RESEARCH

Open Access

GC–MS profiling and antibacterial activity of *Solanum khasianum* leaf and root extracts

Pavani Chirumamilla, Sunitha Bai Dharavath and Shasthree Taduri^{*}

Abstract

Background: Solanum khasianum is an important medicinal herb of the Solanaceae family. The present study was focused to determine the bioactive compounds in *S. khasianum* leaf and root extract by GC–MS analysis and their antibacterial activity by agar well diffusion method.

Results: Sixteen bioactive compounds were detected in leaf extract and thirty-two compounds in root methanolic extract by GC–MS. The major potent compounds identified in leaf and root extracts were heptadecane 9-hexyl (43.65%) and stigmasterol (23.18%). The root extract showed increased antibacterial activity than leaf extract.

Conclusion: These extracts possessed significant antibacterial activity against the tested bacterial isolates in dosedependent manner. This study provides the phytoconstituents, antibacterial property and scientific evidence for the traditional claim and use of *S. khasianum*.

Keywords: Solanum khasianum, GC–MS analysis, Antibacterial activity, Phytochemicals, Biological activity

Background

Nature is the richest source of several natural therapeutic compounds. Solanaceae, one of the largest plant families with huge and varied secondary metabolites, used in the management of several ailments. The medicinal value of plants can be correlated to different phytochemicals, as they offer a wide diversity of pharmacological activities. Due to these pharmacological properties, a great attention has been derived toward the medicinal plants.

Solanum khasianum is a traditional medicinal plant belonging to Solanaceae family. The plant was known to possess potential alkaloids (solasodine, solasonine, solanine, solamargine and khasianine) that represent an alternative source of medicine (Kaunda and Zhang 2019; Chirumamilla et al. 2021). The berries of *S. khasianum* was reported to possess anticancer (Rosangkima and Jagetia 2015), antibacterial (Pavani and Shasthree 2021), anti-inflammatory (Chirumamilla et al. 2022),

*Correspondence: tadurishasthree@kakatiya.ac.in

antioxidant, anti-diabetic and anti-cholinesterase properties (Gogoi et al. 2021). Besides these, the plant is used traditionally to treat several other diseases like filaria, smallpox, whooping cough, rheumatism, trachoma, bronchitis, snake bites, skin and tooth infections (Chirumamilla et al. 2021).

To the best of our knowledge there is no information on the chromatographic analysis of *S. khasianum* leaf and root extracts. Hence, the current study was focused to determine several bioactive compounds in *S. khasianum* leaf and root extracts by GC–MS analysis. The antibacterial property against gram positive and gram negative bacteria isolates was also revealed by agar well diffusion method.

Methods

Collection and preparation of plant material

Fresh leaves and roots of *S. khasianum* were collected during the months of April–May from the department greenhouse (18.0264138, 79.5589066). The plant material was washed thoroughly under running tap water, drained and shade dried at room temperature. These samples were ground to fine powder using homogenizer.

© The Author(s) 2022. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Department of Biotechnology, Kakatiya University, Warangal, Telangana 506009, India

The powdered plant material was mixed with methanol (1:10 w/v) and incubated at 22 °C in an orbital shaker at 120 rpm for 48 h. The samples were filtered using Whatman no.1 filter paper, evaporated and the crude methanolic extracts were subjected to GC–MS profiling and antibacterial activity.

Gas chromatography and mass spectroscopy (GC–MS) analysis

Gas chromatography and mass spectrometry were performed to analyze the qualitative and quantitative identification of organic compounds in the given sample. The potential biological compounds of S. khasianum leaf and root extracts were analyzed using GC-MS (Agilent: 7890-Jeol: AccuTOF GCV) system coupled with Elite 1 column. Helium gas was used as a carrier gas at 1 ml/min rate of flow, with an injector volume of 2 µl and 280 °C temperature. The oven temperature was raised from 40 to 280 °C with an isothermal for 5 min. The bioactive compounds were identified based on retention time, MS fragment ions generated and the percentage of these bioactive compounds was evaluated from the total peak area. The phytochemicals have been identified by comparing their MS spectrum patterns to the standard mass spectra available at the National Institute of Standards and Technology (NIST) Mass Spectra Database.

Antibacterial activity

The leaf and root methanolic extract of S. khasianum were tested for their antibacterial activity by agar well diffusion method. Luria Bertani (LB) medium was prepared, poured at 20 ml/petridish and allowed to solidify. 24-h-old bacterial cultures (Bacillus sphaericus, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa) were spread uniformly onto solidified medium. Different concentrations (20, 40, 60 and 80 µg/ml) of S. khasianum leaf and root extracts reconstituted in DMSO (dimethyl sulfoxide 10%) and streptomycin standard (10 μ g/ml) were loaded into wells and incubated at 37 °C for 24 h. The antibacterial efficacy of S. khasianum extracts were observed by measuring the diameter of inhibition zones emerging around the wells. The results of triplicate mean were taken and data was presented as mean \pm SD of the respective triplicate.

