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Abstract: Natural products have played a critical role in medicine due to their ability to bind
and modulate cellular targets involved in disease. Medicinal plants hold a variety of bioactive
scaffolds for the treatment of multiple disorders. The less adverse effects, affordability, and easy
accessibility highlight their potential in traditional remedies. Identifying pharmacological targets
from active ingredients of medicinal plants has become a hot topic for biomedical research to
generate innovative therapies. By developing an unprecedented opportunity for the systematic
investigation of traditional medicines, network pharmacology is evolving as a systematic paradigm
and becoming a frontier research field of drug discovery and development. The advancement
of network pharmacology has opened up new avenues for understanding the complex bioactive
components found in various medicinal plants. This study is attributed to a comprehensive summary
of network pharmacology based on current research, highlighting various active ingredients, related
techniques/tools/databases, and drug discovery and development applications. Moreover, this study
would serve as a protocol for discovering novel compounds to explore the full range of biological
potential of traditionally used plants. We have attempted to cover this vast topic in the review
form. We hope it will serve as a significant pioneer for researchers working with medicinal plants by
employing network pharmacology approaches.

Keywords: network pharmacology; medicinal plants; active ingredients; system biology; drug dis-
covery

1. Introduction

It has become a need of the hour to tackle the major concerns that the world has been
confronted with regarding global health challenges [1]. Complex diseases, including cancer,
diabetes, etc., draw researchers’ attention because these diseases are frequently caused by a
malfunction of a complete regulatory network rather than a mutation or malfunctioning of
a single gene [2]. As a result, the goal of diagnosing and treating complicated disorders
may not be achieved by simply targeting a single gene. However, there is an urgent need
to develop innovative approaches to target the entire biological networks that underlie the
disease [3,4]. Thus, understanding the molecular pathways that govern disease prognosis
are critical in the fight against complicated diseases [5].

Presently, natural products comprise a large portion of current-day pharmaceutical
agents, most notably in the area of disease treatments [6]. Natural products have long been
a huge storehouse of potent resources for mankind [7]. High throughput techniques have
proposed a strong arm in screening the pharmacological efficacy of herbal medicines in
drug discovery [8]. One unique way to learn more about how active substances perform
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their therapeutic effect is to predict the gene networks that are being regulated by active
compounds of medicinal plants [9]. Drug discovery faces an efficacy crisis to which
ineffective, mainly single-target, and symptom-based rather than mechanistic approaches
have contributed. Current one drug–one target–one disease approaches in drug discovery
have become increasingly inefficient. While single-target strategies might prove a useful
approach for single gene disorders, however, for complicated diseases that are caused by
the interaction of multiple genes, such one single-target approaches are not fruitful [10].
The concept of developing multi-target drugs against complex diseases such as diabetes
and cancer is fast growing in drug discovery. Regarding this, network pharmacology
defines disease mechanisms as networks best targeted by multiple, synergistic drugs. The
use of network pharmacology to better understand the mechanism of action of herbal
medicines has recently become popular [11,12]. In 2007, Hopkins coined the term “network
pharmacology”, which is based on the idea that several highly efficient drugs act on
numerous targets rather than just a single one [13]. Moreover, Figure 1 illustrates the origin
of network pharmacology.

Network pharmacology is evolving as a frontier in drug discovery and development as
it integrates systematic medicine with information science [14]. In the beginning, network
pharmacology had a vague conception about drug discovery, and perhaps some overhyp-
ing of its promises, as found in the early stages of almost all new technologies [15,16]. At
present, one can say that network pharmacology has begun to grow and is a commonly
used approach in this modern era-drug discovery process [17]. Network pharmacology is
an integrative in silico approach for establishing a “protein–compound/disease–gene” net-
work to reveal the mechanisms underlying the synergistic therapeutic actions of traditional
medicines [18]. This advancement, in turn, has shifted the paradigm from a “one-target,
one-drug” mode to a “network-target, multiple-component-therapeutics” mode.
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The use of bioactive compounds to reform medicines in the future is exciting, and
prospects for curing multiple diseases are encouraging [19,20]. This review sheds light on
potential correlations between target genes and active ingredients of medicinal plants from
a network pharmacology perspective. The present study addresses the break in literature
by presenting an integrated approach exploring drug–target interactions to better identify
the novel inhibitors for a particular target and their mode of action. This literature review
provides a comprehensive overview of the methodology, significance, and application of
network pharmacology to cure a wide spectrum of complex diseases. To our knowledge,
this baseline review aids researchers in understanding many aspects of biomedicine, from
protein synthesis to health and diseases.

2. Network Biology to Network Pharmacology

The advent of highly efficient technologies for analyzing big data has opened new
avenues for discovering more intriguing and effective diagnostic and therapeutic solu-
tions [5,21]. Understanding how well the proteins interfere with the functioning of the
complex regulatory machinery is critical [22]. This sparked the development of network
biology, which asserts that biological networks are commanded by general principles that
propose a unique theoretical foundation that ultimately changes our understanding re-
garding the biology of diseases. Numerous techniques for the construction of regulatory
networks were proposed in the 21th century that used computational tools, particularly
data mining, to explore the relationship among phenotypes and genotypes of diseases [23].
Innovations in network biology have revealed that single-protein targets are ineffective in
treating complicated disorders [24,25]. This prompted drug developers to understand the
principle of polypharmacology, which they had previously viewed as an ineffective ap-
proach that needed to be eradicated to develop a viable multi-target drug [26,27]. With the
emergence of network pharmacology as a completely independent technique, a dramatic
change has been observed from extremely specialized single-target drugs to multi-targeted
drugs. The next era witnessed the integration of system biology with polypharmacology in
various health sides [28–30].

3. Network Pharmacology and Traditional Medicine

Over the past decade, local communities used medicinal plants without scientific stud-
ies [31,32]. Various medicinal plant species have been utilized in traditional medicines [33,34].
Although medicinal plants impact people’s lives by providing low cost and natural reme-
dies, the unsustainable use and traditional collection and application methods have resulted
in the depletion of several plant species of precious worth [35,36]. Traditional medicines,
which are described by holistic philosophy and extensive experimentation in multicom-
ponent treatments, provide promising potential for controlling the complicated nature of
disorders [37–39]. Using herbal formulae is a unique aspect of traditional medicine [40]. In
this era of big data, the reengineering of traditional medicines may be performed by simply
understanding the combinatorial nature of herbal formulae as well as their mechanisms of
action [41,42]. Today’s network pharmacology provides a novel opportunity to investigate
not only the molecular complexity of herbal formula but also the correlation that exist
among the herbal formula and complicated disorders in a systematic manner [43,44]. Herbs
used in traditional medicines have indicated a best molecular match, which might elicit a
more consistent network reaction than a single drug [45–47]. Network-based methodologies
are becoming more popular research tools in areas of new drug development. They assist
in comprehending innovative treatments by utilizing natural products as the lead com-
pound responsible for drug synergism and cumulative activity. These techniques have been
proven to work in a variety of herbal compositions used in traditional medicine [48–50].

Network pharmacology is considered a modern-era approach for identifying active
compounds and putative molecular targets from a wide variety of herbal formulae or simple
herbs [51–53]. This integrated approach is a touchstone for the initial screening of medicinal
plants’ bioactive compounds and a new therapeutic concept for further exploration on
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mechanisms’ active compounds for disease treatment [54,55]. As a result, incorporating
network pharmacology in traditional medicine will offer unique and novel options for
uncovering active compounds, biomarkers, and the scientific basis of traditional medicine
based on the complicated biological systems of the human body [54,56,57].

4. From Polypharmacology to Network Pharmacology: The Need to Reengineer
Botanical Drugs

Even if healing is magical, it is unbelievable that there is a therapeutic effect without
molecular interactions between the biological target and treatment. Medicinal plants that
hold millions of potentially active ingredients frequently fail to disclose the expected
molecular mechanisms of action [3,58–60]. Usually, standard biochemical methods are
incapable of elucidating viable action modes. Despite such an average response, more
research is pressingly demanding steps to achieve outstanding output in the future. Various
active ingredients in medicinal plants have no more-robust connections with target proteins
of the regulatory network; therefore, a synergistic approach is highly preferable that can
switch off the action of harmful proteins, which in turn targets whole molecular networks
that underlie the disease state [61,62].

