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Abstract: Metabolite profiling of cancer cells presents many opportunities for anticancer drug
discovery. The Chinese, Indian, and African flora, in particular, offers a diverse source of anticancer
therapeutics as documented in traditional folklores. In-depth scientific information relating to
mechanisms of action, quality control, and safety profile will promote their extensive usage in cancer
therapy. Metabolomics may be a more holistic strategy to gain valuable insights into the anticancer
mechanisms of action of plants but this has remained largely unexplored. This review, therefore,
presents the available metabolomics studies on the anticancer effects of herbal medicines commonly
used in Africa and Asia. In addition, we present some scientifically understudied ‘candidate plants’
for cancer metabolomics studies and highlight the relevance of metabolomics in addressing other
challenges facing the drug development of anticancer herbs. Finally, we discussed the challenges of
using metabolomics to uncover the underlying mechanisms of potential anticancer herbs and the
progress made in this regard.
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1. Introduction

The heterogeneous nature of tumour cells and the genetic diversity in cancer patients
have compelled the re-assessment of the magic bullet approach in combating cancer. There
is an increasing interest in multi-targeted therapies to enhance the pharmacological efficacy
of anticancer drugs and limit chemo-resistance. This involves simultaneous actions of mul-
tiple chemicals on many molecular targets or synergistic actions on a single site. Medicinal
plants are being explored as valuable sources for drug discovery due to their production of
a cocktail of phytochemicals that often act in concert to afford some biological properties.
About 80% of anticancer drugs approved by the United States Food and Drug Administra-
tion (US FDA) in the last decades were natural products or derivatives [1]. However, there
is a declining interest in their development in the pharmaceutical industry as the reliance
on chemically synthesized compounds for cancer drug discovery grows [2]. One major
challenge in developing new plant-derived pharmaceuticals is unclear or unknown bio-
chemical and pharmacological mechanisms of action. The difficulty in evaluating the
precise mechanism of action coupled with other challenges such as authentication of plant
material, toxicity concerns, and challenges in the large-scale production of lead phytochem-
icals due to insufficient plant material have slowed progress in the drug discovery from
plants [3].
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Understanding the mechanism of action of medicinal plants requires elucidation of the
interactions between complex mixtures of phytoconstituents and possible targets (cellular
and molecular) that generate the pharmacological response. While target based-screens
offer numerous advantages for drug discovery, it involves a trial-and-error approach,
which allows a partial understanding of the mechanisms of action. In some cases, target
inhibition may not translate into the desired pharmacological effect or efficacy possibly
due to a different target from that initially expected [4]. As a result, only a small percentage
of drugs make it past phase 1 trials, while most fail due to lack of efficacy, off-target activity,
and toxicity issues. Most clinically approved plant-derived anticancer compounds received
approval decades after the initial identification of their medicinal effect (Table 1). Sadly,
this timeframe has not changed significantly in recent times.

Despite the enormous research on anticancer medicinal plants in the last decades,
the number of new plant-derived drugs has not increased proportionately. However,
herbal medicine practices continue to be an integral aspect of the local culture of healthcare
delivery. About 80% of Asian and African populations rely on traditional medicine for
their health care needs. The past decade has witnessed a surge in the acceptance of herbal
medicine as a reliable source of healthcare due to its affordability, accessibility, perceived
safety, and efficacy [5]. The observations that some herbal preparations show superior
effects to single chemical constituents at the equivalent concentration have raised the
scientific interest in studying the pharmacological effects of herbal exposure. In both
developed and developing countries, herbal preparations and products are used alone
or combined with conventional anticancer drugs to improve their anticancer effects [6].
Therefore, research into traditional herbal medicines’ anticancer mechanisms and toxicity
profiles should be encouraged to provide in-depth scientific underpinnings for their use
and provide information on potential herb-drug interaction to ensure patient safety.

Metabolomics, a term coined by Steven Oliver in 1998, allows for simultaneous multi-
metabolite analysis in biological samples [7]. The concept of metabolome analysis fits the
holistic concept of traditional herbal medicine and could provide further insight or scientific
underpinnings into the anticancer mechanism of action of herbal medicines. Here, we
summarize metabolic changes in cancer cells and present an overview of the metabolomics
studies on the cytotoxic effects of traditional Chinese, Indian, and African herbal medicine
systems. We also present some scientifically understudied ‘candidate plants’ for cancer
metabolomics studies. We highlight the relevance of metabolomics in addressing other
challenges facing the development of anticancer agents from herbs. Finally, we present the
challenges and progress in applying metabolomics to elucidate the underlying mechanisms
of anticancer herbs.
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Table 1. FDA-approved plant-derived anticancer drugs; time frame of approval and mechanisms of action.

FDA Approved
Drug/Year Initial Discovery Plant Source Cancer Type Mechanism of Action References

Paclitaxel/1992 1960s Taxus brevifolia Nutt.
(bark)

Breast, ovarian, lung,
pancreatic Stabilizes microtubule [8]

Homoharringtonine/2012 1970s

Cephalotaxus
harringtonii (Knight ex

J.Forbes) K.Koch
(bark)

Chronic myeloid
leukaemia

Disables the elongation of
peptide chain inhibiting

protein synthesis
[9]

Camptothecin/1996 1960s
Camptotheca acuminata

Decne
(bark and stem)

Gastrointestinal,
ovarian, small-cell

lung

Inhibits deoxyribonucleic
acid (DNA) re-ligation

through interaction with
topoisomerase-type I DNA

complex causing DNA
damage

[10]

Vincristine sulphate/1963 1950s
Catharanthus roseus
(Linnaeus) G.Don

(leaf)
Leukemia

Inhibits the formation of
microtubules and interferes

with nucleic acid and
protein synthesis by

blocking glutamic acid
utilization

[11]

Vinblastine
sulphate/1965 1950s Catharanthus roseus

(leaf)

Lymphoma,
choriocarcinoma,

breast

Inhibits microtubule
formation resulting in cell

cycle arrest
[11]

Teniposide
(semisynthetic analogues

of
podophyllotoxin)/1990

1960s Podophyllum peltatum
Linnaeus (rhizome) Leukaemia Inhibits type II DNA

topoisomerase complex [12]

Etoposide
(semisynthetic
analogues of

podophyllotoxin)/1983

1960s Podophyllum peltatum
Linnaeus (rhizome) Testes, lung Inhibits type II DNA

topoisomerase complex [13]

2. Metabolomics: An Indispensable Tool for Anticancer Drug Discovery from Plants

Altered metabolism is one of the hallmarks of cancer, where changes in gene expres-
sion and protein functions resulting from genetic and epigenetic alterations ultimately
lead to aberrant cellular metabolism. The metabolome is a complement of metabolites
(such as glucose, lactate, pyruvate, amino acid, or lipid signalling molecules, etc.) in-
volved in intermediary metabolism and whose levels are related to genetic expression
(Figure 1). Metabolome reflects changes in enzyme activities, alteration in signalling path-
ways, catabolic and synthetic reactions [14].