Results

GC–MS profiling detected potential phytochemicals in *S. khasianum* leaf and root methanolic extracts by their molecular formula and retention time. Sixteen phytoconstituents were detected from leaf extract and thirty-two compounds from root extract by GC–MS (Tables 1 and 2). The compounds identified with high concentration in leaf extract include Heptadecane 9-hexyl (43.65%)

and Myoinositol hexaacetate (15.05%), whereas the highest compounds identified in root extract include Stigmasterol (23.18%) and *cis*-Vaccenic acid (9.07%) and presented in Figs. 1 and 2. The diversification of these phytoconstituents was recorded using sunburst graph (Figs. 3 and 4).

Table 3 shows the antibacterial activity of *S. khasianum* leaf and root extracts. The root methanol extract showed the highest inhibition zone at 80 µg/ml of 16 ± 0.15 mm for *B. sphaericus*, 21 ± 0.18 mm for *Escherichia coli*, 17 ± 0.02 mm for *Staphylococcus aureus* and 19 ± 0.18 mm for *Pseudomonas aeruginosa*. Leaf extract at 80 µg/ml concentration showed 15 ± 0.14 mm for *B. sphaericus*, 16 ± 0.16 mm for *Escherichia coli*, 15 ± 0.01 mm for *Staphylococcus aureus* and 17 ± 0.11 mm for *Pseudomonas aeruginosa*.

Discussion

Accurate certification and studies of phytoconstituents are increasing periodically, as they are repositories of several potent drugs. Gas chromatography and mass spectroscopy (GC–MS) has been validated to be a significant tool for bioprospecting of plant bioactive compounds. However, diethyl phthalate and *n*-hexadecanoic acid were identified to be common in leaf and root extract of S. khasianum. Other organic compounds in leaf extract that are accountable for their wide use in medicinal aid include: Dodecanal, reported to possess highest antibacterial activity (Faridha Begum et al. 2016). Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-,octadecyl ester shows strong antifungal and antioxidant activities in Azadirachta and Thesium humile (Akpuaka et al. 2013; Belakhdar et al. 2015).

The remaining bioactive compounds analyzed were as follows: Diethyl phthalate, a phytoconstituent well known for its antimicrobial, antioxidant, plasticizer and estrogenic activities in *Ceropegia bulbosa* Roxb (Arora and Meena 2017). E-9-Tetradecenoic acid is reported to have analgesic, anti-inflammatory and antioxidant properties in *Cassia angustifolia* (Al-Marzoqi et al. 2016). The bioactive compound, Myristoleic acid reported in Sesame Seeds was known to prevent cancer (Bhatnagar and Gopala Krishna 2009).

The bioactive molecule *n*-Hexadecanoic acid has reported to have multiple biological properties in *Vitex negundo* (Kumar et al. 2019; Enerijiofi et al. 2021). The phytol, a bioactive compound reported earlier in several species like *Hydrilla verticillate, Gracilaria edulis* and *Carissa carandas* with diversified medicinal uses (Prabha et al. 2019; Rao et al. 2019). The compound 9,12,15-Octadecatrienoic acid was known to possess several biological properties like analgesic, anesthetic, anticonvulsant, anti-inflammatory, antioxidant, anti-pyretic, antibacterial