Integrating network biology with polypharmacology can broaden current views on
druggable targets while also aiding in understanding the pharmacological action of herbal
medicines [13,63,64]. Polypharmacology and synergism discoveries are laying the ground-
work for drug discovery in the following modern era of big data. Polypharmacology
broadens the scope of drug discovery [65–67]. Molecules are linked to one another in
orderly fashions that are characterized by strong binding affinities. Polypharmacology
integrated with breakthroughs of structural biology and chemoinformatics has paved the
way to develop licensable drugs with no side effects [68,69].

Network pharmacology could be an excellent place to start. The term “network
pharmacology” mainly emphasizes the existence and importance of multi-targeted drugs
instead of single-targeted drugs [70,71]. Hopkins recommended three approaches to
develop a multi-target therapy: He began by prescribing a multidrug made up of many
individual drugs. Designing of a multi-component drug was the second-most-important
postulate. Designing a single drug acting on multiple targets was the last option. As
per Hopkins’ view, the last postulate is advantageous since it would make dosage trials
easier [13,63]. Virtual pharmacology and in silico analysis could be useful new tools in
herbal medicine research. The underlying pharmacology, in particular, should be a primary
consideration. More rigorous investigations on the bioavailability of natural products
will undoubtedly lead to progress before these chemicals are used in in vitro experiments.
Furthermore, research into the pharmacodynamics of natural compounds is critical in
understanding pharmacological synergies and the potential network pharmacology of
medicinal plants [12,72,73].

5. Methodology of Network Pharmacology Research

Network pharmacology research revolves around identifying compound- and disease-
related genes, constructing a protein–protein interaction (PPI) network, and lastly, analyz-
ing and visualizing the network [74–76]. The construction of molecular networks from
large databases is a simple start. Then, using network analysis, key nodes are identified
and key biological pathways are predicted [77]. Finally, additional network validation
is performed to successfully validate the interaction between highly active constituents
and their putative targets [78,79]. In this review, we highlighted all the steps of network
pharmacology research. The workflow is displayed in Figure 2.
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derived targets, effect prediction, mechanism clarification, and new drug assistant discovery using
network pharmacology approach. It analyzes the information from public data, high-throughput
experimental data, and herbal medicinal data and constructs network using technologies of network
expansion, optimization, comparison, knockout, and addition. Finally, it carries out computational
and experimental verifications.

5.1. Data Mining

Identifying active compounds of medicinal plants and diseases-related targets is the
preliminary step in network pharmacology research. Generally, a literature search is carried
out to identify active compounds; however, various public databases provide a user-friendly
interface to predict the active compounds of the medicinal plant [9,12]. After obtaining
active compounds, the canonical SMILES of active compounds are retrieved from available
public databases. Some online and standalone tools are available, which become a handy
platform for identifying canonical SMILES [80]. After obtaining canonical SMILES, network
pharmacology research turns around gene prediction or from canonical SMILES. To perform
this task, a list of user-friendly tools and databa.ses are available. Another important thing
is that we can get statistically significant genes by applying precise cutoff on the probability
of genes and obtaining highly significant genes. The prediction of disease-related genes
is a preliminary step to explore the molecular mechanism of medicinal herbs for treating
multiple diseases and disorders [81,82]. Additionally, instead of relying on literature data,
the target gene can also be obtained through real experiments; for example, researchers have



Pharmaceuticals 2022, 15, 572 6 of 33

now analyzed the transcriptome-wide gene expression microarray profiles of isolated cells
in response to the exposure to plant extracts, their combinations, or purified compounds,
followed by ingenuity pathway analyses in silico to elucidate their mechanisms of action
and activated molecular networks behind predicted therapeutic effectiveness in various
health conditions [83–93].

5.2. Network Construction and Analysis

Venn diagrams tools are preferable for identifying overlapped targets of diseases and
compounds. This step mainly aims to predict disease-related genes and subsequently iden-
tify the common genes between diseases and compounds. The common genes are initial
touchstones for further screening [94,95]. Network analysis is carried out to understand the
mechanism of medicinal plants in disease treatment. Protein–protein interactions (PPI) are
highly significant by virtue of having a high versatility, adaptability, and specificity [78,96].
The PPI network of key targets (common genes) is obtained through databases that pro-
vide the functional interactions among key targets [96,97]. Later, the network analysis is
performed to predict the hub genes that have the best degree of connectivity. Biological
networks supply us with a wealth of data [98]. The important point is how to retrieve
key information from networks. Network analysis tries to uncover important targets,
active ingredients, and their associated pathways by identifying targets. Network analysis
employs a variety of methodologies, the most common of which is network functional
analysis. Biological networks have been discovered to have a modular aspect, and many
beneficial drugs have therapeutic effects by modulating several proteins instead of using a
single protein. Several subnetworks having particular roles and topologies in large and
complicated networks have been unveiled via topological research. At a functional level,
GO enrichment analysis and KEGG pathway analysis provide exclusive key target features
by exploring their associated pathways [43].

5.3. Validation of Results

It is important to verify the results obtained through the aforementioned steps. Various
validation methods are available to confirm the efficacy of predicted molecular targets.
In vitro and in vivo are generally considered the most viable methods, but these methods
are time-consuming and require a high cost to yield correct results. However, with the
emergence of high-throughput technologies and advancement in the genomic era, various
in silico approaches have been designed, providing a handy platform for validation of
results [99]. Lastly, both experimental and virtual methods are available to validate the
predicted results.

Receptor–ligand molecular docking is used to predict the docking sites of active
ingredients and key targets derived from network pharmacology. Therefore, network
pharmacology and molecular docking effectively bridge the gap between western medicine
and herbal medicine and greatly facilitates mechanistic studies on the synergistic actions of
herbal medicines. Molecular docking has become a lightning rod and the most applicable
approach in the drug discovery toolbox [100,101]. Molecular docking enables the prediction
of interaction that ties up ligands with their corresponding proteins in a bound state [102].
Most researchers used the molecular docking approach for validation [96,103]. Mainly
docking score and binding energy are considered key criteria for constituent screening. A
list of studies has witnessed the importance of molecular docking as a validation technique
in network pharmacology.

Zhang et al. [104] performed molecular docking to screen out the putative targets of
Prunella vulgaris L., which can lower the risk of breast cancer. Docking analysis successfully
predicted the strong binding affinity between active constituents of Prunella vulgaris L.
and binding pockets of target proteins. In the work of Liu et al. [105], combined network
pharmacology and molecular docking analysis were performed to uncover the molecu-
lar targets and mechanism of Huangqi Guizhi Wuwu decoction for treating rheumatoid
arthritis. Through network analysis, a total of 790 compounds was obtained. Later molec-
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ular docking analysis revealed that out of 790 compounds, quercetin, kaempferol, and
beta-sitosterol have a strong binding affinity with target proteins (VCAM1, JUN, and
CTNNB1). Therefore, quercetin, beta-sitosterol, and kaempferol exhibited therapeutic
effects on molecular targets and their associated pathways. Furthermore, Ruan et al. [106]
uncovered the action mechanism of Dayuanyin for the treatment of COVID-19 by em-
ploying network pharmacology. Based on network analysis, they used molecular docking
to validate predicted results. Molecular docking analysis revealed the binding affinity of
active ingredients, namely naringenin, kaempferol, formononetin, quercetin, isofavone, and
7-Methoxy-2-methyl with core target genes (Interleukin 6, Interleukin 1B, and CCL2). In
conclusion, molecular docking mainly aims to validate the successful activity of the active
compounds against potential gene targets. The information obtained through molecular
docking might aid researchers in understanding many aspects of biomedicine, from protein
synthesis to health and disease.