Metabolomics may offer a more productive route to anticancer drug discovery from
plants due to several reasons:

a. Genomics, epigenetics, proteomics, and transcriptomics ultimately converge to
metabolomics, making metabolic profiling indispensable to uncover the molecu-
lar target of medicinal plants [15].

b. Analyses of subtle changes in metabolite levels in many metabolic pathways aid in
hypothesis generation, enabling a top-down approach in discovering mechanisms of
drug action [16].

c. In the investigation for anticancer efficacy of potential therapeutics, metabolite
biomarkers are stable end products that may be more reliable as indices of the
initiation or progression of cancers than mRNA or proteins [17].

d. Metabolomics offers the possibility of conducting non-invasive, large-scale studies
(using bio-fluids like plasma, serum, and urine samples) to determine the efficacy of
medicinal plants and their chemopreventive potential in the malignant transforma-
tion of normal cells [18].
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e. Metabolomics offers the opportunity to decipher the pharmacokinetics of herbal
medicines and possible interactions with conventional anticancer drugs [19]. It is a
tool to assess potential drug toxicity and to avoid drug withdrawals in early-phase
clinical trials due to toxicity concerns [20]. These pharmacological evaluations are
essential during the long-term use of traditional herbal medicines.

f. Metabolic profiling is useful for the authentication and standardization of traditional
herbal medicines [21]. It can be a quick preliminary guideline to uncover the most
dominant compound related to the anticancer activity or predict potential herb-drug
interactions and toxicity. Besides, the seasonal variations in plant components can
also be studied using metabolomics [22].
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Figure 1. The omics cascade. The metabolome represents the final step of the omics cascade and is
downstream of the proteome. Any alteration in the metabolome triggered by drug treatment would
therefore provide information on the effects of the drug.

The two main approaches in metabolomics are targeted (biased) and untargeted
(unbiased) metabolite profiling. The targeted approach is aimed at a pre-defined panel of
metabolites in a biological sample, whereas the untargeted approach examines the complete
metabolome providing a holistic assessment of metabolite composition in samples [23].
Both approaches employ analytical techniques such as nuclear magnetic resonance (NMR)
spectroscopy and mass spectrometry (MS). A considerable number of detailed procedures
abounds elsewhere [24,25] with corresponding technical reviews [26,27] on the application
of these metabolomics tools for further exploration.

3. Cancer Metabolic Reprogramming
3.1. Addiction to Glucose, Glutamine, and Other Amino Acids

To evaluate the alterations in metabolism that are induced by cancer cells, Otto War-
burg observed that these cells constitutively metabolize glucose via glycolysis and produce
lactate even in the presence of abundant oxygen [28]. This concept of aerobic glycolysis is
known as “Warburg’s effect”. Normal cells respond differently by activating glycolysis in
response to hypoxia but undergo respiration (oxidative phosphorylation) during oxygen
availability. Warburg proposed that this metabolic shift to aerobic glycolysis in cancer cells
is due to a mitochondrial respiratory defect [29]. However, it has been observed that many
cancer cells also actively maintain mitochondria respiration to generate tricarboxylic acid
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(TCA) cycle intermediates for macromolecule synthesis [30]. Enhanced glycolysis in cancer
cells under hypoxic conditions is necessary to supply glycolytic intermediates and synthesis
of macromolecules to meet the demand of the highly proliferating cells [31]. The expression
of glucose transporter 1 (GLUT1) is under the positive regulation of hypoxia-inducible
factor (HIF)-1 [32]. The hypoxic tumor environment induces GLUT1 expression in a HIF-
1-dependent manner that leads to an increase in cellular glucose uptake and promotes
the aerobic glycolysis of cancer cells, which enhances the proliferation and metastasis of
cancer cells.

Elevated dependence on glutamine is another metabolic characteristic of many cancer
cells. Glutamine is a non-essential amino acid derived extracellularly or synthesized en-
dogenously by glutamine synthetase when an exogenous supply of glutamine is scarce [33].
Cancer cells are highly dependent on the exogenous supply of glutamine mediated by
several solute carrier groups of transporters. Following its entry into the cell, glutamine has
different metabolic actions. Glutamine is catabolized to glutamate by the mitochondrial
enzyme glutaminase (GLS). The amino and amide nitrogen groups from glutamine are
crucial to producing other non-essential amino acids like serine and glycine. The car-
bon skeleton from glutamine catabolism contributes to the carbon pool to replenish the
TCA cycle (anaplerosis), supporting the production of adenosine triphosphate (ATP) and
the biosynthesis of protein, nucleotides, and lipids [34]. Glutamine-derived glutamate
and cysteine are required for de novo synthesis of the antioxidant tripeptide-glutathione
(GSH). GSH combat oxidative stress, thus protecting cells from the damage caused by
excessive generation of reactive oxygen or reactive nitrogen species [35]. Increased rate
of glutaminolysis contributes to the biosynthesis of NADPH, a reducing agent needed to
fulfil the requirements for cell proliferation and regenerate GSH from its oxidized form
(GSSG) [36].

3.2. Enhanced Lipid Utilization

As components of biological membranes, lipids play a role in maintaining membrane
structure and are also important signalling molecules. The alterations in fatty acid transport-
enhanced de novo lipogenesis and β-oxidation are metabolic characteristics of cancer
cells [37]. Cancer cells obtain lipids through direct exogenous uptake from the surrounding
microenvironment via specialized transporters such as fatty acid translocase and fatty acid
transport protein family whose expressions are increased in the diseased state. Exogenous
uptake of fatty acids allows for metabolic flexibility within cancer cells. Lipid uptake may
be essential during conditions of metabolic stress when the ability to meet oncogene-driven
demands for biosynthesis is compromised [38]. Cancer cells also obtain lipids through
de novo synthesis to maximize lipogenesis or protect cancer cells from oxidative lipid
damage [39].

