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A B S T R A C T   

Background: COVID-19 highly caused contagious infections and massive deaths worldwide as well as unprece-
dentedly disrupting global economies and societies, and the urgent development of new antiviral medications are 
required. Medicinal herbs are promising resources for the discovery of prophylactic candidate against COVID-19. 
Considerable amounts of experimental efforts have been made on vaccines and direct-acting antiviral agents 
(DAAs), but neither of them was fast and fully developed. 
Purpose: This study examined the computational approaches that have played a significant role in drug discovery 
and development against COVID-19, and these computational methods and tools will be helpful for the discovery 
of lead compounds from phytochemicals and understanding the molecular mechanism of action of TCM in the 
prevention and control of the other diseases. 
Methods: A search conducting in scientific databases (PubMed, Science Direct, ResearchGate, Google Scholar, and 
Web of Science) found a total of 2172 articles, which were retrieved via web interface of the following websites. 
After applying some inclusion and exclusion criteria and full-text screening, only 292 articles were collected as 
eligible articles. 
Results: In this review, we highlight three main categories of computational approaches including structure- 
based, knowledge-mining (artificial intelligence) and network-based approaches. The most commonly used 
database, molecular docking tool, and MD simulation software include TCMSP, AutoDock Vina, and GROMACS, 
respectively. Network-based approaches were mainly provided to help readers understanding the complex 
mechanisms of multiple TCM ingredients, targets, diseases, and networks. 
Conclusion: Computational approaches have been broadly applied to the research of phytochemicals and TCM 
against COVID-19, and played a significant role in drug discovery and development in terms of the financial and 
time saving.   

Introduction 

COVID-19, the disease caused by the novel coronavirus SARS-CoV-2, 
caused a global emergency shortly since the late December 2019 
(Chitsike and Duerksen-Hughes, 2021; Hu et al., 2021a). As vaccines for 
COVID-19 have been developed and tested for their efficacy and 
long-term adverse effects, the latest emerging COVID-19 variant named 

Omicron may cause the existing vaccines to be less effective due to its 
heavily mutated species. Moreover, there is no guaranteed for all 
vaccinated people to be totally protected, so both direct-acting antiviral 
agents (DAAs) and vaccines are developed to restrain the spreading of 
COVID-19. The provided outcomes have not reached satisfaction, and 
the urgent development of new antiviral medications are required. 

Computational approaches are effective strategies in the process of 
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drug discovery and development, and computational methods and tools 
have grown exponentially in recent decades with the dramatic increase 
in the availability of computational resources (Tiwari and Singh, 2022). 
Much of the research effort has focused on the drug discovery against 
COVID-19 by exclusively computational or computer-aided experi-
mental method, and a commercially available drug named PF-07321332 
has been designed and optimized as an orally bioavailable SARS-CoV-2 
main protease inhibitor (Owen Dafydd et al., 2021). Medicinal herbs are 
promising resources for drug discovery because of its favorable efficacy 
and acceptable toxicity, which can become prophylactic candidate 
against COVID-19 (Huang et al., 2020; Li et al., 2022a). Recent studies 
showed that some phytochemicals have been developed as the potential 
anti-COVID-19 drugs by the computer-aided experimental method 
(Bharadwaj et al., 2021; Gopinath et al., 2020; Huang et al., 2020; 
Pamuru et al., 2020; Verma et al., 2020). 

Traditional Chinese medicine (TCM) has a long history for over 
thousands of years of accumulated clinical evidence and pharmacolog-
ical studies (Gao et al., 2019), and exerts an important role in the pre-
vention and treatment of the COVID-19 caused by SARS-CoV-2 (Lyu 
et al., 2021; Yang et al., 2020; Zhao et al., 2021d). TCM preparations 
include extracts from a single source of plants, animals, minerals and 
their preparations and preparation of TCM formulas. Multicomponent 
therapeutic formulae are the most important and are most commonly 
used in TCM for clinical applications. However, the formulae sometimes 
are very complex which makes it mandatory to use systematic research 
supported by computational methods to elucidate their mechanism of 
action. 

In the manuscript, the computational approaches employed in the 
research of TCM against COVID-19 have been reviewed, and scientific 
literature with valid experiment and comprehensive studies combining 
computational investigation will be included in this review until 31st 
January 2022. The general procedure of computational approaches had 
been summarized in the Fig. 1. 

Materials and methods 

A systematic review has been prepared according to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
checklist and followed the inclusion of relevant studies. The literature 
search was conducted in the databases: PubMed, Science Direct, 
ResearchGate, Google Scholar, and Web of Science for published arti-
cles. The keyword ‘COVID-19′ was paired with ‘Traditional Chinese 
medicine’, ‘traditional herb’, ‘natural products’, ‘active components’, ‘in 

silico, ‘computational approaches’, ‘ADMET’, ‘structure-based’, ‘molec-
ular docking’, ‘molecular dynamics simulation’, ‘ligand-based’, ‘QSAR’, 
‘pharmacophore’, ‘generative neural network model’, ‘chemical 
cartography’, ‘chemography approaches’, ‘knowledge mining’, ‘artifi-
cial intelligence’, ‘machine learning methods’, ‘deep learning ap-
proaches’, ‘computer-aided drug design’, ‘system pharmacology’, and 
‘network pharmacology’ to obtain published records until 31st January 
2022. Boolean search strategies were used on these keywords without 
any language restrictions. Data inclusion criteria included (a) the focus 
of this study is on COVID-19 pandemic disease, and (b) the articles about 
natural products and/or TCM derivatives conducting in silico with 
experimental validation were included. Exclusion criteria included (a) 
any data duplication, titles, or content that did not meet the inclusion 
criteria, (b) reports on antiviral activities of natural products or their 
derivatives against other diseases, and (c) studies that involved syn-
thetically conventional chemicals, which were not originated from 
natural sources. 

A search conducted in scientific databases (PubMed, Science Direct, 
ResearchGate, Google Scholar, and Web of Science) found a total of 
2172 articles, which were retrieved via web interface of the following 
websites. After applying some inclusion and exclusion criteria and full- 
text screening, only 292 articles were collected as eligible articles and 
displayed in pie charts. All of the extracted information was thoroughly 
checked by all authors to reach an agreement. 

