantly decreased with in-vitro UV-B supplementation.

A lower level of chlorophyll was might be observed

because of the suppression of chlorophyll biosynthesis or

chlorophyll degradation under UV-B irradiation (Choi and

Roh 2003; Zvezdanović et al. 2009). Our results indicated

that UV-B exposure severely damages the biosynthesis of

chl a as compared to chl b. Whereas, chl b was found

slightly enhanced with 2 and 3 h UV-B treatment. Simi-

larly, Salama et al. (2011) have been reported that UV-B

supplementation enhanced the chl b content in Rumex

vesicarius L. Carotenoids is a light harvesting complex that

protect chlorophyll molecules from photo-oxidative dam-

age under excessive excitation energy state created by UV-

B exposure (Gill and Tuteja 2010; Rai et al. 2011). The

energy channelizing ability of carotenoids is due to the

isoprenic chain residues, which provide simple energy

recovery from the excited molecules and excess energy

dissipation as heat (Ghasemi et al. 2019). The biosynthesis

Fig. 2 Pictorial presentation of correlation analysis between the

different physiological and biochemical parameters of control and

UV-B treated Withania coagulans (L.) Dunal. (Tchl: Total

chlorophyll, Caro: carotenoids; Atho: Anthocyanin; FvFm: Fv/Fm;

PHE: Phenol; PRO: Proline; LPO: Lipid peroxidation; FRS: Free

radical scavenging activity)
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Fig. 3 Effect of UV-B on antioxidative enzymes activity of Withania
coagulans (L.) Dunal. a Superoxide dismutase (SOD); b Ascorbate

peroxidase (APX); c Catalase (CAT); and d Glutathione reductase

(GR). Bars represented mean value ± SE (n = 3). Different letters

represent significant difference P\ 0.05; by implementing the

Tukey’s multiple comparison test

Fig. 4 Effect of UV-B on withanolides production in Withania coagulans (L.) Dunal (a) Withanolide A; and (b) Withaferin A. Bars represented

mean value ± SE (n = 3). Different letters represent significant difference P\ 0.05; by implementing the Tukey’s multiple comparison test
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of carotenoid is regulated by light quality and UV-B

receptors. In 2017, Shen et al. analyzed the over-expression

of phytoene synthase gene that accelerates the process of

carotenogenesis under UV-B supplementation. In our sys-

tem, carotenoid was gradually increased with UV-B time

exposure. Therefore, we can state that enhanced content of

carotenoids might have offered protection against supple-

mented UV-B in W. coagulans. Similar information has

been also reported for other medicinally and economically

considerable plants like W. somnifera (Takshak and

Agrawal 2014a), Artemisia annua (Pandey and Pandey-Rai

2014a), Capsicum annuum (León-Chan et al. 2017).

Our results indicated that under enhanced UV-B expo-

sure anthocyanin content was significantly increased, sug-

gesting UV-B light has the potential to up regulate

anthocyanin production (Sztatelman et al. 2015). Whereas

anthocyanin has ability to work as photo-protective agent

that can alleviate the damage produced by UV-B light

exposure (Steyn et al. 2002). The increase in anthocyanin

content under UV-B exposure was in accordance with the

previous studies of Ravindran et al. (2010), Pandey and

Pandey-Rai (2014b), Takshak and Agrawal, (2018) etc.

This increase in anthocyanin level is may be due to up-

regulation of the anthocyanin producing genes under UV-

B supplementation (Ban et al. 2007; Guo et al. 2008).

Similarly, Wu et al. (2016) explained the role of UV

RESISTANCE LOCUS8 (UVR8) as UV-B photoreceptor

in radish (sprouts) and they observed that the transcript

level of UVR8 was increased in a similar trend of antho-

cyanin accumulation.

Chlorophyll fluorescence is an effective physiological

indicator of plant health under the exposure of environ-

mental constraints (Alyemeni et al. 2018; Akhter et al.

2021). Assessment of chlorophyll fluorescence parameters

clearly demonstrated that short-term UV-B exposure (up to

3 h) non-significantly altered Fv/Fm in W. coagulans,

while long time UV-B treatment exerted negative effect on

Fv/Fm. This observation revealed that short-term UV-B

treatment not effected the primary photochemical effi-

ciency of photosystem-II (PS-II). However, the reduction

in Fv/Fm with long time UV-B exposure indicated the

destruction of antenna pigments and inhibition of PS-II.