Overexpression of fatty acid biosynthetic genes such as those encoding for fatty acid
synthase (FASN), ATP-citrate lyase (ACLY), and acetyl-CoA carboxylase (ACC), have been
reported in tumors of various cancer types [40]. Fatty acid synthesis occurs via integration
with other carbon metabolism pathways such as glycolysis or glutaminolysis to obtain
acetyl-CoA and NADPH. Also, fatty acids can supply substrates to the TCA cycle to
sustain mitochondrial ATP production in cancer cells. The β-oxidation of fatty acids in
the mitochondria generates acetyl-CoA and the reducing equivalents NADH and FADH2,
which are critical for generating mitochondrial ATP by the electron transport chain [41].
The multiple inputs of metabolites from glycolysis, glutaminolysis and β-oxidation of fatty
acids into the TCA cycle equip cancer cells with metabolic flexibility to adapt to nutrient
availability. This metabolic rewiring is not only needed to fuel energy needs or to support
biomass generation but plays essential roles in other cancer features such as migration,
invasion, and metastasis.
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3.3. Oncogenic Activation of Metabolic Pathways

Metabolic reprogramming results from mutations in oncogenes and tumor suppres-
sors, and the activation of signaling pathways that directly contribute to malignant transfor-
mation. Alterations in the gene expression of key enzymes of metabolic pathways support
oncogenic transformation and tumor progression. Oncometabolites, detected in elevated
levels in tumors, sustain tumor growth and metastasis via modulation of cell signaling and
epigenetic modifications. Several oncogenes, including MYC, phosphoinositide-3-kinase
(PI3K), KRAS, protein kinase B (AKT), mechanistic target of rapamycin (MTOR), and HIF-1,
are implicated in the regulation of cancer metabolic reprogramming [42].

The P13K/AKT signaling pathway is a commonly dysregulated pathway in cancer.
Over-stimulated P13K/AKT enhances glycolysis, mitochondrial biogenesis, and activates
other anabolic pathways involved in the de novo biosynthesis of fatty acids, nucleotides,
and proteins, ultimately promoting cell survival [43]. Over-activation of this pathway
occurs independently of the extrinsic growth factor through various molecular mecha-
nisms, including mutations of receptor tyrosine kinases (such as EGFR, HER2), tumor
suppressor genes, or components of the PI3K complex [44]. The activated phosphotyrosine
residues of the receptor tyrosine kinases (RTK) interact with src-homology 2 domains
on PI3K, leading to the generation of the lipid second messenger, phosphatidylinositol
3,4,5-trisphosphate (PIP3) from phosphatidylinositol-4,5-bisphosphate (PIP2). AKT lo-
calizes to the cell membrane through interactions with PIP3, which ultimately leads to
phosphorylation and activation of AKT [45]. Downstream of PI3K/AKT is the cell growth
regulator, the mTOR complex 1 (mTORC1). Mutations in the MTOR gene itself can directly
lead to its activation. The mTORC1 protein is also more commonly activated downstream
of gain-of-function mutations in the PI3K/AKT pathway or through inactivation of tumor
suppressors such as phosphatase and tensin homolog (PTEN). It coordinates the expression
of other oncogenes and transcription factors, which play key roles in controlling intracellu-
lar metabolism. Specifically, the mTOR pathway stimulates glutaminolysis by upregulating
the expression of CMYC, which induces the expression of glutamine transporter and
GLS [46]. The gain of function mutation by MYC also enhances glycolysis through the
amplified expression of genes that support tumor proliferation, including transporters
and enzymes involved in glycolysis, glucose uptake, lactate production and export, fatty
acid synthesis, serine metabolism, and mitochondrial metabolism [47]. Additionally, the
oncogene-directed activation of glycolysis also occurs through HIF-1α, which coordinates
the metabolic adaptation to hypoxia [48]. The activation of mTOR is also known to play a
role in the stabilization of HIF-1α protein, which can lead to enhanced activation of their
transcriptional targets, including GLUT1, and other glycolysis enzymes. The PI3K/AKT
oncogenic signalling pathway also activates SREBP-1, a transcriptional factor that controls
lipogenesis. SREBP-1-mediated de novo lipogenesis is a critical component of mTORC1-
driven proliferation [49]. Activated AKT can also directly stabilize the nuclear SREBP-1,
thus promoting its target gene expression.

Aside from oncogenes, tumor suppressors such as the p53 and PTEN, which regulate
metabolism, are frequently mutated or deleted in many human cancers. PTEN executes its
tumor suppressor activity by dephosphorylating PIP3 to PIP2, thereby counteracting PI3K
signaling and inhibiting AKT-dependent pathways. The inhibition of PI3K/AKT signaling
suppresses glycolysis, several anabolic pathways, and mitochondrial metabolism [50].
Also, the tumor-suppressive functions of p53 are related to the execution of DNA repair,
cell cycle arrest, apoptosis induction, regulation of metabolism, and oxidative stress [51].
Loss of p53 and PTEN promotes tumorigenesis by increasing glycolytic flux and redox
imbalance. Other signaling pathways e.g., the RAS/RAF/MEK/ERK cascade downstream
of oncogenes and tumor-suppressor genes can also regulate cancer metabolism. The ERK
pathway is activated by a series of phosphorylation events that occur downstream of
various activated receptor types, including RTKs in response to extracellular stimuli such
as growth factors [52]. Constitutive activation of ERK signaling in many cancers is caused
by factors such as overexpression or mutation in receptor tyrosine kinases, Ras and Raf
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mutations, sustained autocrine or paracrine production of activating ligands, and the
direct amplification or deregulation of its transcription factor targets, such as MYC, HIF-α,
activator protein 1 and signal transducers and activators of transcription [53]. These targets
are involved in the transcriptional regulators of glycolysis, glutaminolysis and nucleotide
and fatty acid synthesis [52], as summarized in Figure 2.

Table 2. Pharmacological agents targeting cancer metabolic vulnerabilities.

Metabolic Target Drug Study Phase Mode of Action Reference

Glycolysis inhibitors

2-deoxy-D-glucose Phase III clinical trial Competitively inhibits glucose
uptake by interfering with HK [54]

WP1122—Novel
2-DG analog Phase II clinical trial Inhibits HK [55]

AZD3965 Phase II clinical trial

Inhibits MCT 1 causing lactic
acid accumulation and
feedback inhibition of

glycolysis

[56]

Pyruvate
dehydrogenase

complex inhibitor
Dichloroacetate Phase II clinical trial Inhibits PDHK and reactivate

the TCA cycle [57]

Isocitrate
dehydrogenase

inhibitor

Enasidenib—novel
IDH inhibitor Phase III clinical trial

Inhibits mutant IDH2 variants
and lowers serum levels of

2-HG in acute Myeloid
Leukemia

[58]

Glutamine transport
Inhibitor V-9302 Preclinical data Selectively inhibits ASCT2

transporter [59]

Fatty acid synthesis
inhibitor

TVB-2640 Phase 1 clinical trial Inhibits FASN [60]

Cerulenin Preclinical data Inhibits FASN [61]

Fatostatin Preclinical data inhibits SREBP activation [62]

A939572 Preclinical data Inhibits SCD-1 [63]

Mdm2 inhibitors
Idasanutlin (RG73388) Phase III clinical trial Inhibits MDM2-p53 interaction [64]

AMG-232 Phase I clinical trial Blocks MDM2-p53 interaction [65]