RT	Name of compound	Kovats relative index	Molecular formula	Mwt	Area (%)	Recorded pharmacological activity
13.63	Dodecanal	1387	C ₁₂ H ₂₄ O	184	0.85	Antibacterial, in <i>pharmaceuticals</i>
17.47	Diethyl phthalate	1603	C ₁₂ H ₁₄ O ₄	222	0.87	Antimicrobial, antioxidant, plasticizer, estrogenic
20.71	E-9-Tetradecenoic acid	2537	C ₁₄ H ₂₆ O ₂	226	1.45	Analgesic, anti-inflammatory, antioxidant
21.45	Z-8-Methyl-9-Tetradecenoic acid	1676	C ₁₅ H ₂₈ O ₂	240	2.97	No activity reported
21.4	Myristoleic acid	1783	C ₁₄ H ₂₆ O ₂	226	2.97	Cancer preventive
24.03	n-Hexadecanoic acid	1972	C ₁₆ H ₃₂ O ₂	256	3.36	Anti-inflammatory, antioxidant, anti-androgenic, hypocholesterolemic, hemolytic nematicide, pesticide, 5-a reductase inhibitor, potent mosquito larvicide, treat rheumatic symptoms
26.20	Phytol	2105	C ₂₀ H ₄₀ O	296	2.43	Antinociceptive, antioxidant, anti-inflammatory, antiallergic, hypolipidemic, anticancer, antimicrobial, cytotoxic, anti-teratogenic, antidiabetic, antispasmodic, anticonvulsant, disinfectant, antidiuretic
26.70	9,12,15-Octadecatrienoic acid	2125	C ₁₈ H ₃₀ O ₂	278	2.96	Analgesic, anesthetic, anticonvulsant, anti-inflamma- tory, antioxidant, anti-pyretic, antibacterial, cancer preventive, hypocholesterolemic, hepatoprotective, nematicide, antihistaminic and reduce complications in Covid-19 patients
28.68	α-D-Glucopyranoside, O-α-D-glucopyranosyl-β-D- fructofuranosyl	1926	C ₁₈ H ₃₂ O ₁₆	504	3.56	Cardioprotective, neuroprotective, antidiabetic, anti- osteoporotic, anti-inflammatory, antistress
29.89	1,2-Propanediol, 3-(tetradecyloxy)	1603	C ₁₇ H ₃₆ O ₃	288	1.60	Antifungal activity
30.34	tert-Hexadecanethiol	1522	C ₁₆ H ₃₄ S	258	2.76	Antitumor, antioxidant, antifungal, insecticidal
30.70	Ethanol, 2-(tetradecyloxy)	1930	C ₁₆ H ₃₄ O ₂	258	11.3	No activity reported
31.56	Heptadecane, 9-hexyl	2243	C ₂₃ H ₄₈	324	43.65	Antifungal agent
32.40	Myoinositol, Hexaacetate	2084	C ₁₈ H ₄₂ O ₁₂	432	15.05	Precursor of several metabolic pathways, co-factors of enzymes, messenger molecule in signal transduction, reduce liver and myocardial lipid content, alternative of metformin
32.77	Valeric acid, 4-pentadecyl ester	2112	C ₂₀ H ₄₀ O ₂	312	5.77	No activity reported
34.80	Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hy- droxy-,octadecyl ester	1943	$C_{35}H_{62}O_3$	530	1.37	Antifungal and antioxidant

Table 1 Phytochemical constituents identified in leaf methanolic extracts of Solanum khasianum by GC–MS analysis and mass spectra of NIST database

(Kalaivani et al. 2012); anticancer, antihistaminic, hepatoprotective, hypocholesterolemic, nematicide (Rao et al. 2019) in Andrographis paniculata and Carissa carandas and also known to reduce complications in Covid-19 patients (Weill et al. 2020). α-D-Glucopyranoside, O-α-D-glucopyranosyl-β-D-fructofuranosyl, a phytochemical compound also found in Cyperus alternifolius have cardioprotective, neuroprotective, antidiabetic, antiosteoporotic, anti-inflammatory and antistress properties (Al-Gara et al. 2019). The 1,2-Propanediol, 3-(tetradecyloxy), a phytoconstituent reported to have antifungal activity (Sundberg and Faergemann, 2008), whereas the compound tert-Hexadecanethiol was known for its antitumor activity in Malaxis acuminta (Raval et al. 2016); antioxidant, antifungal and insecticidal activities in Capsicum annuum (Sathya et al. 2016). Another bioactive molecule Heptadecane, 9-hexyl (Fig. 2), the major bioactive compound of *S. khasianum* leaf extract, known to possess strong antifungal activity in *Senecio coluhuapiensis* (Arancibia et al. 2016). The compound Myoinositol, hexaacetate acts as a precursor of several metabolic pathways, co-factors for enzymes and as messenger molecule in signal transduction (Chhetri, 2019; Kim et al. 2008). The biological activity of some compounds has not yet identified (Table 1).

The chemical profiling of root methanolic extracts of *S. khasianum* identified different bioactive compounds. Among them, more predominant compound identified was stigmasterol, known to possess anti-inflammatory, antioxidant, antimicrobial and sedative activities (Al-Rubaye et al. 2017). The initial compound eluted was 2-Pyrrolidinone, 1-methyl with anticancer, antioxidant,