Gene expression microarray analysis is also an un-doubtful technique for validating
predicted results. Gene expression microarray analysis is the measurement of the activity
of thousands of genes at once to provide a global view of cell processes. These profiles can
be used to differentiate cells that are actively dividing or to illustrate how cells respond to
a certain therapy. High-density microarrays are among the most powerful and versatile
methods for analyzing the expression patterns of huge numbers of genes across different tis-
sues or within the same tissue under various experimental circumstances. The widespread
use of microarray technologies generates vast amounts of data, which encourages the
development of improved analytical methods to anticipate the activities of target genes. To
examine the differential gene expression levels of putative targets, gene expression data are
downloaded from Gene Expression Omnibus (GEO) [107]. GEO is a freely available public
repository of the National Center for Biotechnology Information (NCBI), which encloses
the gene profiles. Only those genes are significantly expressed with a logFC value ±1 with
an adjusted p-value < 0.05. If the logFC value is negative, then that gene is marked as
downregulated, and a gene having a positive logFC value is called upregulated. Hence,
these profiles are utilized at various phases of the network pharmacology process, which
aid in identifying new drug targets, predicting novel gene activity, and understanding
individual drug response variability.

Researchers use microarray analysis to validate predicted results in some network
pharmacology studies. After successfully performing microarray analysis, they move to-
ward real time-polymerase chain reaction (RT-PCR) to validate the differentially expressed
target genes identified after microarray analysis. RT-PCR is now a well-established method
for detecting and quantifying target genes in clinical diagnosis and treatment. One key
application of this technology as a research tool is the rapid and accurate assessment of
changes in gene expression due to pathophysiology, physiology, and development.

Hong et al. [108] predicted putative targets of flavonoids from citrus to treat non-
alcoholic fatty liver disease by employing a network pharmacology approach. They used
microarray analysis and RT-PCR for the validation of predicted results. They finally pre-
dicted VEGF-C as a key target of pure flavonoid from citrus to treat non-alcoholic fatty liver
disease in mice. Zhang et al. [109] used a network pharmacology-based methodology to
predict active constituents of Huangqi decoction against rat liver fibrosis. After performing
network analysis, they used both gene expression profiling analysis and RT-PCR to validate
the results. They finally demonstrated the strong actions of Huangqi decoction against rat
liver fibrosis. Furthermore, Li et al. [110] also used the same methodology and revealed the
targets of Sinomenine for the treatment of breast cancer.
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Western blotting is another unquestionable and reliable technique for the validation of
expression levels of target genes. Researchers commonly use Western blotting to validate
the results derived using the target–pathway interaction network. The accuracy and
reliability of results provided by Western blot analysis increase the confidence of researchers,
which ultimately leads to make ground-breaking discoveries in the field of drug discovery
and development. A list of studies evidenced the accuracy of Western blot analysis. Cai
et al. [111] used Western blot analysis to validate results derived after network analysis.
They finally concluded that Yinchenhao decoction suppresses the rat liver fibrosis involved
in regulating multiple targets, especially affecting the apoptosis-related signalling pathways.
Guo et al. [112] used Wu-Tou decoction to treat rheumatoid arthritis. For validation of
results, they used Western blotting. Their study revealed that Wu-Tou decoction plays an
important role in inhibiting inflammatory response in rheumatoid arthritis and is closely
connected with the modulation effect of Wu-Tou decoction on the CCR5 signalling pathway
in macrophages. Furthermore, wang et al. [113] investigated the multi-targets mechanism
of triphala on cardio-cerebral vascular diseases by employing network pharmacology
and Western blot analysis. Their study revealed that pharmacological mechanism and
complicated components of Triphala, which could provide a theoretical basis for the
research and development of new drugs for treating cardio-cerebral vascular diseases.

Generally experimental verifications such as in vivo analysis are mandatory in many
studies in order to deeply analyze the results [114,115]. Based on the complicated nature
of diseases and validation processes, researchers worldwide explored a new strategy
to improve the efficiency of active ingredients screening, which ultimately helps in the
discovery of some multi-target compounds with biological activity for the development of
novel drugs against disease. Nowadays, researchers use the mouse model to successfully
validate predicted results and make innovative treatment options against the deadliest
diseases. In network pharmacology research, the effect of active compounds of medicinal
plants on key disease signalling pathways are validated using a mouse model.

Qin et al. [12] used network pharmacology to predict the mechanisms of action of
Shenkang in chronic kidney disease. They performed both pharmacological network
analysis as well as in vivo validation for determining the potential effect and mechanisms of
Shenkang in the treatment of chronic kidney disease. Their study proposed that Shenkang
exerted a curative effect on chronic kidney disease and chronic kidney disease-related
diseases by targeting different organs, proliferation processes, and regulating inflammation.
Furthermore, Liu et al. [116] employed both network pharmacology and in vivo validation
to understand the pharmacological mechanism of the Xianglian pill against ulcerative colitis.
Their study revealed the clinical treatment efficacy of the Xianglian pill for ulcerative colitis.

Lastly, the quantification of validated data can be performed using several inte-
grated approaches such as proteomics, transcriptomics, genomics, metabolomics, and
high-throughput screening (HTS) [117]. HTS is an efficient approach to the modern era.
HTS is a method for scientific experimentation that is particularly useful in drug de-
velopment and is applicable to system biology, chemistry, and many other fields. HTS
technology can swiftly discover billions of data samples and predict the effect of chemi-
cals/compounds on specific molecular pathways [118,119]. Furthermore, this dual and
novel high-throughput technology enables network data collection from experiments/trials
and ultimately validates the network model’s accuracy. For instance Fakhari and Dittmer
developed PCR chip technology to analyze gene expression [120]. The findings revealed
that the method was suitable for high-throughput research. Another method is to validate
the molecular interaction that exists between networks. This method yields a new perspec-
tive in the context of understanding drug activity mechanisms and the validation of the
drug network or predicted model. It mostly consists of surface plasmon resonance (SPR)
and biolayer interferometry (BLI) technologies, which can aid researchers in discovering the
interaction between drugs and biomolecules [121,122]. High-throughput, high-precision,
and real-time detection are all used in BLI and SPR techniques.
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In short, network pharmacology along with validation techniques help in the dis-
covery of key pharmacological mechanisms of herbs/herbal formulae. These integrated
approaches lay a foundation for treating complex diseases by using medicinal plants.
Therefore, more innovative and novel strategies must be applied to fully understand the
therapeutic mechanisms of medicinal plants.

6. Research Approaches of Network Pharmacology

Network pharmacology can affect drug discovery and development in two ways: One
method is to create a realistic network model and forecast the pharmacological target using
public datasets or data from previous studies. Following that, the network equilibrium
concept should be investigated through the mechanisms of functional drugs. Gu et al. [123]
evaluated the impact of Rheidin A and C, along with Sennoside C, using this technique,
and it was the first study on multiple integrated drugs for type 2 diabetes. The alternative
strategy uses bioinformatics approaches and high-throughput technologies to construct
a “drug–target–disease” network. The drug’s action in various biological processes was
investigated by comparing the drug’s interaction with the network. In the literature, there
are numerous examples of network pharmacology being used in drug development. For
example, Li et al. [124] employed the Liuwei Dihuang tablet to forecast the best network
targets and discovered that multi-layer networks could underpin the integrated action
mechanism of herbs and herbal formulae. Furthermore, it has been shown that salvianolic
acid B was appropriate and viable for treating cardiovascular disease by combining the
previous study methodologies [125]. In conclusion, advances in systems biology and bioin-
formatics change our understanding of the treatment and diagnosis of diseases through
medicinal plants from a network pharmacology perspective and ultimately contribute
substantially to the modernity of medicinal plants.

7. From Network Pharmacology to Integrated Multi-Omics Approaches

Recent advancements in sequencing technologies have countered the revolution in
various integrated approaches, in which the one named omics is the emergent field. With
time, biology gradually depends on the data derived from multi-omics data [126–128].
Multi-omics data aimed to point out the interrelation among biomolecules, hence multi-
omics data has paved the way for understanding function as well as interrelation among
biomolecules [129,130]. Network pharmacology has evolved into a strong method for
uncovering complicated biological interactions systematically. Network pharmacology
uses “omics” techniques to detect variations at core molecular and cellular levels in terms of
a specific pathophysiology or pharmacological treatment [9,131,132]. The obtained dataset
aids in the generation of networks that describe molecular processes from the genetic
to the metabolomics level. The main omics approaches used in network pharmacology
are epigenomics, transcriptomics, proteomics, and metabolomics. Because there are so
many molecular pathways and epigenetic effects on the phenotypic expressions of diseases,
hence, a systems biology approach based on innovative modeling approaches is essential
for investigating gene–environment interactions and therapy success [132–134]. The study
of epigenetic alterations has yielded a wealth of information about prognostically important
genes.