Abbreviations: Hexokinase (HK), Monocarboxylate transporter (MCT), Pyruvate dehydrogenase kinase (PDHK) Isocitrate dehydrogenase
(IDH), Alanine-serine-cysteine transporter (ASCT), stearoyl-CoA desaturase (SCD).
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Figure 2. The oncogene-induced activation of metabolic pathways in cancer. GLS—glutaminase, GS—glutamine synthetase, HK—hexokinase, LDHA—lactate dehydrogenase A,
MCT—monocarboxylate transporter, PDHK—pyruvate dehydrogenase kinase, SLC—solute carrier family, PFK—phosphofructokinase, GLUT—glucose transporter, ACC—acetyl-CoA car-
boxylase, ACLY—ATP citrate lyase, BCAT—branched-chain aminotransferase, FASN—fatty acid synthase, SCD—stearoyl-CoA desaturase, HIF—hypoxia-inducible factor, SREBP—sterol-
response element-binding protein, mTORC—mammalian target of rapamycin complex, AP—activator protein, STAT—signal transducer and activator of transcription, NF-κB—nuclear
factor kappa B, SP—specificity protein, ROS—reactive oxygen species, Akt—protein kinase B, PDK—phosphoinositide-dependent kinase, PIP2—phosphatidylinositol-3,4-biphosphate,
PIP3—phosphatidylinositol-3,4,5-trisphosphate, PTEN—phosphatase and tensin homolog deleted on chromosome 10, RTKs—receptor tyrosine kinases, PI3K—phosphoinositide-3-kinase,
ERK—extracellular-signal-regulated kinase, MEK—MAPK/ERK kinase, RAF—rapidly accelerated fibrosarcoma.Many pharmacological agents targeting cancer metabolic vulnerabilities
are at different stages of drug development, as shown in Table 2.
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4. Medicinal Plants as Modulators of Cancer Metabolism

Medicinal plants consist of many bioactive compounds that can target multiple dys-
regulated, but cross-linked pathways in cancer. These include pathways involved in the
metabolism of carbohydrates, amino acids, and lipids. Many plant-derived compounds
and extracts inhibit metabolic enzymes and transporters, PI3K/AKT oncogenic signaling,
and the Ras/Raf/MEK/ERK/MAPK pathways, thereby restricting cancer progression. In
many cancers, the overexpression of metabolic targets (e.g., enzymes and transporters)
offers a relatively safe therapeutic window for anticancer agents [66]. Table 3 shows a list
of plant extracts/compounds and their metabolic targets in cancer cells and tumors and
illustrates the spectrum of potential anticancer herbal intervention points, which encom-
passes metabolic enzymes, molecular transporters, oncogenes, tumour suppressors, and
transcription factors. Cancer metabolome analysis could offer a comprehensive under-
standing of metabolite changes and novel insights into medicinal plants’ anticancer effects,
which would direct further mechanistic studies.

Table 3. Modulatory effects of medicinal plants on cancer metabolism.

Target
Classification Metabolic Process Target Metabolic Effects of Plants and Derived Compounds on

Cancer Cells and Tumour

Enzymes

Glycolysis

Hexokinase 2 (HK2)
• Annona muricata Linnaeus (Graviola) ethanolic extract

reduced HK2 protein expression and other proteins related
to glycolysis in pancreatic cancer [67].

Phosphofructokinase
(PFK)-1 & 2

• Oleanolic acid found in the Oleaceae plant family reduced
aerobic glycolysis and proliferation in human MKN-45 and
SGC-7901 gastric cancer cells via reduced expression and
intracellular activities of PFK-1 and HK2 [68].

Pyruvate kinase (PKM2)
• Carpesium abrotanoides Linnaeus. root extract reduced

glycolysis by downregulating the expression of PKM2 and
inhibited PKM2/HIF-1α in breast cancer cells [69].

Pyruvate metabolism
Pyruvate metabolism

Pyruvate dehydrogenase
(PDH)

• Resveratrol markedly increased PDH complex activity in
colon cancer (Caco2) cells [70].

Pyruvate dehydrogenase
kinase (PDHK)

• Cinnamomum cassia (Linnaeus) J. Presl aqueous extracts
induced apoptosis by inhibiting PDHK activity and
promoting a metabolic shift from glycolysis to oxidative
phosphorylation by reducing protein expression of
phosphorylated PDH in human lung cancer cells (A549
cells and H1299) and murine Lewis lung carcinoma cells
(LLC) [71].

• Anemone rivularis Buch. Ham. ex DC. whole plant ethanol
extract inhibited aerobic glycolysis by reducing
phosphorylation of PDHK in human colon cancer (DLD-1)
and murine cells (LLC) [72].

• Huzhangoside A- a triterpenoid glycoside from several
plants of the genus-Anemone, inhibited PDHK1 activity, and
induced the apoptosis of colorectal adenocarcinoma cell
lines [73].

Pyruvate dehydrogenase
phosphatases (PDP)-1 & 2

• Resveratrol exposure significantly enhanced the expression
of PDP-1 mRNA in colon cancer (Caco2) cells. [70].

Pyruvate carboxylase (PC)
• 1,2,3,4,6-penta-O-galloyl-beta-d-glucose (PGG)- a

compound from Rhus chinensis Mill. downregulated PC
gene in MDA-MB-231 human breast cancer cells [74].

Lactate metabolism Lactate dehydrogenase A
(LDHA)

• Annona muricata (Graviola) extract reduces LDHA protein
expression in pancreatic cancer cells and significantly
suppressed cell proliferation [67].

• Spatholobus suberectus Dunn aqueous extract inhibits LDHA
activity in human breast cancer cells [75].

• Myristica fragrans Houtt. seed aqueous extracts suppressed
the growth of human colon cancer cell (HT29) by reducing
the activity of LDHA and lactate production [76].



Molecules 2021, 26, 6541 10 of 24

Table 3. Cont.

Target
Classification Metabolic Process Target Metabolic Effects of Plants and Derived Compounds on

Cancer Cells and Tumour

Fatty acid synthesis

ATP citrate lyase (ACLY)

• Cucurbitacin B, a compound from cucumber, inhibited the
phosphorylation of ACLY and suppressed the growth of
prostate cancer cells (PC-3 and LNCaP) and
tumor-formation in a chemopreventive prostate tumor
mouse model [77].

Acetyl-CoA carboxylase
(ACC)

• Andrographolide, a labdane diterpenoid extracted from the
rhizomes of Andrographis paniculata (Burm.f.) Nees,
suppressed MV4-11 cell proliferation and blocked fatty acid
synthesis by downregulating FASN and ACC expression
[78].

Fatty acid synthase (FASN)

• Extra-virgin olive oil-derived phenolics (lignans,
secoiridoids, and flavonoids) suppressed the expression of
FASN protein in HER2 over-expressing breast cancer cells
[79].

Transporters

Glucose transport GLUT1/4
• Annona muricata extract reduced GLUT1/4 protein

expression levels in metastatic PC cell lines FG/COLO357
and CD18/HPAF [67].