According to Szilárd et al. (2007) UV-B long time pre-

cipitation hampers the function of water-oxidizing complex

of PS-II in plants. Moreover, a significant reduction in

photosynthetic rate, stomatal conductance, transpiration

rate and internal CO2 concentrations were observed with

UV-B exposure. A meta-analysis has suggested that net

photosynthetic rate negatively affected in herbaceous

plants under UV-B exposure (Li et al. 2010), whereas

previously it has also been reported that it might be cor-

related with the inhibitory activity of rubisco (Yu et al.

2013). Cechin et al. (2008) noted that in Helianthus annuus

L. reduced photosynthetic rate was indirectly associated

with stomatal conductance that is a most variable factor

which alters the effect of UV-B on plants. Similar to our

result, UV-B exposure has been shown to decrease gas

exchange parameters in many other plants like Glycine max

L. (Choudhary and Agrawal 2015), Triticum polonicum L.

(Yan et al. 2016), Chenopodium quinoa (Huarancca Reyes

Fig. 5 Semi quantitative RT-PCR gene expression analysis for

withanolides biosynthesis pathway related genes. a Histogram illus-

trating relative transcript level of genes as determined by the RT-PCR

analysis; and b Heatmap depicting relative transcript level of genes

(as fold change) as determined by the RT-PCR analysis. Bars

represented mean value ± SE (n = 3). Different letters represent

significant difference P\ 0.05; by implementing the Tukey’s mul-

tiple comparison test. [HMG-CoA reductase (HMGR), Farnesyl

pyrophosphate synthase (FPPS), Squalene synthase (SQS), 1-deoxy-
D-xylulose-5-phosphate reductoisomerase (DXR), 1-deoxy-D-xylu-

lose-5-phosphate synthase (DXS) and Cytochrome P450 51G1

(CYP51G1)]
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et al. 2018), Populus alba and P. russkii (Ma et al. 2016).

In the present study, we also demonstrated the lipid per-

oxidation level under UV-B exposure to analyse the

oxidative damage within the cellular membrane. In W.

coagulans, UV-B supplementation increased MDA content

gradually with UV-B exposure, which is a well-known

indicator of membrane damage in plant cells (Khator et al.

2020). Significant increase in MDA content after 3 h UV-B

exposure suggested that UV-B radiation created oxidative

damage cannot be counteracted by an antioxidative

defense mechanism. Increase in lipid peroxidation under

UV-B radiation was also earlier recorded by Rai et al.

(2011) and Prasad et al. (2005) etc.

As the protective strategy, free radicals scavenging

activity of plants is induced under UV-B supplementation

that suppresses oxidative stress (Inostroza-Blancheteau

et al. 2016; Takshak and Agrawal 2015). The present

results showed the increased percent inhibition of DPPH

with short-term UV-B exposure in W. coagulans, which

reflected the potential to modulate their physiological

processes to combat the oxidative stress up to 3 h UV-B

exposure. Studies reported that phenols are key regulators

under abiotic stress conditions in plants with playing a

crucial role in the regulation of photosynthesis, minerals

uptake, hormonal regulation, cell division, signal trans-

duction and reproduction (Sharma et al. 2019; Bali et al.

2019; Ahanger et al. 2019; Jabeen et al. 2020). Phenols also

participate in the enhanced tolerance to oxidative damage

under elevated UV-B supplementation (Kondo and

Kawashima 2000). In our study, significant enhancement in

phenol concentration was presented under short-term UV-

B exposure supported with many previous studies (Mosa-

degh et al. 2018; Pandey and Pandey-Rai 2014b; Kondo

and Kawashima 2000). Enhanced synthesis of phenolic

compounds under UV-B supplementation shows better

adaptability to adverse effects in plants and probably it is

induced with the upregulation of phenylalanine lyase

(PAL) (Cantarello et al. 2005). Proline not only performs

as a free radical scavenger to neutralize ROS but also act as

a stabilizer of plant cell membrane under stress condition

(Dhir et al. 2014; Khator and Shekhawat 2019). According

to Salama et al. (2011) proline is working as a protective

agent against increased peroxidation levels caused by UV-

B radiation. The outcome of this study indicated that the

proline concentration was significantly increased with UV-

B treatment that also indicated the presence of tolerance to

short-term UV-B exposure in W. coagulans.