RT	Compound	Kovats relative index	Molecular formula	Mwt	Area	Biological activity
4.84	2-Pyrrolidinone, 1-methyl	1646	C ₅ H ₉ NO	99	0.87	Anticancer, antioxidant, antibacterial, antifun- gal, anticonvulsant, surfactant
5.34	D-Alanine, <i>N</i> -propargyloxycarbonyl-, isohexyl ester	1725	C ₁₃ H ₂₁ NO ₄	255	0.87	No activity reported
5.46	Pyrrolidine, 2-butyl-1-methyl	1072	C ₉ H ₁₉ N	141	2.06	No activity reported
6.41	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy- 6-methyl-	1134	C ₆ H ₈ O ₄	144	1.0	Anti-diabetic, antioxidant, antibacterial, mela- nin production inhibitor
9.54	2-Methoxy-4-vinylphenol	1315	$C_9H_{10}O_2$	150	2.52	Antioxidant, antimicrobial, anti-inflammatory
10.35	Eugenol	1356	C ₁₀ H ₁₂ O ₂	164	1.23	Antioxidant, antimicrobial, anti-proliferative, anti-inflammatory
11.20	Methyl (3,4-dimethoxyphenyl)(hydroxy) acetate	1700	C ₁₁ H ₁₄ O ₅	226	0.19	No activity reported
11.33	Benzaldehyde, 3-hydroxy-4-methoxy	1401	C ₈ H ₈ O ₃	152	0.87	Antimicrobial activity
12.50	1,3-Propanediol, 2-ethyl-2-(hydroxymethyl)-	1261	$C_{6}H_{14}O_{3}$	134	5.86	Antioxidant, Antimicrobial
13.05	Ethanone, 1-(4-hydroxy-3-methoxyphenyl)	1447	$C_9H_{10}O_3$	166	4.92	Anti-inflammatory, antioxidant, non-steroidal, enzyme inhibitor, food additive
14.95	Diethyl phthalate	1603	C ₁₂ H ₁₄ O ₄	222	5.53	Antimicrobial, antioxidant, plasticizer, estro- genic
16.25	1,2,3,5-Cyclohexanetetrol, (1α,2β,3α,5β)	1472	$C_{6}H_{12}O_{4}$	148	6.39	No activity reported
16.77	a-Amino-3-hydroxy-4- methoxyacetophenone	2819	C ₉ H ₁₁ NO ₃	181	0.9	No activity reported
17.67	Ethanone, 1-(4-hydroxy-3,5-dimethoxyphe- nyl)	1741	C ₁₀ H ₁₂ O ₄	196	0.98	Anti-inflammatory, antioxidant, non-steroidal, enzyme inhibitors, food additive
17.87	4-((1E)-3-Hydroxy-1-propenyl)-2-methoxy- phenol	1688	C ₁₀ H ₁₂ O ₃	180	0.31	Antimicrobial, antioxidant, anti-inflammatory, analgesic
17.98	Tetradecanoic acid	1761	C ₁₄ H ₂₈ O ₂	228	1.85	Cancer preventive, antioxidant, nematicide, lubricant, hypocholesterolemic
18.95	Solavetivone	1779	C ₁₅ H ₂₂ O	218	0.78	Antibacterial, fungitoxic, antimicrobial, weak cytotoxic activity
19.47	Cycloprop[e]indene-1a,2[1 <i>H</i>]-dicarboxalde- hyde, 3a,4,5,6,6a,6b-hexahydro-5,5,6b-trime- thyl-, [1aɑ,3aβ,6aβ,6bɑ]-[+]	1734	$C_{15}H_{20}O_2$	232	0.33	No activity reported
19.81	Phthalic acid, isobutyl nonyl ester	2470	C ₂₁ H ₃₂ O ₄	348	1.13	Efficient in curing chronic cardiovascular, cerebrovascular diseases, anti-tumor, anti- inflammatory, antibacterial
20.35	4,7-Methano-1 <i>H</i> -indene, octahydro-2-(1- methylethylidene)	1078	C ₁₃ H ₂₀	176	0.88	No activity reported
20.69	Bicyclo[4.3.0]nonane, 7-methylene-2,4,4- trimethyl-2-vinyl	1085	C ₁₅ H ₂₄	204	0.54	No activity reported
21.36	<i>n</i> -Hexadecanoic acid	1975	C ₁₆ H ₃₂ O ₂	256	4.68	Anti-inflammatory, antioxidant, antiandrogenic, hypocholesterolemic, nematicide, pesticide, hemolytic, 5-α reductase inhibitor, mosquito larvicide
23.45	Ergosta-7,22-dien-3-ol, [3β,22E]	3202	C ₂₈ H ₄₆ O	398	2.47	No activity reported
23.91	9,12-Octadecadienoic acid(Z,Z)	2134	C ₁₈ H ₃₂ O ₂	280	2.9	Anticarcinogenic, antioxidant, anti-inflamma- tory, antiatherogenic
24.02	<i>cis</i> -Vaccenic acid	2162	C ₁₈ H ₃₄ O ₂	282	9.07	Anticarcinogenic effect
25.52	Geranylgeraniol	2201	C ₂₀ H ₃₄ O	290	3.28	Anti-tumorigenic, anti-inflammatory, neuro- protective
28.39	Stigmasterol	3170	C ₂₉ H ₄₈ O	412	23.18	Anti-inflammatory, antioxidant, antimicrobial, sedative activity
29.05	Methyl triacontanoate	3317	C ₃₁ H ₆₂ O ₂	466	3.0	No activity reported

Table 2 Phytochemical constituents identified in root methanolic extracts of Solanum khasianum by GC–MS analysis and mass spectra of NIST database

Table 2 (continued)