Monocarboxylate transport Monocarboxylate
transporter (MCT) 1–4

• Terminalia chebula Retz. fruit extract reduced the expression
of MCT1, MCT3, MCT4, and their chaperone CD147 in
mouse brain neuroblastoma cells (N2-A) and induced
apoptotic cell death [80].

Amino acid transport Alanine-serine-cysteine
transporter (ASCT) 2

• Ursolic acid in combination with either curcumin or
resveratrol reduced protein expression of ASCT2 in HMVP2
prostate cancer cells [81].

Oncogenes and
Tumor

suppressors

Cell signalling and growth
regulation

MAF
• Ricinus extract downregulated MAF oncogene in MCF7

human breast cancer cells [82].

C-MYC
• Azadirachta indica A.Juss. ethanolic leaf extract suppressed

c-Myc oncogene expression in 4T1 breast cancer BALB/c
mice [83].

PI3K/AKT

• Betulinic acid, a pentacyclic lupane triterpene, promoted
apoptosis by downregulating PI3K/AKT signaling in HeLa
cells [84].

• Emodin from Rheum officinale Baill. and Polygonum
cuspidatum Sielbold & Zucc. inhibited PI3K/AKT and ERK
signaling in triggered apoptosis in human hepatocellular
liver carcinoma cells (HepG2) cells [85].

MTORC1

• Remotiflori radix ethanol extract suppressed the growth of
PC-3 cells by increasing phosphorylated AMPK expression
and inhibiting mTOR activation [86].

• Curcumin inhibited the mTOR-HIF1α axis [87].

p53

• Tulbaghia violacea Harv. extracts increased p53 protein
expression and induced apoptosis in MRC-5 HeLa,
MDA-MBA-231, MCF-7 and ME-180 cell lines [88].

• Platycodin D from Platycodon grandiflorus (Jacq.) A.DC.
decreased the protein levels of MDM2 and mutant p53 in
MDA-MB-231 cells and xenograft model [89].

Phosphatase and tensin
homolog (PTEN)

• Thymoquinone isolated from Nigella sativa Linnaeus (L) oil
increased PTEN mRNA and protein expression in
doxorubicin-resistant MCF-7 cells and induced G2/M
phase arrest and apoptosis through upregulation of p53
expression and decreased AKT phosphorylation [90].

• Resveratrol increased the protein expression of PTEN and
phosphorylated p53 in NALM-6 acute lymphoblastic
leukemia cells, resulting in a decrease in the activation of
AKT and ERK [91].
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Table 3. Cont.

Target
Classification Metabolic Process Target Metabolic Effects of Plants and Derived Compounds on

Cancer Cells and Tumour

Transcription
factors

Gene transcription
Sterol regulatory

element-binding protein
(SREBP)

• Betulinic acid decreased SREBP-1 activity, activates
CaMKK, and up-regulates AMPK activity by
phosphorylation, which results in reduced lipogenesis and
lipid accumulation in HepG2 cells [92].

Hypoxia-inducible factor
(HIF)- 1

• Celastrol from Tripterygium wilfordii Hook. f. root extracts
reduced hypoxia-induced angiogenic and metastatic
activity in human umbilical vein vascular endothelial cells
(EA.hy926) and HepG2 cells by decreasing HIF-1α mRNA
and protein levels and transcriptional activity of HIF-1α
target genes [93].

Signal transducers and
activators of transcription

(STAT) 3

• Pectolinarigenin from Cirsium chanroenicum (Nakai) Nakai
impaired cancer cell migration and invasion by
down-regulating the expression of p-STAT3, MMP-2, and
MMP-9 in human breast cancer cells MDA-MB-231,
MCF-7 [94].

5. Deciphering the Anticancer Mechanisms of Traditional (African Chinese, Indian)
Herbal Medicines with Metabolomics

Traditional Chinese Medicine (TCM), Traditional Indian Medicine (TIM) (represented
by Ayurveda), and Traditional African Medicine (TAM) are the most widely used traditional
medicine systems today [95]. These ancient healthcare systems embrace herbal remedies
prescribed as single herbs or mixtures of many herbs, as a cornerstone of traditional
medicine. Polyherbal formulations usually consist of the primary herbs (responsible for the
main therapeutic effect) and secondary herbs (which enhances the action of the primary
herbs, reduce side-effects, or improve the palatability of the herbal formulation).

A continuous effort by China in promoting its indigenous therapies using a science-
based approach has put TCM in a commendable position and increased the number of
approved Chinese medicine for the treatment of various ailments. Chinese herbs are used
increasingly as an alternative to conventional cancer treatments while Indian Ayurvedic
medicine is also gaining popularity globally [96,97]. The TAM is a diverse and multifaceted
knowledge system transmitted through generations in oral form. Some African medicinal
plants have found a global market in Europe and the United States e.g., Devil’s claw
(Harpagophytum procumbens) and Pelargonium sidoides DC for treating rheumatic and upper
respiratory conditions [95,98].

Cell, animal, and clinical studies have demonstrated the anticancer effects of many
herbal constituents of AHM, IHM, and CHM. However, these herbs’ molecular mechanisms
of action and formulations are still largely unknown due to the complex chemical compo-
nents and multiple molecular targets. A holistic approach is therefore needed for a com-
prehensive evaluation of the efficacy, mechanisms of action and safety in well-controlled
experimental models and clinical trials. Metabolomics is applied to decipher the multitarget
action of some of these herbal medicines on cancer metabolome as discussed below.

5.1. Curcuma Longa Linnaeus

Studies have shown that an ethanol extract of the rhizomes of Curcuma longa (Family;
Zingiberaceae, common name: turmeric) and polyherbal formulations containing Curcuma
longa and other ayurvedic herbs reduced tumour size while offering a remarkable symp-
tomatic relief in cancer patients with no adverse effects [99,100]. The cancer-preventive
and therapeutic effects were also examined in different experimental models [101].

To gain a deeper mechanistic insight into the action of Curcuma longa, Zhou and
colleagues recently studied the integration effects of curcuminoids (major compounds
in Curcuma longa) on A549 lung cancer cells [102]. The metabolic effect of curcuminoids
mixture and three individual curcuminoids with natural proportion in turmeric was inves-
tigated on A549 lung cancer cells. Although overlap in the metabolic alterations was noted,
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synergistic and antagonistic actions between the curcuminoids resulted in a shift towards a
more positive profile in phospholipids and sphingolipids metabolism than in the individual
curcuminoid-treated cancer cells. The data suggest that the use of multi-curcuminoids
rather than each compound is more effective on the metabolic alterations of A549 cells.
This is in line with a report of superior anticancer activity of total extract of Curcuma longa
compared to its curcuminoids on A549 human lung cancer, HT29 colon cancer, and T98G
glioblastoma cell lines [103].