Several studies have been made on the mechanisms adopted by a cell to perform
its functions better. As cells are comprised of the same set of genes, why does each gene
behave differently from one another? Here comes a phenomenon named epigenetics. For a
stage-by-stage characterization of epigenetic genes, a systems biology method was used,
and epigenetic sub-network analysis identified a collection of conserved genes. Thus,
the integration of network pharmacology demonstrated the existence of epigenetically
de-regulated functional hotspots, which ultimately helps in fighting against disease by
understanding the underlying mechanism in the progression and pathogenesis. For exam-
ple, Gnad et al. [135] utilized differential gene expression as well as correlation network
analyses to find dysregulated epigenetic regulator genes in cancer and found EZH2 to be
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the most significantly overexpressed epigenetic regulator in cancer that was classified as an
oncogene. Furthermore, the bioinformatics analysis of single nucleotide polymorphisms
(SNPs) may aid in the prevention of adverse drug reactions in certain patient groups and
develop new medical interventions.

8. Merging the Molecular Disease Network with the Pharmacological Network of the
Candidate Drugs

The biological clock of life has recently been progressively investigated from a systems
approach across fields of science and technology. There has already been a lot of work
conducted to develop practical frameworks for bringing “systems thinking” to improve
public health. The minimum distance among proteins was evaluated in the published paper,
which highlighted the links between drug targets and disease-target products. Considerable
differences were discovered between analgesic and etiological medicines, and the research
revealed a modern trend towards rational drug design. The integration of disease-related
targets and drug targets through network biology has become a crucial step in developing
novel and putative drugs [136–138].

In contrast, drug repurposing, which uses old drugs to develop new and better drugs,
would be possible with network pharmacology methodologies. A new pharmaceutical
product takes at least ten to fifteen years to develop and costs between $500 million and
$2 billion, but there has been a steady rate of introduction of new drugs. Existing drugs
already have clinical evidence, so getting them approved for a new use takes very little
energy and money [139–141]. Alternatively, we may use other techniques to screen out
existing drugs and analyze which herbal formula or herb has the potential to act as a
drug. As a result, we offer an approach for the repurposing of old drugs based on network
pharmacology.

9. Implications of Network Pharmacology for Therapy

The widespread failure of specific candidate drugs to progress from pre-clinical to
clinical trials raises the question of whether a particular drug discovery is the best tech-
nique. Due to the poor understanding and validation of these targets in patients, even
using medications operating on defined targets coupled to robust biological networks is
difficult [142]. As a result, network pharmacology is becoming increasingly essential, and
it is attracting a lot of interest in contemporary drug discovery [3]. For example, pleiotropic
active ingredients targeting numerous proteins and biological processes in cancer-related
networks could be effective. Herbal medicinal treatments are used all throughout the world
to keep people healthy. Due to their diversity in structure, bioactivity, and nontoxicity,
herbal medicines are recognized as a significant fountainhead for new active molecules
in drug discovery, drawing global attention [143]. The paradigm of “one disease, one
drug, one target” is giving way to “one disease, one drug, several targets”. Network
pharmacology examines when and where one target can suppress disease characteristics,
such as tumor progression, leading to the development of medicines that do not induce
side effects. Network pharmacology’s benefits have become incredibly influential in drug
discovery, particularly in repurposing old drugs [144]. Computational drug designing
aided by network-based methodologies helps in predicting the adverse effects of drugs and
helps the drug molecule find its target binding site [145]. Network pharmacology offers
new drug discovery options that may be more fruitful than using herbal medicine without
any scientific basis. This hypothesis drew interest since it offered the possibility of having
efficient therapies that were more targeted and had less adverse effects in normal body cells.
Network pharmacology may offer novel options for rigorous target selection and the devel-
opment of multi-target, distinctive active compounds to treat them [28]. In the PPI network,
highly linked regions are highly preferable because these nodes are considered the main
target in the disease state. Hence, by targeting such nodes, we can achieve the goal. On the
other hand, drugs cannot block all targets in a regulatory network. Only around fifteen
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percent of nodes in a particular network are druggable [146,147]. Multiple approaches to
generating appropriate phyto-therapies based on network data can be considered:

• If the potentially active compounds of herbs or herbal mixes are identified, they can
be considered. This technique is mostly made based on their use in herbal medicine.
Herbal formulations are similar to multi-drug targeted therapy [51].

• Active compounds can simply be used to achieve multi-target specific therapy using
selective poly-pharmacological methods [148,149]

• Proteins that are not required in normal cells could become therapeutically important
if they’re linked together in a cancer network. Their simultaneous eradication or inhi-
bition could result in more effective or even synergistic tumor cell eradication. What
makes perfect sense in the human physiological process is to create significant thera-
pies options. A potential answer to this difficulty could be to use polypharmacology to
disrupt whole disease-causing networks using botanicals or sophisticated herbal mixes
that target numerous targets, rather than knocking out specific proteins [150,151].

10. Databases and Data Analysis Tools Related to Network Pharmacology

Biologically important databases that provide a huge amount of data related to the
relationship between biomolecules enable the researcher to use network pharmacology
as a modern era drug discovery approach (Table 1). All these databases and tools are
freely available, and providing a free hand to users can be useful in retrieving valuable
information from the perspective of network pharmacology research.

Table 1. List of available resources for network pharmacology research.

Sr. No# Resources Brief Description Usage URL Reference

1. BioCarta
Online maps of
metabolic and

signalling pathways

Database of gene
interaction models

https://maayanlab.cloud/
Harmonizome/dataset/

Biocarta+Pathways
(accessed 29 April 2022)

[152]

2. BioGRID
Biological General

Repository For
Interaction Datasets

Retrieval of
protein–protein

interaction network

http://thebiogrid.org/
(accessed 29 April 2022) [153]

3. C2Maps Computational
Connectivity Maps

Annotation of
drug–protein pairs

http:
//bio.informatics.iupui.edu/

(accessed 29 April 2022)
[154]

4. CB Chemical book Retrieval of chemical
structures

http:
//www.chemicalbook.com/

(accessed 29 April 2022)
[155]

5. ChEMBL Database of bioactive
compounds

Retrieval of functional
as well as binding

information of active
compounds

https:
//www.ebi.ac.uk/chembl/

(accessed 29 April 2022)
[156]

6. ChemProt
Chemical–protein–
disease annotation

database

Analysis of interaction
between chemical and

protein

http://www.cbs.dtu.dk/
services/ChemProt-2.0/
(accessed 29 April 2022)

[157]

7. ChemSpider Database of chemical
structures

Retrieval of chemical
structures

http://www.chemspider.com/
(accessed 29 April 2022) [158]

8. CHMIS-C

Comprehensive
Herbal Medicine

Information System
for Cancer

Database of herbal
medicine related

cancer

http://sw16.im.med.umich.
edu/chmis-c/

(accessed 29 April 2022)
[159]

https://maayanlab.cloud/Harmonizome/dataset/Biocarta+Pathways
https://maayanlab.cloud/Harmonizome/dataset/Biocarta+Pathways
https://maayanlab.cloud/Harmonizome/dataset/Biocarta+Pathways
http://thebiogrid.org/
http://bio.informatics.iupui.edu/
http://bio.informatics.iupui.edu/
http://www.chemicalbook.com/
http://www.chemicalbook.com/
https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
http://www.cbs.dtu.dk/services/ChemProt-2.0/
http://www.cbs.dtu.dk/services/ChemProt-2.0/
http://www.chemspider.com/
http://sw16.im.med.umich.edu/chmis-c/
http://sw16.im.med.umich.edu/chmis-c/
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Table 1. Cont.