RT	Compound	Kovats relative index	Molecular formula	Mwt	Area	Biological activity		
29.25	Vitamin E	3111	C ₂₉ H ₅₀ O ₂	430	3.4	Anticancer, antidiabetic, antioxidant, anti- inflammatory, antiaging, analgesic, antiderma- titic, antileukemia, antibronchitic, anticoronary, vasodilator, hepatoprotective, hypocholester- olemic, antiulcerogenic, antispasmodic		
29.44	Octacosanoic acid, methyl ester	3112	C ₂₉ H ₅₈ O ₂	438	5.81	No activity reported		
30.66	9,10-Secocholesta-5,7,10(19)-triene-3,24,25- triol, (3β,5Ζ,7Ε)	2642	$C_{27}H_{44}O_3$	416	2.17	Biocide, anti-corrosion agents		
30.66	Spirost-8-en-11-one, 3-hydroxy, -(3β,5α,14β,20β,22β,25R)-	3044	C ₂₇ H ₄₀ O ₄	428	2.17	Anticancer, Estrogenic, progesterogenic, anti- inflammatory		

antibacterial, antifungal, anticonvulsant and surfactant properties (Hosseinzadeh et al. 2017). The other bioactive compounds identified were as follows: 4*H*-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl, a ketone reported earlier in *Malva sylvestris*, known to possess several biological properties (Al-Rubaye et al. 2017; Ashwathanarayana and Naika, 2017). 2-Methoxy-4-vinylphenol, a phytoconstituent with antioxidant, antimicrobial, anti-inflammatory properties in *Cassia angustifolia* (Alghamdi et al. 2018). The compound, Eugenol, has several biological properties like antioxidant, antimicrobial (Hamed et al. 2012), anti-proliferative and anti-inflammatory activities (Fujisawa and Murakami 2016). The bioactive compound Benzaldehyde, 3-hydroxy-4-methoxy, which is known for its antimicrobial activity and inhibits enzymes like 17- β -hydroxysteroid dehydrogenase, testosterone hydroxylase and arylamine-*N*-acetyltransferase (Prabhu et al. 2020). 1,3-Propanediol, 2-ethyl-2-(hydroxymethyl), is one such bioactive molecule with antioxidant and antimicrobial activity in *Erythrina variegata* (Umarani and Nethaji 2021). Ethanone, 1-(4-hydroxy-3-methoxyphenyl) and Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl) were the two identified non-steroidal bioactive compounds reported to have anti-inflammatory, antioxidant, enzyme inhibitor

properties and also employed as food additive (Ashwathanarayana and Naika 2017). The compound 4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol, has been reported to have diverse biological activities like antimicrobial, antioxidant, anti-inflammatory and analgesic (Mostafa et al. 2020). Tetradecanoic acid was identified as a cancer preventive, antioxidant, nematicide, lubricant and hypocholesterolemic in Ceropegia bulbosa (Arora and Meena 2017). Solavetivone, a phytoconstituent of tobacco and Solanum erianthum, has fungitoxic, antimicrobial and weak cytotoxic activities (Chen et al. 2013). Similarly, a compound phthalic acid, isobutyl nonyl ester was observed to be efficient in curing persistent cardiac and cerebrovascular problems, cancer, inflammation and bacterial infections (Ma et al. 2015). The compound 9,12-Octadecadienoic acid (Z,Z) was known to possess anticarcinogenic, antioxidant, anti-inflammatory and antiatherogenic properties (Arora and Meena 2017).

The second highest compound, *cis*-vaccenic acid, was well known for its anti-carcinogenic effect in *Origanum vulgare* (Al-Tameme et al. 2015). Similarly, geranylgeraniol (Ho et al. 2018) and vitamin E (Arora et al. 2017) were reported to have several biological properties. The compound 9,10-Secocholesta-5,7,10(19)-triene-3,24,25-triol, (3 β ,5Z,7E), acts as biocide and anti-corrosion agent in *Piper nigrum*

(Mohammed et al. 2016). Spirost-8-en-11-one, 3-hydroxy, -(3β , 5α , 14β , 20β , 22β ,25R) was found to possess anticancer (Rajendran et al. 2017), estrogenic, progesterogenic and anti-inflammatory effects (Gopu et al. 2021). Among the bioactive compounds identified in the root methanolic extracts of *S. khasianum*, the biological activity of some compounds was not yet identified and reported (Table 2).

The S. khasianum leaf methanolic extracts showed high antibacterial activity against P. aeruginosa in concentration-dependent manner, followed by E. coli, B. sphaericus and S. aureus (Fig. 3), whereas the root methanolic extract exhibited high antibacterial activity against E. coli, followed by P. aeruginosa, S. aureus and B. sphaericus. The result indicates that the S. khasianum root extract exhibited remarkable antibacterial property against P. aeruginosa and E. coli. Therefore, root methanolic extract of S. khasianum was considered as the most effective extract than leaf extract with regard to high anti-bacterial activity (Pavani and Shasthree 2021). This indicates that the root extract had more antibacterial compounds than leaf extract. Our results were in accordance with the reports on Momordica cymbalaria (Chaitanya and Pavani 2021). This study confirms that the S. khasianum extracts have significant antibacterial activity against tested bacteria.