Databases and research resources that support research on TCM 
against COVID-19 

Over the past decades, TCM has promoted its system biology and 
various data integration in order to modernize and internationalize its 
concept (Xu et al., 2021a). Several databases have been developed, such 
as TCMSP (https://tcmsp-e.com/), TCMIP (www.tcmip.cn), 
BATMAN-TCM (http://bionet.ncpsb.org.cn/batman-tcm/), ETCM 
(www.tcmip.cn/ETCM), SymMap (www.symmap.org), TCMID (http: 
//bidd.group/TCMID/), TCMATCOV (http://tcmatcov.bbtcml.com/), 
and TCM database@Taiwan (tcm.cmu.edu.tw), etc. Keywords “Tradi-
tional Chinese Medicine” and “COVID-19′′ were paired with each data-
base and found a total of 105 cited databases. These data were screened, 
and pie chart in Fig. 2 was illustrated. The most popular database is 
TCMSP, which constitutes 44% among all that support research on TCM 
against COVID-19. TCMIP (11%), BATMAN-TCM (9%), ETCM (9%), 
SymMap (7%), TCMID (6%), TCMATCOV (5%), TCM database@Taiwan 
(5%), and other databases (4%) are also applied in the research of TCM 

Fig. 1. General Procedure of Computational Approaches.  
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against COVID-19. 
The results shows that TCMSP (System pharmacology-based tradi-

tional Chinese medicine) is the most popular database, which includes 
chemicals, targets and drug-target networks, and associated drug-target- 
disease networks, as well as pharmacokinetic properties for natural 
compounds to understand the relationships between drugs, targets and 
diseases (Ru et al., 2014). 

Structure-based approaches 

Structure-based drug discovery (SBDD) methods have been used in 
numerous pharmaceutical industries and by medicinal chemists to 
assess binding energy between protein and ligand interactions as well as 
conformational changes of the receptor during in complex with a ligand 
(Kalyaanamoorthy and Chen, 2011). Structure-based approaches usu-
ally includes the target structure-based approach and ligand 
structure-based approach, which will be discussed in the next section of 
this review. 

Target structure-based approach 

Target structure-based approach involves target protein structure 
analysis, molecular docking, and molecular dynamics (MD) simulations. 
These help researchers to understand disease at a molecular level, spe-
cifically identify lead molecules and their optimization in a fast pace 
(Lionta et al., 2014). Essential steps of SARS-CoV-2 replication cycle 
have been investigated mainly on S protein, ACE2, TMPRSS2, Mpro, 
PLpro, RdRp, and other non-structural proteins as described in the 
previous viral targeted discovery section. The majority of virtual dock-
ing programs and databases are used to repurpose potential approved, 
preclinical, experimental drugs, and natural products. The commonly 
used docking tools are AutoDock, AutoDock Vina, GOLD, CDOCKER, 
FlexX, Surflex, G, DOCK6, and SwissDock (Gurung et al., 2021). 
Following the results of molecular docking, free energy perturbations 
and binding models are intensively determined using MD software 
packages including GROMACS, AMBER, CHARM, NAMD, Desmond, 
Tinker, LAMMPS, and DL_POLY (Gurung et al., 2021). The main ob-
jectives of using these tools are to find effective therapeutics for those 
who are seriously infected by SARS-CoV-2. Target structure-based 
approach will be further discussed. 

Potential targets against COVID-19 

SARS-CoV-2 genome consists of nearly 30,000 RNA bases and 29 
encoded proteins functioning as host invasion and vital replication. 
Therefore, successfully inhibiting these target proteins can result in 
therapeutic actions. The genetic variability of 58 coronaviruses have 
been assessed in order to determine broad spectrum antivirals (Yazdani 
et al., 2021). A public web portal named SARS-CoV-2 pocketome was 
established for displaying 3D structures of 15 SARS-CoV-2 proteins, and 

19 putative drug binding sites were mapped on these structures. Sci-
entists can analyze their binding sites of interest for future SBDD efforts. 
CADD targeting key coronaviral proteins will be summarized with tools 
using computational modeling. 

Three main functional categories of viral proteins include attach-
ment and penetration into host cells, viral replication and transcription, 
and suppression of the host immune response. To better understand the 
replicative and host invasive mechanisms of SARS-CoV-2, structure- 
based drug discovery plays a significant role in rapid determination of 
many viral protein structures. Several highlighted in silico studies covers 
major targets against COVID-19, which was illustrated in Fig. 3. 

Docking tools 

Molecular docking is popular for identification of potential drug 
candidates or ingredients in TCM prescriptions. Keywords “Traditional 
Chinese Medicine” and “COVID-19′′ were paired and found a total 
number of 107 cited docking tools listed in Table 1. These data were 
screened, and pie chart in Fig. 4 was illustrated. The most popular 
docking tool is AutoDock Vina, which constitutes 42% among all that 
support research on TCM against COVID-19. GLIDE (19%), AutoDock 
(17%), MOE (11%), SwissDock (5%), GOLD (3%), and COVID-19 
Docking Server (3%) are also applied in the research of TCM against 
COVID-19 Table 2. 

The results shows that AutoDock Vina is the most popular docking 
tool in the target structure-based approach. AutoDock Vina is an open- 
source molecular docking program, which can virtually pre-calculate 
grid maps without any requirements on choosing atom types because 
it calculates the grids internally and instantly for the atom types that are 
needed (Trott and Olson, 2010). 

Molecular dynamics simulations 

MD simulations can obtain comprehensive information about drug 
target dynamics and potential ligand interactions. These are several 
most commonly used softwares for MD calculations: AMBER (Case et al., 
2005; Song et al., 2019), YASARA (Land and Humble, 2018), GROMACS 
(Groningen MAchine for Chemical Simulation) (Selvaraj et al., 2021b), 
VMD (Visual Molecular Dynamics) (Umesh et al., 2021), CHARMM 
(Chemistry at Harvard molecular mechanics) (Brooks et al., 2009), 
NAMD (Gyebi et al., 2020; Lee et al., 2016), Desmond (Patel et al., 
2021), and Tinker (Sawant et al., 2021). Keywords “Traditional Chinese 
Medicine” and “COVID-19′′ were paired and found a total number of 80 
cited MD simulation software. These data were screened, and pie chart 
in Fig. 5 was illustrated. The most popular MD simulation software is 
GROMACS, which constitutes 22% among all that support research on 
TCM against COVID-19. Desmond (20%), AMBER (17%), CHARMM 
(15%), YASARA (10%), VMD (8%), NAMD (5%), and Tinker (3%) are 
also applied in the research of TCM against COVID-19. 

The results shows that GROMACS is the most popular MD software in 
supporting with the research of TCM against COVID-19 facilitate the 
potential drug discovery and target identification 

Examples of active compounds derived from TCM by structure- 
based approaches 

We briefly review some hit natural products that have been further 
investigated for experimental validation using structure-based ap-
proaches. Several natural compounds have been evaluated for their 
activity against SARS-CoV-2 S protein, 3CLpro and PLpro in virus-infected 
cells as shown in Tables 3–5. 

ACE2 (S protein) inhibitors 

Viral attachment and entry are of particular interest therapeutic 
targets in the life cycle of viruses. SARS-CoV-2 use the receptor-binding 

Fig. 2. Databases Supporting TCM Research against COVID-19.  
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domain (RBD) of its glycosylated S protein to bind to human angiotensin 
converting enzyme 2 (hACE2) and initiate membrane fusion and virus 
entry. Hence, the inhibitor of the RBD–hACE2 protein–protein interac-
tion (PPI) can disrupt infection efficiency (Bojadzic et al., 2021). Some 
natural compounds isolated from natural extracts are listed in Table 3 as 
the ACE2 (S protein) protein inhibitors. 