Sr. No# Resources Brief Description Usage URL Reference

9. COGs Clusters of
Orthologous Gene

Classification of
proteins on

phylogenetic basis

https://www.ncbi.nlm.nih.
gov/COG/

(accessed 29 April 2022)
[160]

10. CPDB Consensus Path
DataBase

Molecular functional
interaction database

http://cpdb.molgen.mpg.de/
(accessed 29 April 2022) [161]

11. Cytoscape
Database for network

construction and
visualization

Network analysis https://cytoscape.org/
(accessed 29 April 2022) [162]

12. DAVID

Database for
Annotation,

Visualization &
Integrated Discovery

Functional annotation https://david.ncifcrf.gov/
(accessed 29 April 2022) [163]

13. DIP Database of
Interacting proteins

Analysis of
protein–protein

interaction network

http://dip.doe-mbi.ucla.edu
(accessed 29 April 2022) [164]

14. DrugBank
Online database

containing
information on drugs

Analysis of detailed
drug data

http://www.drugbank.ca/
(accessed 29 April 2022) [165]

15. GeneCards Database of human
genes

For identification of
disease-related genes

https://www.genecards.org/
(accessed 29 April 2022) [166]

16. Guess

Computer program for
the analysis and
visualization of

networks

Network analysis

http://www.levmuchnik.net/
Content/Networks/

ComplexNetworksPackage.
html

(accessed 29 April 2022)

[167]

17. HAPPI Human Annotated &
Predicted Protein

Retrieval of
protein–protein

interaction network

http://bio.informatics.iupui.
edu/HAPPI/

(accessed 29 April 2022)
[168]

18. HIT

A comprehensive and
fully curated database

for linking herbal
active ingredients to

targets

Herbal ingredients’
targets identification

http://lifecenter.sgst.cn/hit/
(accessed 29 April 2022) [169]

19. HPRD Human Protein
Reference Database

Retrieval of
protein–protein

interaction network

http://www.hprd.org/
(accessed 29 April 2022) [170]

20. InterPro Integrative database of
protein families

Collection of protein
families

http:
//www.ebi.ac.uk/interpro/

(accessed 29 April 2022)
[171]

21. KEGG Kyoto Encyclopedia of
Genes and Genomes Pathway analysis http://www.genome.jp/kegg/

(accessed 29 April 2022) [172]

22. LookChem Database of chemical
structures

Retrieval of chemical
structures

http://www.lookchem.com/
(accessed 29 April 2022) [173]

23. MetaCoreTM MetaCore (TM) Pathway analysis http://www.genego.com
(accessed 29 April 2022) [174]

24. MMsINC Database of
chemoinformatics

Retrieval of chemical
structures

http://mms.dsfarm.unipd.it/
MMsINC/search/

(accessed 29 April 2022)
[175]

https://www.ncbi.nlm.nih.gov/COG/
https://www.ncbi.nlm.nih.gov/COG/
http://cpdb.molgen.mpg.de/
https://cytoscape.org/
https://david.ncifcrf.gov/
http://dip.doe-mbi.ucla.edu
http://www.drugbank.ca/
https://www.genecards.org/
http://www.levmuchnik.net/Content/Networks/ComplexNetworksPackage.html
http://www.levmuchnik.net/Content/Networks/ComplexNetworksPackage.html
http://www.levmuchnik.net/Content/Networks/ComplexNetworksPackage.html
http://www.levmuchnik.net/Content/Networks/ComplexNetworksPackage.html
http://bio.informatics.iupui.edu/HAPPI/
http://bio.informatics.iupui.edu/HAPPI/
http://lifecenter.sgst.cn/hit/
http://www.hprd.org/
http://www.ebi.ac.uk/interpro/
http://www.ebi.ac.uk/interpro/
http://www.genome.jp/kegg/
http://www.lookchem.com/
http://www.genego.com
http://mms.dsfarm.unipd.it/MMsINC/search/
http://mms.dsfarm.unipd.it/MMsINC/search/
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Table 1. Cont.

Sr. No# Resources Brief Description Usage URL Reference

25. NetMiner

Computer program for
the analysis and
visualization of

networks

Network analysis
http://graphexploration.

cond.org/
(accessed 29 April 2022)

[176]

26. NetPath Network pathway
analysis Pathway analysis http://www.netpath.org/

(accessed 29 April 2022) [173]

27. NetworkX

Computer program for
the analysis and
visualization of

networks

Network analysis
http://www.analytictech.

com/ucinet/
(accessed 29 April 2022)

[177]

28. OPHID
Online predicted

human interaction
database

Retrieval of
protein–protein

interaction
network

http://ophid.utoronto.ca
(accessed 29 April 2022) [178]

29. Pajek

Computer program for
the analysis and
visualization of

network

Network analysis
http:

//pajek.imfm.si/doku.php
(accessed 29 April 2022)

[179]

30. PDB Protein Data bank
Retrieval of protein

related
information

http://www.rcsb.org/pdb/
(accessed 29 April 2022) [180]

31. PDTD Protein Database for
Drug Target

Identification of
drug target

http:
//www.dddc.ac.cn/pdtd/

(accessed 29 April 2022)
[181]

32. PharmGBK Pharmacogenomics
knowledge base

Analyze the genes
response to drugs

http://www.pharmgkb.org/
(accessed 29 April 2022) [182]

33. PubChem
Public repository for

information on
chemical substances

Analysis of
chemical

compounds

https://pubchem.ncbi.nlm.
nih.gov/

(accessed 29 April 2022)
[183]

34. PubMed Public/Publisher
MEDLINE Literature review

https://pubchem.ncbi.nlm.
nih.gov/

(accessed 29 April 2022)
[184]

35. Reactome
Database of pathways,

reactions, and
biological processes

Pathway analysis http://www.reactome.org
(accessed 29 April 2022) [185]

36. SignaLink Signalling pathway
analysis resource Pathway analysis http://signalink.org/

(accessed 29 April 2022) [186]

37. SIRC-TCM

Shanghai Innovative
Research Center of
Traditional Chinese

Medicine

Detailed analysis
of traditional

chinese medicine

http://www.tcm120.com/
1w2k/tcm_species.asp

(accessed 29 April 2022)
[187]

38. STITCH
Search Tool for
Interactions of

Chemicals

Analysis of
target–drug

relationship and
biological
pathways

http://stitch.embl.de/
(accessed 29 April 2022) [188]

http://graphexploration.cond.org/
http://graphexploration.cond.org/
http://www.netpath.org/
http://www.analytictech.com/ucinet/
http://www.analytictech.com/ucinet/
http://ophid.utoronto.ca
http://pajek.imfm.si/doku.php
http://pajek.imfm.si/doku.php
http://www.rcsb.org/pdb/
http://www.dddc.ac.cn/pdtd/
http://www.dddc.ac.cn/pdtd/
http://www.pharmgkb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://www.reactome.org
http://signalink.org/
http://www.tcm120.com/1w2k/tcm_species.asp
http://www.tcm120.com/1w2k/tcm_species.asp
http://stitch.embl.de/
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Table 1. Cont.

Sr. No# Resources Brief Description Usage URL Reference

39. STRING
Search Tool for the

Retrieval of Interacting
Genes/Proteins

Retrieval of
protein–protein

interaction
network

http://string-db.org/
(accessed 29 April 2022) [189]

SwissTargetPrediction

Estimate the
macromolecular
targets of a small

molecule

Identification of
compound related

genes

http://www.
swisstargetprediction.ch/
(accessed 29 April 2022)

[190]

40. TCMGeneDIT

Database of traditional
Chinese medicine,
gene, and disease

information using text
mining

Detailed analysis
of traditional

chinese medicine

http:
//tcm.lifescience.ntu.edu.tw/

(accessed 29 April 2022)
[191]

41. TCMID
Traditional Chinese
medicine integrated

database

Detailed analysis
of traditional

chinese medicine

http://www.megabionet.
org/tcmid/

(accessed 29 April 2022)
[192]

42. TcmSP

Traditional Chinese
medicine systems

pharmacology
database

Detailed analysis
of traditional

chinese medicine

http://tcmspnw.com
(accessed 29 April 2022) [193]

43. TD@T
Database of traditional

Chinese medicine @
Taiwan

Retrieval of
traditional chinese
medicine related

information

http://tcm.cmu.edu.tw/
(accessed 29 April 2022) [173]

44. TTD Therapeutic Target
database

Drug target
identification

http://bidd.nus.edu.sg/
group/cjttd/

(accessed 29 April 2022)
[194]

45. Ucinet

Computer program for
the analysis and
visualization of

networks

Network analysis http://www.netminer.com/
(accessed 29 April 2022) [195]

46. UniProtKB Universal protein
knowledge database Analysis of protein

http:
//www.uniprot.org/uniprot/

(accessed 29 April 2022)
[196]

11. Application of Network Pharmacology: From Understanding of Complex
Interactomes to the Design of Multi-Target Specific Therapeutics from Nature

Despite the research and development in pharmaceutical industry, the dramatic drop
in the number of new treatments options raises the question of whether single-targeted
drug discovery is a felicitous approach or not. In such scenarios, network pharmacology ap-
proaches are extremely valuable, as they differ from traditional drug discovery approaches
by addressing the potential of drugs to target several proteins or networks involved in a
disease [197]. Furthermore, employing high-throughput screening and bioinformatics aids
in the construction of predicted drug–target disease network models. Such approaches
help to explore the underlying mechanisms of drug actions on biological networks by
comparing the interaction of a drug with its respective target model. The knowledge of
multi-facetted pathway interactions considerably strengthened with recent advancements
in network biology. Therefore, network pharmacology is solidifying its position in the
treatment of the deadliest diseases and disorders.