Conclusions

The GC–MS analysis revealed the presence of 16 bioactive compounds in leaf methanolic extract and 32 bioactive compounds in root methanolic extract of *S. khasianum* based on their retention time, molecular weight, peak area and MS fragment ions generated. Heptadecane, 9-hexyl and stigmasterol were the predominant potential bioactive compounds identified in leaf and root extract. These extracts have shown high antibacterial activity against gram-positive and gram-negative bacteria. This study confirmed the presence of various biomolecules with significant biological properties, thereby confirming the medicinal claim and use of *Solanum khasianum* and making it a potential source of medicines.

Table 3 Antibacterial activity of Solanum khasianum extracts on tested bacteria	
---	--

Test organism	Leaf extract concentration (µg/ml)					Root extract concentration (µg/ml)					
	80	60	40	20	Std	80	60	40	20	Std	
B. sphaericus	15±0.14	13±0.19	12 ± 0.07	10 ± 0.14	24 ± 0.12	16±0.15	15 ± 0.14	13±0.16	12 ± 0.12	28±0.11	
E. coli	16 ± 0.16	15 ± 0.22	13 ± 0.13	12 ± 0.19	27 ± 0.15	21 ± 0.18	18 ± 0.20	16 ± 0.24	13 ± 0.16	24 ± 0.09	
S. aureus	15 ± 0.01	13 ± 0.14	12 ± 0.17	11 ± 0.02	25 ± 0.08	17 ± 0.02	14 ± 0.12	13 ± 0.11	11 ± 0.15	24 ± 0.16	
P. aeruginosa	17 ± 0.11	15 ± 0.12	14 ± 0.23	13 ± 0.15	20 ± 0.19	19 ± 0.18	16 ± 0.19	15 ± 0.21	13 ± 0.22	27 ± 0.13	

Abbreviations

GC-MS: Gas chromatography and mass spectroscopy; W/V: Weight/volume; rpm: Rotation per minute; µl: Microliter; ml: Milliliter; LB: Luria Bertani; µg/ml: Microgram per milliliter; DMSO: Dimethyl sulfoxide; Hrs: Hours; SD: Standard deviation; mm: Millimeter.

Acknowledgements

The authors thank SAIF, IIT, Bombay, for providing GC–MS instrumentation. We also thank Biotechnology Department, Kakatiya University, Warangal, for providing the facilities to carry out research.

Author contributions

PC conceived the research, analyzed the data and designed the manuscript. SBD helped in designing the manuscript, tables and figures. ST extended overall guidance and finalized the manuscript. All authors have read and approved the manuscript.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Availability of data and materials

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 4 April 2022 Accepted: 23 April 2022 Published online: 08 May 2022

References

- Akpuaka A, Ekwenchi MM, Dashak DA, Dildar A (2013) Biological activities of characterized isolates of n-hexane extract of *Azadirachta indica* A. Juss (Neem) leaves. Nat Sci 11(5):141–147
- Al-Gara NI, Abu-Serag NA, Shaheed KA, Al Bahadly ZK (2019) Analysis of bioactive phytochemical compound of (*Cyperus alternifolius* L.) By using gas chromatography–mass spectrometry. IOP Conf Ser Mater Sci Eng 571(1):012. https://doi.org/10.1088/1757-899X/571/1/012047
- Alghamdi SS, Khan MA, El-Harty EH, Ammar MH, Farooq M, Migdadi HM (2018) Comparative phytochemical profiling of different soybean (*Glycine max* (L.) Merr) genotypes using GC–MS. Saudi J Biol Sci 25(1):15–21. https:// doi.org/10.1016/j.sjbs.2017.10.014
- Al-Marzoqi AH, Hadi MY, Hameed IH (2016) Determination of metabolites products by *Cassia angustifolia* and evaluate antimicrobial activity. J Pharmacogn Phytother 8(2):25–48. https://doi.org/10.5897/JPP2015.0367
- Al-Rubaye AF, Kaizal AF, Hameed IH (2017) Phytochemical screening of methanolic leaves extract of *Malva sylvestris*. Int J Pharmacogn Phytochem Res 9(4):537–552. https://doi.org/10.25258/PHYTO.V9I4.8127
- Al-Tameme HJ, Hameed IH, Idan SA, Hadi MY (2015) Biochemical analysis of Origanum vulgare seeds by fourier-transform infrared (FT-IR) spectroscopy and gas chromatography–mass spectrometry (GC–MS). J Pharmacogn Phytother 7(9):221–237. https://doi.org/10.5897/JPP2015.0362
- Arancibia LA, Naspi CV, Pucci GN, Arce ME, Colloca CB (2016) Biological activity of 1-heneicosanol isolated from *Senecio coluhuapiensis*, an endemic species from Patagonia. Pharm Chem J 3:73–77
- Arora S, Meena S (2017) GC–MS profiling of *Ceropegia bulbosa* Roxb. var. bulbosa, an endangered plant from Thar Desert, Rajasthan. Pharma Innov J 6(11):568–573