An earlier study on the toxicity of curcumin on MCF7 and MDA-MB-231 breast
cancer cells identified prominent targets of curcumin as lipid and glutathione (GSH)
metabolism [104]. Relative DNA content decreased while DNA damage increased with
dose and duration of exposure to curcumin. At a low dose, curcumin increased GSH
levels but reduced GSH levels and related metabolites at a high dose. The authors further
established the significance of their findings in metabolic fuel homeostasis by measuring
glutathione-S-transferase (GST) activity in cells exposed to increasing concentrations of
CUR. The changes in GSH and GST indicate the modulatory effects of curcumin on the
cellular redox status.

Furthermore, at high doses, changes in lipid profile—a decrease in glycerophospho-
ethanolamine (GPE) and -choline (GPC), and an increase in polyunsaturated and total
free fatty acids were recorded [104]. The accumulation of free fatty acids may be due to
deficient cellular mitochondrial functions and the inability of the cells to oxidize fatty acids.
The decrease in GPE and GPC by-products of phospholipase A2 (PLA2) enzyme suggest
downregulation of PLA2 activity possibly as a means for the cell to limit the release of
membrane fatty acids and propagation of oxidative stress. Data from the metabolomics
analysis also provides information on the toxic mechanisms of curcumin on cancer cells.
Similar metabolic effects observed in both MCF-7 and MDA-MB-231 breast cancer cell
lines despite differences in the expression of hormonal receptors suggest that the metabolic
targets of curcumin are not dependent on hormonal signalling pathways. The biphasic or
hormetic modifications in glutathione metabolism, lipid metabolism, and glucose utiliza-
tion in cells treated with curcumin alone or in combination with docetaxel, depending on
the dose and treatment duration, may explain the paradoxical effects reported for CUR at
different doses in various therapeutic combinations and cell types.

5.2. Zingiber Officinale Roscoe

Zingiber officinale is a component of several Indian and Chinese herbal formulations
used for cancer treatment. Examples of such herbal formulations are Immunotone, Cancer-
tame, Xiaoyao powder, and Renshen Yangrong decoction [105,106]. In combination with
honey, the ground root is used to treat different cancers in North Africa [107]. Clinical
trials and in vitro and animal experiments support the use of ginger as an anticancer
herb. Ethanolic extract of its rhizome (1.65–250 µg/mL) induced cytotoxicity of the
cholangiocarcinoma cell line, CL-6, [108]. Aqueous suspension of the rhizome powder
(50 mg/kg b wt/day for 15 weeks) reduced the colon cancer risk in rats via its hypolipi-
demic and antioxidative effects [109]. In a clinical study, pure encapsulated ginger powder
supplementation (2 g/day for 28 days) reduces the proliferation of colorectal epithelium in
patients at increased risk for colorectal cancer [110].

Parvizzade and colleagues studied the anticancer effect of methanolic ginger extract
on the metabolic phenotype of Raji cells (lymphoblastoid cells derived from a human
Burkitt (non-Hodgkin) lymphoma) [111]. The results showed that the ginger extract dis-
played significant cytotoxicity on Raji cells and affected both amino acid and carbohydrate
metabolism. The significance of these metabolic signatures is worth further evaluation.

5.3. Glycyrrhiza Species (G. glabra L, G. uralensis Fisch. and G. inflata Batalin)

Glycyrrhiza (Family: Leguminosae), commonly known as licorice, is a plant with
a long history as a food flavouring agent. The most studied among over 30 known
Glycyrrhiza species are G. uralensis, G. inflata, and G. glabra. According to the 2015 edition of



Molecules 2021, 26, 6541 13 of 24

the Chinese Pharmacopoeia, the roots of these species are all identified as licorice without
discrimination, despite species variation in chemical constituents [112]. G. glabra is used
as monotherapy by cancer patients in Northern Africa for blood and lung cancers [113].
G. uralensis is a component of PHY906, a polyherbal Chinese formulation currently being
developed as an adjuvant for chemotherapy [114]. Several studies (preclinical and clinical)
have indicated that PHY906 enhances the antitumor efficacies of a broad spectrum of anti-
cancer agents but showed cytoprotective effects in non-cancer cells [115]. Data from many
experimental studies suggest that G. uralensis and G. glabra may be potential anticancer
herbs [116,117].

Cancer cell metabolomics analysis has only been carried out on G. glabra (Aqueous
root extract)-treated C666-1 nasopharyngeal carcinoma cells. Following treatment, the
cells displayed altered amino acid metabolism, evident by a decrease in glutamine, L-
alanine, glycine, and L-serine levels, which the authors suggest may be associated with
the anti-tumour activity. Elevated levels of these amino acids are found in the sera of
nasopharyngeal carcinoma patients [118]. L-alanine acts as an alternative carbon source by
outcompeting glucose and glutamine-derived carbon. Glycine and serine supply precursors
for biosynthetic pathways of proteins, nucleic acids, and lipids. The hyper-activation of
glycine and serine synthesis drive oncogenesis [119,120].

Furthermore, G. glabra root extract decreased the levels of glutathione—a tripeptide
that plays a role in protecting cells from damage caused by reactive oxygen or reactive
nitrogen species [35]. ROS is a “two-edged sword” in cancer. While it supports tumor
progression, its production must be regulated at a certain threshold to avoid cancer cell
killing due to excessive oxidative stress [121]. In this light, the accumulation of ROS by
G. glabra via interference with the cellular ROS scavenging system could explain some of
its anti-cancer effects. It may be worth evaluating the possible species-specific effects of G.
glabra and G. uralensis on cancer metabolome in future studies.

5.4. Nigella sativa Linnaeus

Nigella sativa (Family: Ranunculaceae), commonly known as black cumin, is the most
prescribed plant for cancer treatment in North Africa. The seeds are traditionally used
to treat several ailments including, but not limited to cancer [122]. It is prescribed as
monotherapy or ingested with honey for different cancer [107,113]. The seed extracts have
displayed cytotoxicity against breast, lung, and colon cancer cells [123,124]. Also, the
essential oil reduced solid tumor volume and cancer metastasis and improved survival
rate in mice [125] while reducing the side effects of conventional therapy in patients with
acute lymphoblastic leukemia [126].

Thymoquinone, a primary component of the essential oil from the seeds, altered the
phospholipids metabolism in Jurkat cells and caused an accumulation of ceramide [127].
Ceramide is a bio-effector molecule that mediates cancer cell death, senescence, and cell
cycle arrest [128]. Ceramide accumulation in cancer cells is associated with the down-
regulation of AKT signaling leading to apoptotic cell death [129]. Many tumors exhibit
increased ceramide metabolism mainly by increasing activities of sphingolipid enzymes,
such as glucosylceramide synthase, ceramide kinase, acid ceramidase, and sphingosine
kinase, which result in increased synthesis of sphingolipids with pro-survival effects [128].
A decrease in glutamine and α-ketoglutarate was also observed in thymoquinone-treated
HL-60 leukemia cells regardless of either of the two doses tested (5 µM and 10 µM) but not
in Jurkat cells where the opposite effect was noted at the 10 µM dose. This data highlights
the importance of formulating cancer-specific herbal medicines. It will also be interesting
to evaluate the effects of Nigella sativa extracts on metabolic signatures of cancer cells in
future studies.