Network pharmacology discerns the protein–protein interactions associated with
clinical outcomes of particular diseases and disorders. Nowadays, researchers are merging
multi-omics approaches with computer technology to precisely record the unified metabolic

http://string-db.org/
http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
http://tcm.lifescience.ntu.edu.tw/
http://tcm.lifescience.ntu.edu.tw/
http://www.megabionet.org/tcmid/
http://www.megabionet.org/tcmid/
http://tcmspnw.com
http://tcm.cmu.edu.tw/
http://bidd.nus.edu.sg/group/cjttd/
http://bidd.nus.edu.sg/group/cjttd/
http://www.netminer.com/
http://www.uniprot.org/uniprot/
http://www.uniprot.org/uniprot/
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response in humans to study an increasing number of complicated disorders. Below, we
discuss some exclusive applications of network pharmacology in biomedical sciences.
Figure 3 presents important applications of network pharmacology.
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11.1. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin

SARS-CoV-2 is a β-coronavirus belonging to order Nidovirales and family Coronaviri-
dae. The other β-coronaviruses, including Severe Acute Respiratory Syndrome [198] in
2002–2003 and Middle East Respiratory Syndrome [199] in 2012–2013, have also been re-
ported in the past two decades [200–202]. However, COVID-19 is a large-scale pandemic of
the 21st century and an alarming public health issue. Numerous clinical research endeavors
have revealed that traditional medicines have a substantial effect on COVID-19 treatment,
offering new promise for the management of COVID-19. Using network pharmacology,
herbs/herbal formulae could also be incorporated in the COVID-19 diagnosis and treat-
ment protocols. Numerous studies have been conducted that used network pharmacology
to screen out the active compounds of medicinal plants for the treatment of COVID-19. Jin
et al. [203] used Xuebijing injection, Wang et al. [204] used Qingfei Paidu decoction, and Li
et al. [205] used Lianhua Qingwen and found that these formulae and medicines are viable
to be used against COVID-19 treatment. As a result, it served as a starting point for a more
in-depth exploration of the cornerstone of antiviral granules and a novel treatment concept
for COVID-19.

Tao et al. [100] employed network pharmacology and molecular docking to understand
the action mechanism of the Huashi Baidu formula against COVID-19. Their findings
proposed that active compounds of the Huashi Baidu formula control numerous signalling
pathways via ACE2, which might play a therapeutic role in treating COVID-19. These
pathways include the MAPK signalling pathway, TNF signalling pathway, and the PI3K–
Akt signalling pathway. Further molecular docking revealed that baicalein and quercetin
were the top two compounds, indicating that both compounds could play a significant
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role in treating COVID-19. Another research performed by Zhang et al. [206] demonstrates
the chemical compounds present in the lung-cleaning and toxicity-excluding (LCTE) soup
for the treatment of COVID-19 in a network pharmacology perspective. Their findings
suggest that the LCTE soup contains ingredients that have the ability to directly inhibit the
progression of COVID-19. Moreover, LCTE targets the pathways that are mainly involved
in viral and other microbial infections, inflammation/cytokine response, and lung diseases.
Their research provides a biological foundation for employing LCTE soup to treat COVID-
19 and its symptoms. Furthermore, Niu et al. [74] studied the action mechanism of three
medicines (Jinhua-Qinggan Granule, Xuebijing Injection, Lianhua-Qingwen Capsule) and
three herbal formulae (9 *HuaShi-BaiDu Formula, Qingfei-Paidu Decoction, and XuanFei-
BaiDu Granule) against COVID-19 by using a network pharmacology approach. Their
findings suggested that these three medicines and three formulae has been shown to have a
positive effect on the prevention and rehabilitation of COVID-19 in at-risk individuals. They
proposed that luteolin, ursolic acid, quercetin, and rutin could inhibit the progression of
COVID-19 by downregulating the interleukin-6. Finally, we conclude that medicinal plants
contain pythochemicals that have the ability to directly suppress the COVID-19, target
proteins associated with common COVID-19 symptoms and influence the disease-related
major pathological processes.

11.2. Cancer

Cancer is indeed one of the causes of morbidity and mortality in humans and remains
a significant major health concern worldwide. Cancer can be efficiently addressed as a
multifactorial disease by modulating various targets and carcinogenic signalling path-
ways [207,208]. As in the case with cancer, single-targeted drug discovery has shown
to be unsuccessful in combating complicated systemic diseases with complex biologi-
cal systems [142]. In these scenarios, network pharmacology approaches are extremely
valuable since they vary from traditional drug discovery by addressing multi-targeted
drugs that ultimately target many proteins or networks involved in the progression or
development of disease states [131]. Techniques based on network pharmacology have
the potential to dramatically minimize the difficulties in routine clinical research, such as
patient heterogeneity in population and disease. Furthermore, cancer is heterogeneous,
primarily characterized by the existence or lack of relevant therapeutic targets. There are
currently very few treatment approaches available for heterogeneous populations with het-
erogeneous malignancies [209,210]. As a result, there is a pressing need to create network
pharmacology-based methodologies to change the current concept of drug designing and
increase our understanding of the mechanism of action. The proper application of network
pharmacology-based methodologies may help to avoid problems in cancer drug therapy
and speed up the discovery of new anticancer medicines. Moreover, network-based studies
proposed target genes as promising and viable therapeutic targets to reduce the incidence of
cancer, thereby exerting potential therapeutic effects in cancer.

A HER2-positive breast cancer is one that tests positive for the protein human epi-
dermal growth factor receptor 2 (HER2). This protein stimulates cancer cell proliferation.
Cancer cells in around one out of every five breast tumors have extra copies of the gene
that produces the HER2 protein. Zeng et al. [211] used a network pharmacology-based
methodology to explore the pharmacological mechanism of Yanghe decoction against
HER2-positive breast cancer. They proposed quercetin, luteolin, and naringenin as key
active ingredients of Yanghe decoction that may have anticancer properties. Their find-
ings successfully predicted, illuminated, and confirmed the molecular synergy of Yanghe
decoction for HER2-positive breast cancer.
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Zhen et al. [212] explored the active ingredients as well as important pathways of Shen-
qi-Yi-zhu decoction against gastric cancer. In a nutshell, their research demonstrated that a
combo of network pharmacology and in vitro studies clarifies the efficient and beneficial
molecular mechanism of Shen-qi-Yi-zhu decoction. They also proposed that Shen-qi-Yi-zhu
decoction plays an anti-tumor role by inhibiting the PI3K/AKT/mTOR pathway. The
PI3K/AKT/mTOR pathway is found in almost all tumors and plays a key function in
cancer biology. Hence, the herb/herbal formulae played an important role in the anti-tumor
area.

Colorectal cancer, a silent monster, is indeed the leading cause of cancer-related death.
Liu et al. [213] used a network pharmacology approach for the identification of action
mechanisms of Hedyotis diffusa against colorectal cancer. Network analysis revealed that
Hedyotis diffusa exhibited a promising therapeutic impact on colorectal cancer by targeting
tumor-associated signalling pathways. This provides a foundation for understanding the
anti-colorectal cancer activity of Hedyotis diffusa. Song et al. [214] used the same plant
(Hedyotis diffusa) for uncovering the multi-target pharmacological mechanism on prostate
cancer. Therefore, it has become clear that using network pharmacology, we can screen
the active compounds of single herb/herb formulae for the treatment of more than one
disease. Bing et al. [215] used bioinformatics and network pharmacology approaches to
investigate the mechanism of Fuzheng Kangai for lung cancer treatment. Furthermore,
Meng et al. [216] incorporated a network pharmacology approach with molecular docking
to uncover the molecular mechanisms of Kushen injection to treat lung cancer. In short,
network pharmacology yields a new perspective in understanding the action mechanisms
of herb/herbal formulae for the treatment of various types of cancer.