- Arora S, Kumar G, Meena S (2017) GC–MS analysis of bioactive compounds from the whole plant hexane extract of *Cenchrus setigerus* Vahl. Pharma Sci Monit 8(4):137–146
- Ashwathanarayana R, Naika R (2017) Study on aphrodisiac activity of *Olea dioica* Roxb. Bark, leaf extracts and its pure compound using wistar albino rats. Asian J Pharm Clin Res 10(12):85–98. https://doi.org/10.22159/ajpcr. 2017.v10i12.21197
- Belakhdar G, Benjouad A, Abdennebi EH (2015) Determination of some bioactive chemical constituents from *Thesium humile* Vahl. J Mater Environ Sci 6(10):2778–2783
- Bhatnagar A, Gopala Krishna AG (2009) Nutraceuticals in sesame seeds and oil-a review. Beverage Food World 19:1–5
- Chaitanya G, Pavani C (2021) In vitro antimicrobial activity of leaf, stem fruit and root crude extracts of *Momordica cymbalaria* Fenzl: a medicinally important cucurbit. J Pharmacogn Phytochemistry 10(4):146–152
- Chen YC, Lee HZ, Chen HC, Wen CL, Kuo YH, Wang GJ (2013) Anti-inflammatory components from the root of *Solanum erianthum*. Int J Mol Sci 14(6):12581–12592. https://doi.org/10.3390/ijms140612581
- Chhetri DR (2019) Myo-inositol and its derivatives: their emerging role in the treatment of human diseases. Front Pharmacol 10:e1172. https://doi.org/ 10.3389/fphar.2019.01172
- Chirumamilla P, Gopu C, Jogam P, Taduri S (2021) Highly efficient rapid micropropagation and assessment of genetic fidelity of regenerants by ISSR and SCoT markers of *Solanum khasianum* Clarke. Plant Cell Tissue Organ Cult PCTOC 144(2):397–407. https://doi.org/10.1007/s11240-020-01964-6
- Chirumamilla P, Vankudoth S, Dharavath SB, Dasari R, Taduri S (2022) In vitro anti-inflammatory activity of green synthesized silver nanoparticles and leaf methanolic extract of *Solanum khasianum* Clarke. Proc Natl Acad Sci India Sect B Biol Sci 10:1–7. https://doi.org/10.1007/s40011-021-01337-9
- Enerijiofi KE, Akapo FH, Erhabor JO (2021) GC–MS analysis and antibacterial activities of *Moringa oleifera* leaf extracts on selected clinical bacterial isolates. Bull Natl Res Cent 45(1):1–10. https://doi.org/10.1186/ s42269-021-00640-9
- Faridha Begum I, Mohankumar R, Jeevan M, Ramani K (2016) GC–MS analysis of bio-active molecules derived from *Paracoccus pantotrophus* FMR19 and the antimicrobial activity against bacterial pathogens and MDROs. Indian J Microbiol 56(4):426–432. https://doi.org/10.1007/ s12088-016-0609-1
- Fujisawa S, Murakami Y (2016) Eugenol and its role in chronic diseases. Drug Discov Mother Nat 2016:45–66. https://doi.org/10.1007/ 978-3-319-41342-6_3
- Gogoi R, Sarma N, Pandey SK, Lal M (2021) Phytochemical constituents and pharmacological potential of *Solanum khasianum* CB Clarke., extracts: special emphasis on its skin whitening, anti-diabetic, acetylcholinesterase and genotoxic activities. Trends Phytochem Res 5(2):47–61. https://doi. org/10.30495/TPR.2021.1917249.1190
- Gopu C, Chirumamilla P, Daravath SB, Vankudoth S, Taduri S (2021) GC–MS analysis of bioactive compounds in the plant parts of methanolic extracts of *Momordica cymbalaria* Fenzl. J Med Plants 9(3):209–218. https://doi. org/10.22271/plants.2021.v9.i3c.1289
- Hamed SF, Sadek Z, Edris A (2012) Antioxidant and antimicrobial activities of clove bud essential oil and eugenol nanoparticles in alcohol-free microemulsion. J Oleo Sci 61(11):641–648. https://doi.org/10.5650/jos.61.641
- Ho HJ, Shirakawa H, Giriwono PE, Ito A, Komai M (2018) A novel function of geranylgeraniol in regulating testosterone production. Biosci Biotechnol Biochem 82(6):956–962. https://doi.org/10.1080/09168451.2017.1415129
- Hosseinzadeh Z, Ramazani A, Hosseinzadeh K, Razzaghi-Asl N, Gouranlou F (2017) An overview on chemistry and biological importance of pyrrolidinone. Curr Org Synth 14:1–3. https://doi.org/10.2174/157017941466617 0908165445
- Kalaivani CS, Sathish SS, Janakiraman N, Johnson M (2012) GC-MS studies on *Andrographis paniculata* (Burm. F.) Wall. ex nees—a medicinally important plant. Int J Med Arom Plants 2(1):69–74
- Kaunda JS, Zhang YJ (2019) The genus *Solanum*: an ethnopharmacological, phytochemical and biological properties review. Nat Prod Bioprospect 9:77–137. https://doi.org/10.1007/s13659-019-0201-6
- Kim SI, Andaya CB, Newman JW, Goyal SS, Tai TH (2008) Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. Theor Appl Genet 117(8):1291–1301. https:// doi.org/10.1007/s00122-008-0863-7