5.5. Crithmum maritimum Linnaeus

Crithmum maritimum belongs to the Apiaceae family of plants and is well known as
rock samphire or sea fennel. It has both nutritional and medicinal value in many parts of
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the world. Although its antitumorigenic effects are well reported [130], there is a scarcity
of information on its mechanism of action. Ginochi et al. [131] expanded on their previous
study showing a significant growth inhibitory effect of Crithmum maritimum on HCC cells
via cell cycle regulation and apoptosis. Using a metabolomic approach, the authors showed
that the ethyl acetate extract counteracts the Warburg effect in two HCC cell lines (Huh7
and HepG2) by reducing intracellular lactate. A substantial decrease in several amino acids
in treated cells suggests the inhibitory effect of Crithmum maritimum on protein anabolism.
These data demonstrate that Crithmum maritimum-induced cytostasis is exerted through a
multi-effect action, targeting metabolic processes in HCC cells.

5.6. Cyperus rotundus Linnaeus

Cyperus rotundus (Cyperaceae family) is commonly referred to as Xiangfu or Na-
garmotha in Chinese and Ayurveda medicines respectively, where it is used for breast
cancer treatment. The rhizomes are ground into powder and mixed with ginger juice [132].
Cyperus rotundus is also a component of some polyherbal formulations available in the mar-
ket for cancer treatment, such as Chaihu-Shugan-San and US6780441B2 [105,133]. Ethanol
extract from the dry rhizomes of Cyperus rotundus caused cell cycle inhibition and induced
apoptosis in MDA-MB-231 triple-negative breast cancer cells [132].

With the aid of metabolomics, a study recently reported that Cyperus rotundus likely
induced apoptosis in TNBC cells by causing an arrest of aerobic glycolysis and increasing
the pathways of ATP-consumption like amino acids metabolism, fatty acid metabolism,
riboflavin metabolism, and purine metabolism, consequently leading to ATP depletion and
cell death [134]. These altered metabolic profiles can serve as a basis for further hypothesis
formulation in mechanistic follow-up studies to assess its effects on some key players
(enzymes, protein) in these metabolic pathways.

6. Understudied Herbal Medicines as Potential Candidates for Cancer
Metabolomics Studies

The existing data to date indicates that metabolomics-based studies on the anticancer
effects of medicinal plants are limited. Many scientifically understudied CHM, IHM and
AHM are candidates for metabolomics studies. Several anticancer botanicals and formula-
tions are yet to be scientifically validated or remain largely understudied, leaving more
opportunities for drug discovery. Of particular interest are highly sought-after herbal
medicines that have significant cytotoxic activities on cancer cells but display low, if any,
observable physiological toxicities [135,136]. Examples of such plants are Sutherlandia
frutescens (Linnaeus) R.Br., Albizia adianthifolia (Schum.) W.Wight, Hypoxis hemerocallidea
Fisch., C.A.Mey. &Avé-Lall., Coix lacryma-jobi Linnaeus., Terminalia arjuna (Roxb. ex DC.)
Wight & Arn, Artemisia annua Linnaeus and Prunus africana (Hook.f.) Kalkman. The
traditional uses of these highly sought-after plants for cancer treatment are well docu-
mented [137–140].

For example, Sutherlandia frutescens (commonly referred to as cancer bush) is an indige-
nous South African medicinal plant highly commercialized as an immune booster. Infusions
from the leaves and stems of these plants are traditionally used for cancer treatment [137].
A few scientific reports also exist to support its anticancer effects [141]. Interestingly, sev-
eral studies have reported that its usage is not associated with any physiological toxicity,
strengthening the rationale to evaluate its anticancer efficacy and mechanism of action
further [135].

Kanglaite injection is an oily extract from the seed of Coix lacryma-jobi, and the first
TCM that was approved for a phase III clinical trial by the US FDA in 2015 [142,143].
Studies have shown its potential to reverse multiple-drug resistance and enhance the sensi-
tivity of tumor cells to chemotherapeutic drugs while alleviating chemotherapy-related
adverse effects [143,144]. Its tumour-suppressing effects occur via activation of proapop-
totic factors, blockage G2/M transition, suppression of mitotic divisions, and modulation
of PI3K/Akt/mTOR signalling [143,145]. Qianlie Xiaozheng decoction (QLXZD), a poly-
herbal formulation containing Coix lacryma-jobi and six other herbs, is clinically used to
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treat prostate cancer. The only mechanistic study on QLXZD to date reported its autophagy-
related toxicity to involve inhibition of the Akt/mTOR pathway [146] in PC3 cells and PC3
xenografts mice.

Artemisia annua Linnaeus is another noteworthy plant that has been extensively stud-
ied as a cytotoxic agent in cancer cell lines and animal tumor models. Its efficacy for treating
fever, inflammation, and malaria has also been evaluated in clinical studies. However,
there are no reports to date on their clinical evaluation for cancer therapy in humans [147].

Terminalia arjuna is a medicinal plant indigenous to India with a long history of
medicinal uses, including cancer treatment. Its potential as an adjunct for cancer therapy
was reported in several in vitro and animal studies. Aqueous extract of Terminalia arjuna
bark induced cell membrane damage and mitochondrial dysfunction in cancer cells while
protecting the heart tissue against doxorubicin toxicity. Also, the experimental rats adminis-
tered the leaf extracts did not show any noticeable toxicity in the measured haematological,
biochemical, and histological parameters [148].

7. Metabolomics Approach in the Quality Control and Safety Evaluation of
Herbal Exposure

Quality control and the discovery of active components are considered critical for
modernizing traditional herbal medicines [149]. Pertinent quality control systems in the
phytomedicine industries are necessary to distinguish any potential toxic adulterants from
the raw plant materials and achieve consistency in the desired doses of active compo-
nents in different batches of the product [150]. Metabolomics utilizes highly sensitive
identification techniques, such as high-performance liquid chromatography (HPLC), mass
spectrometry (MS) and nuclear magnetic resonance (NMR) [151,152], which are vital in the
chemical fingerprinting of drugs in development. This is particularly relevant for quality
control purposes of phytomedicines which are usually composed of diverse chemical com-
pounds. Using metabolomics, the standardized metabolic fingerprint of herbal products
can be generated. The peculiar metabolomics-based fingerprinting aids the identification
of inconsistent composition, batch-to-batch variation in the proportion of the active compo-
nents, adulteration or inclusion of undisclosed pharmaceutical ingredients that are crucial
for efficacy and patient safety. The pharmacological effects of herbal medicines usually
depend on both major and minor constituents. Metabolomics also aid in the cultivation of
stress-resistant plants by finding novel metabolic markers of adaptability that may lead to
greater yields in raw materials [153].