Here is a detailed example by structure-based approaches: Elebeedy 
et al. reported four major active compounds against SARS-CoV-2 S 
protein, which are tanshinone IIA and salvianolic acid B from TCM herb 
Salvia miltiorrhiza and carnosic acid and rosmarinic acid from Rosmar-
inus officinaliss (Elebeedy et al., 2021). Molecular docking and MD 
simulation studies have been performed on all four compounds and 
showed promising anti-SARS-CoV-2 binding affinities. Therefore, to 
validate the computational model, the activity of these compounds was 
further conducted in vitro using plaque reduction assay and MTT assay 
on Vero E6 cells for IC50 and CC50 values, respectively. The promising 
activity of Tanshinone IIA, carnosic acid, rosmarinic acid, and salvia-
nolic acid B ranged as following from lowest to highest with IC50 of 4.08, 
15.37, 25.47, and 58.29 ng/μl. All compounds demonstrated no signif-
icant cytotoxic effects on Vero E6 cells. 

Chymotrypsin-like (3CLpro) inhibitors 

SARS-CoV-2 3CLpro (Mpro) is well known to be ideal target for 
treating COVID-19, and several natural products from different sources 
including TCM herbs and formulas have potential antiviral activities on 
the main protease. Some natural compounds isolated from natural ex-
tracts are listed in Table 4 as the Mpro inhibitors. 

One study has screened 1920 natural products and identified two 
anti-SARS-CoV-2 compounds, namely ginkgolic acid and anacardic acid 
(Chen et al., 2021c). Both demonstrated similar IC50 values of 1.79 and 
2.07 μM, respectively. No significant cytotoxicity effects were observed 
at 20 µM for ginkgolic acid and anacardic acid. Simultaneously, these 
two hits can block SARS-CoV-2 replication at nontoxic concentration of 
15 µM in a viral plaque reduction assay. Epigallocatechin gallate 
(EGCG), an active ingredient in TCM commonly known as green tea was 
a promising inhibitor of SARS-CoV-2 Mpro (Du et al., 2021). 

Papain-like protease (PLpro) inhibitors 

Papain-like protease (the phosphatase domain of nsp3) is believed to 
interfere with the immune response by acting as a ADP-ribose phos-
phatase to remove ADP-ribose from host proteins and RNAs, and then is 
the therapeutic target against COVID-19 (Freitas et al., 2020; Klemm 
et al., 2020; Shin et al., 2020). Some natural compounds isolated from 
natural extracts are listed in Table 5 as the PLpro inhibitors. 

One study further investigated numerous natural PLpro inhibitors 
from the phytochemical library named national compound library of 
traditional Chinese medicines (NCLTCMs), which contained more than 
9000 TCM compound derivatives and proved with valid experiment of 
fluorogenic enzymatic and Pro-ISG15 cleavage assays (Li et al., 2022b). 
The total of nine natural hits, namely amentoflavone, ginkgetin, iso-
ginkgetin, sciadopitysin, morelloflavone, podocarpusglavone, hinoki-
flavone, cryptomerin B, and 4′-O-methylochnaflavone demonstrated 
effective PLpro inhibitors with anti-proteolytic activity and IC50 ranging 
from 9.5 to 43.2 μM in the enzymatic assay. Moreover, this study was 
reported for the first time that 4′-O-methylochnaflavone exhibited 
promising inhibitory effects on both proteolytic and deISGylation ac-
tivities of SARS-CoV-2 PLpro. This natural product remarkably sup-
pressed PLpro-induced deISGylation at decreased concentration of 2.5 
μM with 60.7% inhibition rates. Pitsillou et al. performed enzymatic 
inhibition assay of natural hits namely hypericin, rutin and 
cyanidin-3-O-glucoside, which are small molecules SARS-CoV-2 PLpro 

inhibitors at 100 micromolar range (Pitsillou et al., 2021). These natural 
compounds were screened from OliveNet™ library, subjected to mo-
lecular docking using the selective PLpro inhibitor, GRL-0617, as control, 
and further implemented MD simulation at 100 μs prior to in vitro 
evaluation. In another study, cryptotanshinone and tanshinone I, two 
active components in TCM herb named Salvia miltiorrhiza, were identi-
fied as top PLpro inhibitors with IC50 = 5.63 and 2.21 μmol/L, respec-
tively (Zhao et al., 2021b). Both compounds were performed using 
qRT-PCR analysis, immunofluorescence microscopy, plaque-reduction, 
and cytotoxicity assays using a clinical isolate of SARS-CoV-2 
(nCoV-2019BetaCoV/Wuhan/WIV04/2019) infected Vero E6 cells. 
EC50 was of 0.70 and 2.26 μmol/L for cryptotanshinone and tanshinone 
I, respectively, for a plaque-reduction assay. This means that the pene-
tration of viral cellular membrane by these two hits created access to the 

Fig. 3. Structure of SARS-CoV-2. (A) Schematic representation of the structure of SARS-CoV-2. It has four structural proteins, S (spike), E (envelope), M (membrane), 
and N (nucleocapsid) proteins; the N protein holds the single strand, positive-sense RNA genome, and the S, E, and M proteins together create the viral envelope. (B) 
SARS-CoV-2 genomic structure. 
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Table 1 
Docking tools that support research of TCM against COVID-19.  

Docking 
tools 

Website Description License Refs. 

AutoDock https://au 
todock.scr 
ipps.edu/ 

Automated 
docking tools for 
predicting the 
binding between 
substrates 
(ligand) and a 
known 3D 
structural 
receptor 
(protein) 

Free Abd El-Mageed 
et al. (2021),  
Gentile et al. 
(2020), Huang 
et al. (2021), Li 
et al. (2021a),  
Mazzini et al. 
(2020), Morris 
et al. (2008),  
Mu et al. (2021), 
Niu et al. (2021), 
Prasanth et al. 
(2021),  
Saidijam et al. 
(2021),  
Sivaraman and 
Pradeep, 2020) ,  
Vardhan and 
Sahoo, 2022),  
Wang et al. 
(2021b), Xia 
et al. (2020),  
Xiong et al. 
(2020), Yu et al. 
(2020), Zhang 
et al. (2020),  
Zhao et al. 
(2020b) 

AutoDock 
Vina 

https: 
//vina.scr 
ipps.edu/ 

An open-source 
program with 
more accurate 
binding mode of 
predictions 
compared to 
AutoDock 

Free Alhadrami et al. 
(2021), Arora 
et al. (2020),  
Beirami et al. 
(2020),  
Bharadwaj et al. 
(2020), Bung 
et al. (2021),  
Gao et al. 
(2020), Gentile 
et al. (2020), Gu 
et al. (2021),  
Guo et al. 
(2020), Hasan 
et al. (2022),  
Huynh et al. 
(2020), Khuntia 
et al. (2021), Li 
et al. (2021a),  
Liao et al. 
(2021), Liu et al. 
(2021a),  
Mazzini et al. 
(2020), Mu 
et al. (2021),  
Murugan et al. 
(2021), Peng 
et al. (2020),  
Prasanth et al. 
(2021), Rajpoot 
et al. (2021),  
Ram et al. 
(2021), Ruan 
et al. (2020),  
Shree et al. 
(2022), Simayi 
et al. (2022),  
Singh et al. 
(2022), Sinha 
et al. (2021a, ), 
2020), Trott and 
Olson, 2010),  
Vardhan and 
Sahoo, 2022),  
Wang et al.  