- Kumar RS, Anburaj G, Subramanian A, Vasantha S, Selvam AP (2019) Preliminary phytochemical investigation, antimicrobial activity and GC–MS analysis of leaf extract of *Capparis zeylanica* Linn. J Pharm Phytochem 8:1399–1405
- Ma Q, Zhang D, Yuzo F, Deng H (2015) Molecular characteristics of immune activities in *Cercis chinensis* stem extractives for physical anthropology. Bulg Chem Commun 47:130–135
- Mohammed GJ, Omran AM, Hussein HM (2016) Antibacterial and phytochemical analysis of *Piper nigrum* using gas chromatography–mass Spectrum and Fourier-transform infrared spectroscopy. Int J Pharmacogn Phytochem Res 8(6):977–996
- Mostafa ME, Mohamed H, Kamal El-Dean AM, Zaki RM, Abdel-Mogib M (2020) Volatile constituents of Beta vulgaris pulp-wastes as a source of bioactive natural products. Egypt Sugar J 14:37–50. https://doi.org/10.21608/esugj. 2020.219215
- Pavani C, Shasthree T (2021) Biological activity of green synthesized silver nanoparticles and different plant extracts of *Solanum khasianum* Clarke. Int Res J Adv Sci Hub 3:12–17. https://doi.org/10.47392/irjash.2021.103
- Prabha SP, Karthik C, Chandrika SH (2019) Phytol–A biosurfactant from the aquatic weed Hydrilla verticillata. Biocatal Agric Biotechnol 17:736–742. https://doi.org/10.1016/j.bcab.2019.01.026
- Prabhu K, Rao MR, Bharath AK, Vishal SK, Balakrishna P, Ravi A, Kalaivannan J (2020) The gas chromatography–mass spectrometry study of one ayurvedic Rasayana formulation Narasimha Rasayanam. Drug Invent Today 13(5):658–662
- Rajendran P, Bharathidasan R, Sureshkumar K (2017) GC-MS analysis of phytocomponents in raw and treated sugarcane juice. Int J Curr Microbiol Appl Sci 6(7):51–61. https://doi.org/10.20546/ijcmas.2017.607.007
- Rao MR, Anisha G, Prabhu K, Shil S, Vijayalakshmi N (2019) Preliminary phytochemical and gas chromatography–mass spectrometry study of one medicinal plant *Carissa carandas*. Drug Invit Today 12(7):1629–1630
- Raval SS, Vaghela PG, Mandavia MK, Golakiya BA (2016) Phytochemical analysis of *Malaxis acuminta* D. Don (Jeevak), an ingredient of Jeevaniya Group of Ashtavarga. Indian J Agric Biochem 29(2):155–160. https://doi.org/10. 5958/0974-4479.2016.00025.3
- Rosangkima G, Jagetia GC (2015) In vitro anticancer screening of medicinal plants of Mizoram State, India, against Dalton's lymphoma, MCF-7 and HELA cells. Int J Recent Sci Res 6(8):5648–5653
- Sathya S, Lakshmi S, Nakkeeran S (2016) Combined effect of biopriming and polymer coating on chemical constituents of root exudation in chilli (*Capsicum annuum* L) cv. K 2 seedlings. J Appl Nat Sci 8(4):2141–2154. https://doi.org/10.31018/jans.v8i4.1104
- Sundberg JJ, Faergemann J (2008) A comparison of pentane-1,5- diol to other diols for use in dermatology. Expert Opin Investig Drugs 17(4):601–610. https://doi.org/10.1517/13543784.17.4.601
- Umarani G, Nethaji S (2021) Gas chromatographic and mass spectroscopic analysis of *Erythrina variegata* leaf extract. J Nat Remedies 21(10 (2)):30–34
- Weill P, Plissonneau C, Legrand P, Rioux V, Thibault R (2020) May omega-3 fatty acid dietary supplementation help reduce severe complications in Covid-19 patients? Biochimie 179:275–280. https://doi.org/10.1016/j. biochi.2020.09.003

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com