We also observed differential behaviour in antioxidative

enzymes activities in W. coagulans under UV-B exposure.

Maximum significant enhancement in SOD, CAT, APX

and GR activities were recorded up to 3 h UV-B supple-

mentation. The results of this study are in accordance with

the previous studies that described the progression of

the antioxidative defense systems with short-term UV-B

exposure in the plants (Inostroza-Blancheteau et al. 2016;

Takshak and Agrawal 2014a; Pandey and Pandey-Rai

2014b).

Terpenoids quantification in various medicinal plants

using HPLC analysis has been previously reported (Mathur

and Shekhawat 2013). Since, the UV-B radiation affects

the secondary metabolism, we also analysed here whether

the UV-B can regulate therapeutically require secondary

metabolites of W. coagulans i.e., triterpenoid withanolides.

We quantify the withanolide A and withaferin A content in

W. coagulans under the supplementation of low dose

(2.8 W m-2) short-term UV-B through HPLC along with

analyse the transcription level of mevalonate and MEP

pathway intermediate genes. Among all the UV-B treat-

ments, 3 h supplementation maximum enhanced the con-

tents of both withanolide A and withaferin A with 3.42 and

1.38-folds, respectively. Earlier many studies also indi-

cated a close relationship between various biotic/abiotic

elicitors and withanolides biosynthesis in solanaceous

plants likeW. somnifera and Physalis species (Takshak and

Agrawal 2014b; Singh et al. 2015; Ahlawat et al. 2017;

Şahin 2019). However, as far as we know there are no

previous studies explaining the impacts of abiotic stresses

on withanolides biosynthesis in W. coagulans.In 2014b,

Takshak and Agrawal stated that withaferin A content was

increased under the supplementation of UV-B in W. som-

nifera. However, they have also reported adverse effects of

UV-B on withanolide A content. In W. somnifera similar

trend of enhancement for withanolides concentration with

UV-B supplementation was found under other abiotic

stresses like drought (Singh et al. 2015). Thus, our study

found more advantageous due to enhancement of both

withaferin A and withanolide A in W. coagulans under

UV-B supplementation. Increase in withanolides content

under UV-B exposure might be due to the up-regulation of

their biosynthetic genes. Therefore, for the validation of

withanolides quantitative measurements, we analyse the

transcript level of the corresponding biosynthesis related

genes under UV-B exposure. Our results showed signifi-

cant over-expression of HMGR, DXR and DXS genes with

short-term UV-B treatment. Terpene biosynthesis related

genes such as FPPS, SQS and CYP51G1 were also found

up-regulated with the 3 h treatment of UV-B. According to

the earlier reports this study explained the over expression

of terpenes biosynthesis related genes under UV-B expo-

sure (Li et al. 2011; Rai et al. 2011; Ghasemi et al. 2019).

In such a way, this study encourages us to elicitate triter-

penoid withanolides production in W. coagulans with the

help of UV-B short-term exposure.
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Conclusion

The outcome of this study provides evidence that the

impact of short-term (up to 3 h) UV-B radiation causes

significant alterations in physiological and defense

responses of W. coagulans. Up to 3 h exposure, UV-B

radiation creates mild stress and negatively affects photo-

synthetic machinery which was rectified with the acceler-

ation of antioxidative defense mechanism and

accumulation of UV-B absorbing protective compounds

(such as carotenoids, anthocyanin, phenol, proline etc.).

Simultaneously, short-term UV-B supplementation

improves the medicinal efficiency ofW. coagulans with the

enhanced in-planta withanolides concentration. The

increased withanolide content after UV-B exposure corre-

lated well with up- regulation of key withanolides

biosynthetic genes. Overall, this study suggests the poten-

tial role of short-term UV-B exposure in modulation of the

plant physiological behavior with the enhanced production

of bioactive secondary metabolites (like withanolides)

thereby improving the medicinal virtue ofW. coagulans for

the benefit of mankind.
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