Table 1 (continued ) 

Docking 
tools 

Website Description License Refs. 

(2021b), Wei 
et al. (2020),  
Wu et al. (2021a, 
), 2021b), Xia 
et al. (2020),  
Xie et al. 
(2021b), Xu 
et al. (2021b),  
Ye et al. (2020),  
Ye et al. (2021),  
Yu and Li, 2022), 
Zackria et al. 
(2022), Zhang 
et al. (2020),  
Zhao et al. 
(2020b, ), 
2021c), Zheng 
et al. (2020) 

COVID-19 
Docking 
Server 

https://nco 
v.schangla 
b.org.cn/ 

A web server for 
predicting the 
interaction 
between small 
molecules, 
peptides and 
antibodies and 
COVID-19 
protein targets 

Free Cai et al. (2021), 
Chen et al. 
(2020), Kong 
et al. (2020b) 

GLIDE https 
://www. 
schrodinger 
.com/produ 
cts/glide 

A ligand- 
receptor docking 
program from 
HTVS to SP to 
XP at high 
accuracy levels 

Commercial Chen et al. 
(2021b),  
Chikhale et al. 
(2021a,2021b),  
Dutta et al. 
(2021), Emirik, 
2022), Fathy 
et al. (2020),  
Kumar et al. 
(2022), Li et al. 
(2021b), Liao 
et al. (2021),  
Liu et al. 
(2021b),  
Mahmud et al. 
(2021), Mei 
et al. (2021),  
Rakib et al. 
(2020), Selvaraj 
et al. (2021a, 
2021b), Shah 
et al. (2021),  
Shawky et al. 
(2020), Shree 
et al. (2022),  
Sinha et al. 
(2021b), Zhao 
et al. (2021a) 

GOLD https 
://www.cc 
dc.cam.ac. 
uk/s 
olutions/cs 
d-discove 
ry/ 
Compone 
nts/Gold/ 

A protein-ligand 
docking 
software with 
optimized 
scoring 
functions for 
drug discovery 

Commercial Nawrot-Hadzik 
et al. (2021),  
Tejera et al. 
(2022),  
Verdonk et al. 
(2003) 

MOE https:// 
www.ch 
emcomp.co 
m/Pro 
ducts.htm 

A 
comprehensive 
package for 
visualizing, 
modeling, and 
simulating 
computer aided 
molecular 
design of small 
molecules, 

Commercial Chikhale et al. 
(2021a),  
Elebeedy et al. 
(2021), Han 
et al. (2020),  
Liao et al. 
(2021), Rauf 
et al. (2021),  
Saidijam et al. 
(2021), Tahir Ul 
Qamar et al. 

(continued on next page) 

C. Ruchawapol et al.                                                                                                                                                                                                                           

https://autodock.scripps.edu/
https://autodock.scripps.edu/
https://autodock.scripps.edu/
https://vina.scripps.edu/
https://vina.scripps.edu/
https://vina.scripps.edu/
https://ncov.schanglab.org.cn/
https://ncov.schanglab.org.cn/
https://ncov.schanglab.org.cn/
https://www.schrodinger.com/products/glide
https://www.schrodinger.com/products/glide
https://www.schrodinger.com/products/glide
https://www.schrodinger.com/products/glide
https://www.schrodinger.com/products/glide
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/Components/Gold/
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/Components/Gold/
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/Components/Gold/
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/Components/Gold/
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/Components/Gold/
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/Components/Gold/
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/Components/Gold/
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/Components/Gold/
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/Components/Gold/
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PLpro target. 

Ligand structure-based approaches 

In this section, the application of traditional ligand-based methods 
and knowledge mining approaches will be discussed. This can exploit 
and lead to the experimental drug discovery for COVID-19. We highlight 
the utility of some recent innovative techniques such as Generative 
Topographic Mapping (GTM) and deep learning (DL) for the discovery 
of novel DAA agents. 

Chemical cartography or chemography approaches 

Chemical cartography or chemography approaches, allows visual 
analysis of an ensemble of chemical structures encoding vectors of 
molecular descriptors, which can project extremely complex data onto a 
2D chemical space map (Gaspar et al., 2015). This method utilizes the 
neighborhood behavior principle, which suggests that close-proximity 
compounds have similar chemical properties, so chemical space maps 
can relate to structural-activity relationship (SAR) studies. Joshi et al. 
conceptualized the key druggable parameters of chemical space and 
analyzed molecular similarity on already identified phytochemicals in 
COVID-19 (Joshi et al., 2021). Chemical space exploration using key 
parameters including MW, TPSA, number of rotational bonds (nROTB), 
hydrogen bond donors (nHBDon) and acceptors (nHBAcc), and partition 
coefficient (AlogP) using Platform for Unified Molecular Analysis 
(PUMA) online server (Gonzalez-Medina and Medina-Franco, 2017). 

Table 1 (continued ) 

Docking 
tools 

Website Description License Refs. 

peptides, and 
biologics 

(2020), Vilar 
et al. (2008),  
Wang et al. 
(2020), Wei 
et al. (2020), Yu 
et al. (2021),  
Zaki et al. (2021) 

SwissDock http: 
//www. 
swissdock. 
ch/ 

A web server for 
predicting the 
interaction 
between a target 
protein and 
small molecule 

Free Arora et al. 
(2020), Chen 
et al. (2021a),  
Grosdidier et al. 
(2011), Kong 
et al. (2020a),  
Rajpoot et al. 
(2021), Zhang 
et al. (2021b)  

Fig. 4. Docking Tools Supporting TCM Research against COVID-19.  

Table 2 
MD simulation software that support research of TCM against COVID-19.  

Docking 
tools 

Website Description License Refs. 