11.3. Cardio-Cerebrovascular Diseases (CCVDs)

Cardiovascular and cerebral vascular diseases have become some of the world’s most
serious health problems [217]. Botanical drugs, of long-used medicinal plants, have been
shown to provide many benefits for CCVD treatment [205,218]. However, the molecular
mechanisms underpinning medicinal plants’ ability to heal CCVD are still unknown. Cur-
rently, a novel systems-pharmacology platform named network pharmacology has been
proposed to comprehensively understand the pharmacological mechanism of medicinal
plants for the treatment of CCVDs by merging pharmacokinetic screening, target identi-
fication, and network analysis. This approach offers a new paradigm for systematically
understanding the mechanism of herb/herbal formulae against CCVDs.

In the light of network pharmacology, Yang et al. [219] elaborated on the active com-
pounds of Ginkgo biloba leaves, their potential target, and associated pathways for treating
CCVD, hence providing a theoretical basis for additional experimental research. Their find-
ings revealed that Ginkgo biloba leaves exhibit a protective effect on CCVDs, most likely by
regulating various processes and attacking multiple targets linked to a variety of biological
pathways. Their study provides an important reference for understanding the efficacy of
Ginkgo biloba leaves in the treatment of CCVDs and a fresh technique for discovering new
medicines from plants. Ren et al. [220] used herbal formulae for the treatment of stroke.
In their work, screening results represented various bioactive compounds that played a
decisive role in treating stroke by targeting the disease-related genes.

Tao et al. [221] employed a network pharmacology-based methodology to predict ac-
tive ingredients along with putative targets of the Radix Curcumae formula for the treatment
of CCVDs. Their study systematically demonstrates the mechanism of the Radix Curcumae
formula in the treatment of CCVD, while also predicting potential targets to facilitate the
development of candidate herbal drugs in future work. Wang et al. [222] explored the
active compounds of Salvia miltiorrhiza Burge. and Carthamus tinctorius L. for the treatment
of CCVDs. Their study revealed that Salvia miltiorrhiza Burge. and Carthamus tinctorius L.
may promote cerebral blood flow by dilating blood vessels, reducing neurotoxic damage,
and protecting brain tissue from free radical damage.



Pharmaceuticals 2022, 15, 572 18 of 33

Cui et al. [223] employed a network pharmacology approach to uncover the mecha-
nism of Shuxuening injection against ischemic stroke. Their findings demonstrated that
by suppressing inflammation and regulating the degree of oxidative stress, Shuxuening
injection could treat ischemic stroke and minimize the death of neuron cells in brain tissue,
thus safeguarding the brain tissue of rats. Their study combined network pharmacology,
molecular docking, and animal experiments to provide the first coherent and detailed
investigation of Shuxuening injection mechanism for the treatment of ischemic stroke and
comprehends the multi-component and multi-target synergy mechanism of Shuxuening
injection [223].

Furthermore, Chen et al. [224] identified the active compounds and putative targets
of the Yangxinshi tablet to treat heart failures by using network pharmacology research.
Their analysis revealed the cardiovascular protective effect of the Yangxinshi tablet, which
was primarily enriched in immune and cardiovascular systems. The network-based study
could aid researchers in simplifying the complex mechanism of the Yangxinshi tablet. It
may also provide a realistic method for determining the chemical and pharmacological
foundations of other herbal formulae.

11.4. Diabetes Mellitus

Diabetes mellitus (DM) is a pandemic of the 21st century and is a rapidly growing
global problem [225]. DM is associated with the diverse interplay of genetic, environmental,
and behavioral risk factors [226]. People with DM are more susceptible to a variety of short-
and long-term problems, leading to serious complications [227]. Network pharmacology
consisting of natural products is seen as a viable therapeutic method for DM and could
provide answers to the questions raised above. Wang et al. [228] employed a network
pharmacology-based approach to explore the active ingredients of Astragaloside IV as a
best treatment option against type 2 diabetes mellitus (T2DM). Recent findings demon-
strated that docking analysis as well as network analysis might drastically cut preliminary
screening expenditures and offer a complete analysis of the action mechanism in the de-
velopment and discovery of novel drugs. Gu et al. [123] used a combination of network
pharmacology and molecular docking studies to demonstrate the action mechanism of
Tangminling tablets for the treatment of T2DM. The compound–compound network and
compound target network demonstrated that over 100 chemical ingredients out of 667 in
the formula could target 37 T2DM-related target proteins. The important ingredients in
Tangminling tablets were anticipated, and a few of them have previously been described
in the literature. Furthermore, due to their pharmacological actions, numerous chemi-
cal compounds, particularly procyanidin C1, Rheidin A, Rheidin C, Sennoside C, and
Dihydrobaicalin, were important and used as anti-diabetic candidates.

Sorghum bicolor is rich in anti-diabetic bioactive constituents and is a plausible
resource of anti-diabetic ingredients. Oh et al. [229] employed network pharmacology
to identify active compounds of sorghum bicolor having the potential to treat diabetes
mellitus. Their findings imply that essential active ingredients are present in sorghum
bicolor, which may help to reduce the severity of T2DM by activating the peroxisome
proliferator-activated receptors’ (PPARs) signalling pathways. According to the results
of their study, the anti-diabetic activity of sorghum bicolor can be linked to four main
compounds (alpha-sitosterol, propyleneglycol monoleate, campesterol, and 25-Oxo-27-
norcholesterol) that are highly associated to the PPAR signalling pathway.

In the work of Zhou et al. [230], a network pharmacology-based methodology is used
to analyze the mechanism of Xiao Ke Yin Shui for the treatment of T2DM. Their study
proposed that proteins such as protein kinase B, phosphatidylinositol 3-kinase, and tumor
necrosis factor are primarily regulated by compounds present in Xiao Ke Yin Shui’s formula.
Therefore, the Xiao Ke Yin Shui formula has synergistic therapeutic benefits and has an
anti-diabetic impact primarily via lowering insulin resistance.
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11.5. Neurodegenerative Diseases

Neurodegenerative diseases are conventionally demarcated as progressive degener-
ation and/or death of nerve cells. Neurodegenerative diseases have a great diversity of
clinical symptoms that vary widely in disease status and prognosis. However, due to insuf-
ficient diagnostic methods, the patients are diagnosed, on average, at the middle or late
disease stage, leading to a poor prognosis. The identification of potential biomarkers that
can stop disease pathogenesis and serve a virtual shortcuts will be hailed as the sensation
of the current era.

Medicinal treatments consisting of natural products are considered promising and
fabulous treatment options for neurodegenerative diseases. By virtue of their component
diversity, higher multi-target activity, and lower toxicity, herbs are becoming a dominant
contributor for developing multi-target drugs. Recently, Zhou et al. [231] used a network
pharmacology-based strategy to investigate pharmacological mechanisms of Tinospora
sinensis for the treatment of Alzheimer’s disease. Their findings demonstrate that T. sinensis
had a significant effect on the expression of protein PI3K and Akt; hence, T. sinensis could
prevent and treat Alzheimer’s disease through a multi-compound–multi-target–multi-
pathway regulatory network.

Parkinson’s disease is another major neurodegenerative disorder, following Alzheimer’s
disease, that imposes a serious burden on families and even the whole society. Li et al. [232]
applied a network pharmacology-based approach to study of the molecular mechanisms of
Shaoyao Gancao decoction in treating Parkinson’s disease. Their study proposed 48 bioac-
tive constituents mediating 30 Parkinson’s disease-related targets to exert synergism, and
the same target can be enriched in multiple signal pathways and biological processes, imply-
ing that the decoction can exert a synergistic effect on Parkinson’s disease via multi-targets
and pathways. These findings shed light on the molecular mechanisms underpinning the
efficacy of Shaoyao Gancao decoction in the treatment of Parkinson’s disease, therefore
allowing researchers to dig further into herbal medicine for developing innovative and
exciting therapeutic options against Parkinson’s disease.