Plants have gained attention for their immense medicinal values and are believed to be
safer due to historical usage without many well-documented toxicity concerns. However,
studies have shown this may not be the case for all medicinal plants. Herb–herb or herb-
drug interactions that may lead to untoward clinical consequences have been reported [154],
therefore necessitating the constant need to conduct safety assessments on any medicinal
plant or product irrespective of anecdotal usage. Metabolomics-based approaches are
useful in investigating the metabolic fate of herbal exposures [19,155]. Knowledge of the
metabolic fate of herbal medicines can help to understand the efficacy and predict their
potential toxicity or adverse drug reactions (ADR) upon consumption. Metabolomics-
based strategy is also useful for the discovery of the endogenous metabolites altered by
herbal interventions. For example, using a metabolomics approach, a study analyzed
the metabolic fates of Pu-erh tea polyphenols in urine samples of human volunteers.
The altered variables were classified as intact tea polyphenols absorbed into circulation,
metabolites of the absorbed polyphenols, endogenous metabolites altered due to the intake
of plant-derived compounds. The altered metabolites in tea consumers were compared to
the plant metabolome or the predose human metabolome [156].

The MS- and NMR-based metabolite profiling have been useful in the early detec-
tion of ADR or to determine the toxicity profiles for many traditional Chinese herbs or
Chinese materia medica and pharmaceutical drugs [20,94,157–159]. For example, using
non-targeted metabolomics, the metabolic profiles of urine samples from Polygonum multi-
florum Thunb.-treated and untreated rats were analyzed to screen potential biomarkers of
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liver and kidney damage [160]. The altered metabolic markers were combined with the
biochemical indices to clarify the liver and kidney injury mechanisms of the plant. In the
report, LC-MS metabolomic profiles of rat plasma, urine, and faeces revealed increases in
tyrosine, L-phenylalanine, phenylpyruvate, and the uremic toxin p-cresol sulfate, which
is produced by the metabolism of tyrosine and phenylalanine, indicating that amino acid
metabolism disorders may be involved in the liver and kidney injury caused by Polygonum
multiflorum. In addition, metabolomics has been successfully employed to identify the
idiosyncratic tissue injury induced by the different plant extracts and several metabolic
biomarkers associated with organ toxicity were examined [161,162]. In the same light, this
approach is used to explore the protective mechanisms of plant extracts (e.g., Myristica
fragrans (nutmeg) extract) against toxicant-induced organ toxicity [163] and accumulation
of uremic toxins in colon cancer [164].

Analysis of the metabolome offers some advantages over conventional analytical
methods for evaluating toxicity. Since metabolomics is a non-invasive technique, peripheral
samples such as urine, serum, or other accessible bio-fluids can be obtained before exposure
to herbal extracts, during and after exposure to evaluate onset and regression of toxicity
in the organism [165]. Metabolomics analysis could provide a mechanistic understanding
of toxicological effects that were not apparent with traditional toxicology evaluation.
Metabolomics analysis showing an increase in several measured phytosterols in an identical
fashion to cholesterol increase could be indicative of sterol absorption at the gut level that
was not specific to cholesterol. Also, metabolomic analysis of serum bile acid profiles can
further support if the noticed changes in cholesterol levels were due to an altered bile acid
kinetics [166].

8. Challenges

A limited number of published data exist on metabolomics applications to under-
stand the anticancer effects of herbal medicines. Studies translating metabolomics findings
into clinical applications are also limited. The clinical applications of metabolomics in
investigating the anticancer efficacy of herbal therapy would benefit from an in-depth un-
derstanding of how metabolite measurements are connected to cancer biology, especially in
readily accessible biofluids. Metabolite analysis to evaluate cancer cells response to herbal
medicines have many challenges such as tumour heterogeneous metabolic preferences,
lack of specific metabolic signature for each cancer type, the structural diversity of cancer
cell and plant metabolites. Others are the challenges in distinguishing anticancer metabolic
effects of the herbal exposure from general metabolic perturbations in biofluids, influence
of environmental factors, genetic factors and gut microbiota, sample preparation, variation
in the origin, and handling of cell lines [167–169]. Technological limitations specific to
metabolomics may include sample preparation, standardization of instrumentation, high
cost of analytical instruments, structurally diverse compounds, data processing and inter-
pretation, availability of trained manpower, and poor publicity of metabolomics compared
to other omics technologies [170,171].

Although there is more to learn on the metabolic complexity of cancer and technical
aspects of metabolomic profiling, significant progress has been made in the past decade.
Technical and methodological improvements are being made for metabolite analysis in
tissues and biofluids to further our understanding of cancer metabolomes [172,173]. A
better understanding of molecular mechanisms underlying metabolic reprogramming
and tumor heterogeneity will promote a more meaningful interpretation of metabolite
patterns in intervention studies. Improved understanding of microbiome–metabolome
interaction in human malignancies—an area currently under intense investigation—may
also further our understanding of cancer metabolic adaptability and the development
of targeted therapies [174]. The majority of cancer metabolomics studies of medicinal
plants to date were conducted using cell lines. While cell lines are invaluable to investigate
metabolic regulatory mechanisms of herbal medicines, systems that can recapitulate the
genetic heterogeneity and microenvironment of human tumors are also needed. Signifi-
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cant progress has been made to develop metabolome databases and improve metabolite
coverage for metabolite identification and data visualization [175,176]. Identification of
novel cancer type-specific metabolomic signatures and their clinical relevance will promote
the application of metabolomics studies for cancer drug development from traditional
herbal medicines.

9. Conclusions

Cancer metabolism is influenced by a complex set of factors; hence, a comprehensive
metabolic analysis is indispensable to unravel the anticancer actions of metabolic-targeting
plants. Metabolomics has an advantage from a translation standpoint as it directly conveys
phenotype and has a wide application from single-cell experiments to complex clinical
studies. The holistic approach of metabolomics fits traditional herbal medicine’s holistic
concept and offers an opportunity to gain a comprehensive mechanistic insight into the
anticancer efficacy of traditional herbal medicine. Although there are still many hurdles to
overcome, metabolomics offers a promising comprehensive approach to identify the effects
of herbal interventions on metabolite pattern, enzyme activity, and possible alterations at
the DNA, RNA, and protein levels. Integration of data obtained from metabolomics studies
with those from other omics techniques—genomics, transcriptomics, proteomics—could
provide a functional relationship between metabolite changes and the molecular drivers
of malignant transformation. Metabolomics would also facilitate the standardization of
traditional herbal medicines.
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