AMBER https://amb 
ermd.org/ 

A package of 
biomolecular 
simulation 
software 
including MM 
force fields and 
MD simulations 

Free Case et al. 
(2005),  
Chikhale et al. 
(2021a, 
2021b), Dutta 
et al. (2021),  
Gentile et al. 
(2020),  
Gopinath 
et al. (2020),  
Liao et al. 
(2021), Liu 
et al. (2021a),  
Murugan 
et al. (2021),  
Shree et al. 
(2022), Wang 
et al. (2021b),  
Wang et al. 
(2020), Wei 
et al. (2020),  
Ye et al. 
(2020) 

YASARA http://yasa 
ra.org/ 

A molecular- 
graphics, 
modeling, and 
simulation 
program for 
visualizing 
bioinformatics 

Proprietary Dutta et al. 
(2021),  
Gentile et al. 
(2020), Land 
and Humble, 
2018),  
Mahmud et al. 
(2021), Patel 
et al. (2021),  
Shree et al. 
(2022),  
Swargiary 
et al. (2020),  
Xinqiang et al. 
(2020) 

GROMACS http://www. 
gromacs. 
org/ 

An MD package 
for complex 
bonded 
interactions 
including 
proteins, lipids, 
and nucleic acids, 
as well as 
polymers 

Free Abraham 
et al. (2015),  
Chen et al. 
(2021a),  
Elekofehinti 
et al. (2021),  
Khuntia et al. 
(2021),  
Mazzini et al. 
(2020),  
Prasanth et al. 
(2021),  
Rajpoot et al. 
(2021),  
Selvaraj et al. 
(2021b),  
Sinha et al. 
(2020), ul 
Qamar et al. 
(2020),  
Vardhan and 
Sahoo, 2022),  
Wu et al. 
(2021b), Xie 
et al. (2021a, 
), 2021b), Ye 
et al. (2020),  
Zackria et al. 
(2022), Zaki 
et al. (2021),  
Zhao et al. 
(2021c) 

VMD http://www. 
ks.uiuc.edu/ 

A molecular 
visualization 
program 

Proprietary 
and free 

Abd 
El-Mageed 
et al. (2021),  

(continued on next page) 
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These parameters were used to compare potential hit compounds from in 
silico-based studies from natural sources against COVID-19, FDA 
approved drugs from natural products, and with FDA approved 
anti-infectives. A strong correlation of identified phytochemicals was 
observed and was further subjected to molecular docking and MD 
simulation. 

Generative Topographic Mapping (GTM) is one of the most 
commonly used chemical space mapping (chemography) methods. It is a 
non-linear grid-based method, which can be used for visualizing data, 
modeling structural activity, and evaluating database comparison. The 
GTM algorithm has 2D smooth surface called manifold fitted into a high- 
dimensional descriptor space and subsequently projected molecules on 
2D latent space superposed with a square grid of nodes (Lin et al., 
2020a). The results of biological tests can be involved with a map 
through activity or classification landscapes, which can visualize the 
specific sites surrounded by molecules with a provided activity along 
with proximity-based classification of untested compounds (Bocci et al., 
2020). In the past, there was no available experimental data for drug 
discovery against SARS-CoV-2, so information was mainly associated 
with related pathogens. Moreover, GTM was implemented for visual-
izing the interactive chemical space of natural product databases 
including ChemGPS-NP, COCONUT, D-Peptide Builder, and an intuitive 
online tool NP Navigator (Medina-Franco et al., 2021; Sorokina et al., 
2021; Zabolotna et al., 2021). These are open-source and easily acces-
sible tools and websites to calculate molecular descriptors and interpret 
chemical space notion of small molecules derived from natural product. 
Zabolotna et al. introduced the Natural Product Universal map (NP-U-
map) and obtained density landscape of natural products from COCO-
NUT to support the investigation of natural product chemical space 
(Zabolotna et al., 2021). The ISIDA descriptors have also been used to 
explore the chemical space of natural product. MinHashed Atom Pair 
fingerprint with diameter of four bonds (MAP4) was reported as a mo-
lecular fingerprint with good performance in similarity searching and 
chemical space visualization for different molecular sizes, which were 
analyzed in Natural Products Atlas (NPAtlas) containing microbial ori-
gins (Capecchi et al., 2020; Capecchi and Reymond, 2020). These could 
be great ideas for conducting experimental research using natural 
product databases, molecular descriptors and fingerprints, chemical 
space navigation of natural product against COVID-19. 

Table 2 (continued ) 

Docking 
tools 

Website Description License Refs. 

Research/ 
vmd/ 

supporting large 
biomolecular 
systems using 3-D 
graphics and 
built-in scripting 

Alhadrami 
et al. (2021),  
Humphrey 
et al. (1996),  
Khuntia et al. 
(2021),  
Vardhan and 
Sahoo, 2022),  
Zaki et al. 
(2021) 

NAMD http://www. 
ks.uiuc. 
edu/Resea 
rch/namd/ 

A parallel MD 
code designed for 
high- 
performance 
simulation of 
large 
biomolecular 
systems using the 
setup and 
trajectory 
analysis of VMD 
program 

Proprietary 
and free 

Abd 
El-Mageed 
et al. (2021),  
Alhadrami 
et al. (2021),  
Huynh et al. 
(2020),  
Phillips et al. 
(2005) 

CHARMM http 
s://www.ch 
armm.org/ 

A biomolecular 
simulation 
program with 
comprehensive 
set of energy 
functions, 
various enhanced 
sampling 
approaches as 
well as multi- 
scale techniques 

Proprietary 
and 
commercial 

Abd 
El-Mageed 
et al. (2021),  
Alhadrami 
et al. (2021),  
Arora et al. 
(2020),  
Brooks et al. 
(2009), Chen 
et al. (2021a),  
Huynh et al. 
(2020),  
Khuntia et al. 
(2021),  
Mazzini et al. 
(2020), Ram 
et al. (2021),  
Sinha et al. 
(2020), Zaki 
et al. (2021),  
Zhao et al. 
(2021c) 

Desmond https: 
//www.desh 
awresearch. 
com/resou 
rces.html 

A high-speed MD 
software suite on 
biological system 
with high 
performance and 
accuracy on 
NVIDIA GPUs 

Proprietary 
and 
commercial 

(Abel et al. 
(2020),  
Alhadrami 
et al. (2021),  
Badraoui 
et al. (2022),  
Bharadwaj 
et al. (2020),  
Emirik, 2022), 
Gopinath 
et al. (2020),  
Hasan et al. 
(2022),  
Kumar et al. 
(2022), Li 
et al. (2021b),  
Patel et al. 
(2021), Ram 
et al. (2021),  
Shah et al. 
(2021), Shree 
et al. (2022), Ş 
imşek et al. 
(2021), Singh 
et al. (2022),  
Vetrivel et al. 
(2021) 

Tinker https://d 
asher.wustl. 
edu/tinker/ 

A molecular 
modeling 
program for MM 
and MD 

Proprietary Mazzini et al. 
(2020),  
Rackers et al. 
(2018)  

Table 2 (continued ) 

Docking 
tools 

Website Description License Refs. 

including several 
commonly used 
parameters for 
molecular design  

Fig. 5. MD Simulation Software Supporting TCM Research against COVID-19.  
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Generative neural network models 

Different from virtual screening of available chemical libraries, 
constructing de novo molecule provides access to a virtually infinite 
chemical space and offers innovative molecular architecture with 
desired properties (Yang et al., 2019). Recently, the use of generative 
artificial intelligence to develop drug-like chemical compounds with 
desirable pharmacological effects supports drug discovery of DAAs 

(Schneider and Clark, 2019). Recent generative approaches usually 
construct on deep neural networks (DNNs), which aims to model the 
underlying distribution of a given set of molecules and by sampling from 
the modelled distribution to construct novel chemical entities (Foster, 
2019). The application of recurrent neural networks (RNNs) with long 
short-term memory (LSTM), variational autoencoders, generative 
adversarial networks (GANs), graph neural networks (GNNs), and other 
network architectures have been studied (Grisoni and Schneider, 2019; 

Table 3 
Examples of active compounds isolated from natural extracts with ACE2 (S protein) inhibitory activity.  