Huntington’s disease is an autosomal-dominant, neurodegenerative disorder with a
primary etiology of corticostriatal pathology. Currently, there are no treatments that can
slow or stop the progression of the disease. Dai et al. [233] also employed the same network
pharmacology-based methodology to explore a novel herbal formula against Huntington’s
disease, which was then further validated by a support vector machine model. The authors
demonstrated that Brucea javanica, Dichroa febrifuga, E. micranthum Harms, Erythrophleum
guineense, Holarrhena antidysenterica, and Japanese Ardisia Herb contained active compounds
that might be a novel medicine formula for Huntington’s disease.

Not only these, recently, Liu et al. [234] used a network pharmacology study on the
triterpene saponins from Medicago sativa for the treatment of all types of eurodegenerative
diseases. The findings of this study will serve as references (for active compounds, major
protein targets, and signalling pathways) that can be used for the treatment of neurodegen-
erative diseases and future research. In the future, more studies are needed to explore the
multi-target pharmacological mechanism of herbs against neurodegenerative diseases

Thus, understanding the herb/herbal formula using network pharmacology is an
emerging trend of this era. The multi-target action mechanism of network pharmacology is
compatible with the complicated nature of disease and drug action. Additionally, protein–
protein interactions networks or interactomes have been commonly used to understand
complex disease mechanisms. The network pharmacology approach, however, oversimpli-
fies disease mechanisms, which are in fact complex subnetworks within the interactome.
Beyond all the applications of network pharmacology mentioned above, a list of studies
has been conducted on other diseases and is summarized in Table 2.
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Table 2. Application of network pharmacology for treatment of diseases using herb/herbal formulae.

Diseases Herb/Herbal Formula Reference

Asthma
Qingfei Xiaoyan Wan [235]

Zhike Chuanbei Pipa Dropping Pill [236]

Breast cancer
Bushen Zhuanggu formula [237]

Yanghe decoction [211]

Bronchial Asthma

Schisandra chinensis [238]

Ma Huang Tang [239]

Si Jun Zi Tang [240]

Cardiovascular and cerebral
vascular diseases

Nao Xin Tong [241]

Tong Xin Luo [242]

Dan Hong injection [243]

Astragali radix [244]

Liu Wei Di Huang pill [245]

Bai Hu Jia Ren Shen decoction [246]

Bu Yang Huan Wu decoction [247]

Cardiovascular disease

Panax notoginseng [248]

Salvia miltiorrhiza [249]

Naoxintong [250]

Fufang Danshen formula [251]

Ginkgo biloba leaves [219]

Radix Curcumae [221]

Salvia miltiorrhiza Burge. and
Carthamus tinctorius [222]

Shuxuening injection [223]

Chronic bronchitis
Eriobotrya japonica [252]

Zhi Chuan Ling [253]

Chronic obstructive
pulmonary lung

disease

Bu Fei Jian Pi Formula [254]

Yin Huang Qing Fei [53]

Tanshinone [255]

Colorectal cancer Hedyotis diffusa [213]

COVID-19

Xuebijing injection [203]

Qingfeipaidu decoction [204]

Lianhuaqingwen [205]

Huashi Baidu formula [100]

Jinhua Qinggan Granule, Lianhua
Qingwen Capsule, Xuebijing Injection,

Qingfei Paidu Decoction, HuaShi BaiDu
Formula, and XuanFei BaiDu Granule

[74]
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Table 2. Cont.

Diseases Herb/Herbal Formula Reference

Diabetes mellitus

Bu-Fei-Yi-Shen formula [256]

Xiao Ke Yin Shui [230]

Erigeron breviscapus [257]

Astragaloside IV [228]

Tangminling tablets [123]

Sorghum bicolor [229]

Xiao Ke Yin Shui [230]

Dysmenorrhea of gynecology Si Wu Tang [248]

Fever and chill Da Chaihu Decoction and Xiao Chaihu
Decoction [258]

Gastritis
Atractylodes macrocephala Koidz [259]

Arctigenin [260]

Gastric cancer Shen-qi-Yi-zhu decoction [212]

Gout Modified Simiao wan [95]

Hepatocellular
carcinoma, intestinal tuberculosis,
and gastrointestinal inflammation

Gansui Banxia tang [261]

Hepatocyte injury Fructus Schisandrae chinensis [262]

Hyperlipidemia

Cynarin [263]

Poncimarin, Hexahydrocurcumin, and
Forsythoside C [264]

Inflammation Folium eriobotryae [265]

Kidney disease Bushen Huoxue formula [81]

Leukemia Realgar-Indigo naturalis formula [266]

Liver disease
Jian Gan Bao [267]

Zhi Zi Da Huang decoction [268]

Lung cancer

Xia Qi Decoction [269]

Fuzheng Kangai [215]

kushen injection [216]

Maintain the stasis of blood
Danggui [270]

Buyang Huanwu decoction [271]

Migraine Da Chuanxiong formula [272]

Myocardial infarction

Xuesaitong injection [273]

QiShen YiQi [274]

Shenmai injection [44]

Neurodegenratve diseases

Tinospora sinensis [231]

Brucea javanica, Dichroa febrifuga, E.
micranthum Harms, Erythrophleum

guineense, Holarrhena antidysenterica, and
Japanese ardisia

[233]

Shaoyao Gancao [232]

Medicago sativa [234]
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Table 2. Cont.

Diseases Herb/Herbal Formula Reference

Osteoarthritis Taohong Siwu decoction [275]

Rheumatoid arthritis
Qing-Luo-Yin [45]

Fructus schisandrae [276]

Thrombosis Fufang Xueshuantong [277]

Traumatic injury Diesun Miaofang [278]

Type 2 diabetes mellitus Ge Gen Qin Lian decoction [94]

12. Limitation and Solution

Network pharmacology has proved to be beneficial in drug development, which aids
in revitalizing herbal medicines. Although there are a few drawbacks of applying network
pharmacology research in herbal medication, hopefully, they will be fixed in the future.
For the identification of active ingredients and disease-related targets, network pharma-
cology depends on various public databases. Despite their curation, databases may have
inconsistencies due to a variety of information sources, theories, and experimental results.
Furthermore, herbs that encounter specific pre-trial procedures throughout their develop-
ment have undergone various chemical changes—using contemporary, high-throughput
techniques such as liquid chromatography is one solution to overcome this challenge.

ADMET profiling is used to validate the pharmacokinetic properties of the highly
active constituent. ADMET analysis is a challenging process in drug discovery. Various
in silico tools are available for ADMET profiling; however, experimental validation is
necessary to validate active compounds’ pharmacokinetic properties.

The identification of putative targets depends on the one or usually one single database,
owing to the limited availability of databases with unrestricted accessibility. This might
sometimes lead to unsatisfactory consequences. Therefore, the integration of multiple
databases is one solution to solve the challenge.

13. Conclusions

Medicinal plants represent a novel alternative and preferred treatment to handle
ailments with no satisfactory remedy. For a long time, humans use herbal medicines to
manage different diseases. The negative effects of synthetic medicines have demanded
progress in the use of natural products for the management of disease. To achieve stunning
gains in the future, the use of emerging technologies must be tied with a research basis.
Most of the commercially produced medicines are derived from plants. This review of the
current literature provides a comprehensive overview of drug discovery from medicinal
plants by employing a network pharmacology approach. This review article is a touch-
stone for the initial screening of medicinal plants for treatments of various ailments, and
additional spectra of phytochemicals provide baseline data about phytochemical studies.
The network pharmacology approach establishes the latest scientific foundation for deter-
mining the efficacy of multi-component, multi-target compound formulae and exploring
more therapeutic targets’ disease treatment. In summary, advancements in systems biology
and bioinformatics will make an operational shift from reductionism in favor of network
pharmacology. They will undoubtedly bring about a conceptual move in drug discovery
and contribute to the modernization and globalization of herbal medicines. Different
dynamic networks and quantitative networks may be another tendency, and more and
more employment of network pharmacology technology will make the expenditure much
less in the future. This review lays the groundwork for further research on the protective
mechanisms of medicinal plants in disease treatments and the applications of network
pharmacology in drug discovery.
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