Source Family Hits Class of compounds Bioactivities Ref. 

Camellia sinensis (Linnaeus) Kuntze Theaceae Epigallocatechin gallate 
(EGCG) 

Catechin IC50 = 2.47 µg/ml Henss et al. (2021) 

Caragana sinica (Buc’hoz) Rehder Fabaceae Kobophenol A Stilbenoid IC50 = 1.81 µM 
EC50 = 71.6 μM 

Gangadevi et al. (2021) 

Glycyrrhiza glabra Linnaeus Fabaceae Glycyrrhizic acid Triterpenes IC50 = 22 µM Yu et al. (2021) 
Polygonum cuspidatum (Houttuyn) 

Ronse Decraene 
Polygonaceae Emodin 8-O-β-D-glucoside Hydroxyanthraquinone 

glycoside 
IC50 = 22.50 
µmol/l 

Chen et al. (2021b) 

Rheum palmatum Linnaeus Polygonaceae Rhein Anthraquinone IC50 = 18.33 
µmol/l 

Salvia miltiorrhiza Bunge Lamiaceae Tanshinone IIA, Diterpene quinone IC50 = 4.08 μM Elebeedy et al. (2021) 
Carnosic acid Phenolic acids IC50 = 15.37 μM 
Rosmarinic acid Diterpene IC50 = 25.47 μM 
Salvianolic acid B Polyphenols IC50 = 58.29 μM 

EC50 = 6.22 μM 
Elebeedy et al. (2021) Hu et al. 
(2021b) 

Salvianolic acid C EC50 = 10.14 μM Hu et al. (2021b) 
Salvianolic acid A EC50 = 11.31 μM  

Table 4 
Examples of active compounds isolated from natural extracts with 3CLpro (M pro) inhibitory activity.  

Source Family Hits Class of compounds Bioactivities Ref. 

Actinomycetes QFPDT Actinomycetaceae Leupeptin Tripeptide IC50 = 127.2 μM 
EC50 = 42.34 μM 

Fu et al. (2021) 

Aloe vera (Linnaeus) Burman Asphodelaceae Kaempferol Flavonoid 93% inhibition at 62.5 μM 
88% inhibition at 125 μM 

Khan et al. (2021) 

Ampelopsis japonica (Thunberg) Makino Vitaceae Myricetin Flavonoid IC50 = 2.86 µM Xiao et al. (2021) 
IC50 = 3.684 μM 

Anacardium occidentale Linnaeus Anacardiaceae Anacardic acid Phenolic acid IC50 = 2.07 µM Chen et al. (2021c) 
Camellia sinensis (Linnaeus) Kuntze Theaceae Epigallocatechin gallate (EGCG) Catechin IC50 = 0.874 μM Du et al. (2021) 
Cannabis sativa Linnaeus Cannabaceae Cannabidiol Cannabinoid IC50 = 7.91 µM Raj et al. (2021) 

Δ9 -tetrahydrocannabinol IC50 = 10.25 µM 
Cirsium japonicum de Candolle Asteraceae Pectolinarin Flavonoid IC50 = 37.78 µM Jo et al. (2020) 
Ginkgo biloba Linnaeus Ginkgoaceae Ginkgolic acid Phenolic acid IC50 = 1.79 µM Chen et al. (2021c) 
Linum usitatissimum Linnaeus Linaceae Herbacetin Flavonoid IC50 = 33.17 µM Liu et al. (2021b) 
Poria cocos (F.A. Wolf) Ryvarden & Gilbertson Polyporaceae Pachymic acid Triterpenoid IC50 = 18.607 µmol/l Wu et al. (2021b) 
Rhus succedanea (Linnaeus) Kuntze Anacardiaceae Rhoifolin Flavonoid IC50 = 27.45 µM Liu et al. (2021b) 
Scutellaria baicalensis Georgi Lamiaceae Baicalin Flavone glycoside IC50 = 6.41 μM Su et al. (2020) 

Baicalein Flavone IC50 = 0.94 µM 
IC50 = 0.39 µM 
EC50 = 2.9 µM 

Liu et al. (2021b) 

Scrutellarein Flavonoid IC50 = 5.8 µM  

Table 5 
Examples of active compounds isolated from natural extracts with PLpro inhibitory activity.  

Source Family Hits Class of compounds Bioactivities Ref. 

Carpobrotus edulis (Linnaeus) Brown Aizoaceae Rutin Flavonol glycoside 38% inhibition at 100 μM Pitsillou et al. (2021) 
Garcinia lateriflora Blume Clusiaceae Morelloflavone  IC50 = 36.4 μM Li et al. (2022b) 
Ginkgo biloba Linnaeus Ginkgoaceae Amentoflavone Biflavones IC50 = 13.0 μM 

Ginkgetin IC50 = 29.8 μM 
Isoginkgetin IC50 = 31.2 μM 
Sciadopitysin IC50 = 34.8 μM 

Hibiscus sabdariffa Linnaeus Malvaceae Cyanidin-3-O-glucoside Anthocyanin 20% inhibition at 100 μM Pitsillou et al. (2021) 
Hypericum perforatum Linnaeus Hypericaceae Hypericin Naphtodianthrone 97% inhibition at 100 μM 
Lonicera japonica Thunberg Caprifoliaceae 4′-O-Methylochnaflavone  IC50 = 22.8 μM Li et al. (2022b) 
Platycladus orientalis (Linnaeus) Franco Cupressaceae Hinokiflavone  IC50 = 9.5 μM  

Cryptomerin B IC50 = 26.3 μM 
Podocarpus nakaii Hayata Podocarpaceae Podocarpusglavone  IC50 = 43.2 μM 
Salvia miltiorrhiza Bunge Lamiaceae Cryptotanshinone Diterpenoid IC50 = 5.63 μmol/L Zhao et al. (2021b)  

Tanshinone I IC50 = 2.21 μmol/L  
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Lin et al., 2020b; Pogány et al., 2019; Sattarov et al., 2019). These ap-
proaches are trained using ML algorithms to understand the meaning of 
text and language analytics. For the purpose of molecular design, the 
training molecules are represented in form of string notations as 
simplified molecular-input line-entry systems (SMILES strings). This 
generative DL model is important because internal representations of 
SMILES are automatically derived without relying on human-engineered 
molecular descriptors that require one’s prediction of physicochemical 
properties. The generative model captures the syntax corresponding to 
valid training molecules and renders new SMILES-encoded molecules of 
interest, which can also lead to discovery of novel compounds with 
desired bioactivities (Merk et al., 2018). Bung et al. employed deep 
neural network-based generative and predictive models for de novo 
design of small molecules with SARS-CoV-2 3CLpro inhibitory effects 
(Bung et al., 2021). Transfer learning followed by reinforcement 
learning aided the design of protease-specific inhibitors with optimized 
new chemical entities (NCEs) properties. The SymMap database of TCM 
was used to compare the potent NCEs by generative model that poten-
tially targeted 3CLpro (Wu et al., 2019). 33 NCEs were selected for the 
identification of pharmacokinetic and toxicity properties using Swis-
sADME, ToxTree, and pkCSM (Bung et al., 2021). Two NCEs shared 
similar results of Tanimoto coefficient of 0.80 to the natural product 
named aurantiamide. This phytochemical was extracted from Baphica-
canthus cusia, the TCM herb treating cold, fever, and influenza, and 
possessed anti-viral properties. The generalized approach was used to 
rapidly accelerate drug discovery process and tested against 
SARS-CoV-2 3CLpro. 

Another study has developed deep learning model using convolu-
tional neural network (CNN) framework for predicting compounds with 
3CLpro inhibitory activity (Kumari and Subbarao, 2021). 423 unique 
chemical structures including 80 active and 343 inactive compounds as 
chemical descriptors were trained into the CNN model. Classification ML 
approaches including Random Forest, naïve Bayes, decision tree, and 
support vector machine were also implemented to compare with the 
CNN model. The results of the test set exhibited an accuracy, sensitivity, 
specificity, precision, recall, F-measure, and ROC of 0.86, 0.45, 0.96, 
0.73, 0.45, 0.55, and 0.71, respectively. The CNN architecture screened 
10 hit molecules from phytochemical compounds, 59 hits from NCI 
divest IV and 14,025 ZINC natural product database as anti-COVID-19 
agents. 

Examples of active compounds derived from TCM by ligand- 
based approaches 

The examples of active compounds from TCM by structure-based 
approaches have been previously discussed. Only few studies have 
been investigated on main TCM components acting against COVID-19 
using ligand-based approaches, which will be reviewed in this section. 
Rahman et al. reported a ligand-based pharmacophore approach using 
the Molecular Operating Environment (MOE) software (Rahman et al., 
2020). Approximately 30,927 compounds from NPASS were screened 
for the pharmacophore features of standard serine protease inhibitor 
camostate mesylate, which is a trypsin-like protease inhibitor. Subse-
quently, 2140 compounds were identified from the ligand-based com-
pound screening approach and further subjected to molecular docking 
against TMPRSS2 to determine potent inhibitors of this target. The au-
thors selected 10 pharmacophoric features including anionic and 
cationic atoms, H-Bond donor and acceptor, aromatic center, Pi ring 
center, and a hydrophobic center. Following physicochemical and 
ADMET prediction, NPC306344 was the hit compound for TMPRSS2. 
Further investigation on experimental and animal studies is required to 
develop this anti-COVID-19 drug. Gaudêncio & Pereira proposed five 
marine natural products, such as Reaxys ID: 7450892, 19384758, 
26845562, 10714788, and 10720065 as most promising SARS-CoV-2 
Mpro inhibitors using quantitative structure-activity relationship 
(QSAR) classification modeling (Gaudêncio and Pereira, 2020). This 

CADD ligand-based study consists of two extensive sets of descriptors 
including six different types of fingerprints with different sizes and 
1D&2D descriptors. These molecular descriptors and fingerprints were 
calculated using PaDEL-Descriptor version 2.21, available on http:// 
www.yapcwsoft.com/dd/padeldescriptor/. Random Forest (RF) ma-
chine learning technique was used for constructing classification 
modeling to evaluate performance of SARS-CoV-2 activity. The authors 
highlighted three selected models, which are MACCS model, ExtCDK 
model, and 1D&2D descriptors. The best MACCS model built with sets of 
fragment fingerprints include MACCS, Sub, Sub C, and PubChem, and 
the best ExtCDK model built with sets of circular fingerprints include 
CDK and CDKExt. For 1D&2D descriptors, Q and MCC parameters were 
selected. The best model for each training set of ExtCDK fingerprints and 
1D&2D descriptors were obtained by using the RF algorithm of the 
selected 150 fingerprints and descriptors, respectively. MACCS model 
was excluded because descriptors comprise only 166 fingerprints. 
Probability of being class A (Prob_A) can be used as an additional 
parameter assigned by the RF algorithm and a predicting criterion 
(≥0.5). JChem Standardizer tool version 5.7.13.0 was then used to 
standardize the molecular structures of all data sets by normalizing 
tautometic and mesomeric groups and removing small disconnected 
fragments. The pkCSM software was used to predict fifteen selected 
marine natural products by QSAR model, molecular docking, and 
ADMET properties. Finally, the top five aforementioned marine natural 
products were achieved and could be further investigated experimen-
tally. Ghosh et al. reported the development of multiple classification 
QSAR models including several Monte Carlo optimized-based and 
structural and physicochemical interpretation (SPCI) analysis with a 
diverse dataset of 88 compounds with SARS-CoV-2 Mpro inhibitory 
properties (Ghosh et al., 2021). In SPCI analysis study, four machine 
learning approaches including Gradient boosting classification (GBC), 
Random Forest (RF), Support Vector Machine (SVM), and k-nearest 
neighbor (kNN) are used to perform diverse classification-based QSAR 
models for identifying and predicting different fragments that contribute 
for Mpro inhibition. These models were further assessed for balanced 
accuracy, sensitivity, and specificity (Polishchuk et al., 2016). The re-
sults of SPCI analysis suggested heterocyclic scaffolds including diazole, 
furan, and pyridine have a positive contribution, while thiophen, thia-
zole, and pyrimidine seem to have negative contribution to Mpro inhi-
bition (Ghosh et al., 2021). Furthermore, Monte Carlo 
optimization-based QSAR was implemented to screen some natural 
product hits from recent publications. SMILES-based descriptors, 
Graph-based descriptors, and Hybrid descriptors are employed in this 
study. The statistical characteristics of twenty-one different models from 
three different splits were obtained from Monte Carlo optimization 
method, and the model M21 (SMILES and HSG with 1ECk) from split-3 
was applied for the best model screening. Subsequently, 13 active 
molecules from natural sources were found as the most potent corona-
viral Mpro inhibitors. These compounds consist of one lignan, eleven 
flavonoids, and one pentacyclic triterpenoid. This approach plays a 
significant role on fragment investigation and QSAR based active com-
pound screening against SARS-CoV-2 Mpro enzyme. 

Knowledge mining tools 

The COVID-19 pandemic results in urgent establishments of open 
science and FAIR (Findable, Accessible, Interpretable, Reusable) data 
initiatives to help researchers, institutions, publishers, companies and 
regulators better understanding the disease and search for effective 
treatment as soon as possible (Wilkinson et al., 2016). For instance, the 
Natural Products Atlas, a microbial natural product database with over 
20,000 compounds containing structural data references, compound 
names, source organisms, isolation references, total syntheses, and 
structural reassignment, has been developed using FAIR principles as a 
community-supported resource for known structural characterizations 
of microorganisms from natural product (Van Santen et al., 2019). 
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Various structured and unstructured COVID-19 data sources have been 
made publicly available. This highlights the use of accelerated tools for 
COVID-19 drug discovery from knowledge graph approaches and AI, 
which will be discussed with examples in the following section (Bullock 
et al., 2020). 

Knowledge graph (KG) is a collection of integrated knowledge re-
sources or correlation between library and data descriptions in a form of 
mapping graph (LiuQiao and DuanHong, 2016). KG implemented 
visualization AI technology to illustrate, construct, connect knowledge 
resources, and display relationships between these carriers. In TCM 
field, the use of KG analysis could explain complex relationships be-
tween therapeutics and prevention of diseases as well as other research 
fields, which could be an alternative for studying the information on 
TCM. Several studies have applied KG to the TCM diagnostic and med-
ical treatment (Wang, 2020; Yu et al., 2017; Zhao et al., 2020a). How-
ever, in this review, the TCM prescription using COVID-19 KG will be 
summarized in detail. 

FP-Growth algorithm, a modified version of Apriori algorithm, has 
been developed for analyzing TCM data correlation between natural 
active constituents in 41 TCM prescriptions with 8 characteristics of 
medical properties, 10 kinds of medical tastes, and 10 kinds of meridian 
tropism (Yan et al., 2020). In this study, Neo4j, a high-performance 
NoSQL graph database, as well as various programming languages, for 
instances Python, Java, GO, R, etc. were also provided in order to 
construct COVID-19 KG. Three populations including medical observa-
tion, mild general, and COVID-19 infected patients were included in the 
study with equally distributed number ratio of 1:1:1 to enhance reliable 
association analysis results. To be more specific, TCM prescriptions for 
COVID-19 infected patients will be summarized in our review. There are 
two major modules, which comprises of FP-tree construction by 
FP-Growth algorithm and the use of Cypher language analysis on the 
algorithm to map the graph of COVID-19 prescription. The initial step 
was to establish relationships between tastes, properties, and population 
and make correlation analysis to produce the graph of “applicable 
population – properties, tastes, and meridian tropism of Chinese me-
dicinal herbs” (Yan et al., 2020). The results demonstrated that TCM 
herbs with neutral property, acrid taste, and spleen-invigorating me-
ridians were commonly used in the prescriptions to treat COVID-19 
infected patients. The highest proportions of each TCM characteristics 
type of herbs in COVID-19 prescriptions statistically contributed 39% of 
warm-natured properties, 41% of acrid tastes, and 24% of stomach 
meridian tropism. Subsequently, the use of operation instructions, such 
as MATCH and WHERE in Cypher suggested that core TCM herbs 
including Radix Glycyrrhizae (Gan Cao), Herba Asari (Xi Xin), Rhizoma 
Atractylodis (Cang Zhu), and etc. were recommended as well as TCM 
prescriptions including phlegm-resolving, wind-dispelling, cough/pai-
n/exterior syndrome-relieving, spleen-invigorating, and 
digestion-aiding medicines for the COVID-19 infected patients. Further 
investigations on improving KG efficacy are required. For examples, the 
KG of COVID-19 prescriptions reported here only supported a small 
number of data, so FP_G algorithm should be applied to enhance FP_tree 
construction in FP-Growth algorithm for a larger volume of prescription 
data expansion. The use of KG approaches for COVID-19 TCM pre-
scriptions could be applied in relevant research scholars and increased 
the reliability of TCM research content. 

Network-based approaches 

Network-based approaches is very important for network pharma-
cology, system pharmacology and integrated pharmacology research on 
TCM against COVID-19. 

Network pharmacology 

Network pharmacology comprehensively integrates multitarget 
drugs and compound-disease pathways in order to comprehend complex 

biological systems, drugs, and diseases in a network point of view. This 
results in shifting drug discovery concepts of network theory and sys-
tems biology from the concept of one gene, target, and disease to the 
novel paradigm of multitargeted mechanisms in treatment of compli-
cated diseases, especially COVID-19. 

Zhang et al. conducted a network pharmacological methodology to 
explore significant biological mechanisms of Lianhua Qingwen Capsule 
(LHQWC), which is another TCM formula used for treating respiratory 
diseases as well as COVID-19 (Zhang et al., 2021a). 263 ingredients of 13 
herbs, including Fructus Forsythiae, Flos Lonicerae Japonicae, Herba 
Ephedrae, Almond, Radix Isatidis, Fortunes Boss fern Rhizome, Herba 
Houttuyniae, Herba Pogostemonis, Rheum palmatum, and Glycyrrhiza ura-
lensis Fisch, were retrieved from TCMSP database while Rhodiola rosea, 
Mentha haplocalyx Briq and Gypsum Fibrosum were retrieved from 
BATMAN-TCM and TCMID databases (Liu et al., 2016; Xue et al., 2012). 
226 compounds excluding duplicated portions from these herbs were 
selected for further study. To standardize the protein name, UniProtKB 
was utilized to acquire the official symbols (Consortium, 2015). The 
gene intersection between active ingredients and COVID-19 was illus-
trated and visualized using a Venn diagram (Heberle et al., 2015). 
GeneCards database was used to obtain COVID-19 human related genes 
(Rebhan et al., 1997), and the STRING database was employed to predict 
PPI interaction data (Mering et al., 2003). 643 therapeutic genes were 
collected from GeneCards for COVID-19 and 49 intersected genes were 
generated. These ingredient-disease co-target genes were further im-
ported into STRING to construct PPI. GO and KEGG pathway enrichment 
were further carried out using R package to determine biological pro-
cesses and molecular interactions associated with top 20 selected com-
mon genes (Kanehisa and Goto, 2000). Ingredient–target network and 
ingredient–disease PPI networks were analyzed and constructed using 
Cytoscape software (Shannon et al., 2003). The ingredient-target 
network contains 153 nodes (49 targets and 104 compounds) and 299 
edges, which represent a biological relationship between two nodes. 
LHQW-C may exert synergistic pharmacological effects on COVID-19 as 
suggested by the degree (number of links to nodes) of compounds. For 
instance, quercetin (degree 38), luteolin (degree 17), wogonin (degree 
12), and kaempferol (degree 11) exhibited multiple targets in network 
regulation. On the other hand, the result revealed PPI network consisted 
of 46 nodes and 331 edges. Nodes with an average value of degree ≥27, 
node betweenness ≥0.0009993, and closeness ≥0.618 suggested that 
the target network of LHQW-C plays significant roles on IL-6, TNF, 
MAPK1, which were associated with inflammatory responses, oxidative 
stress reactions, and other biological processes. Finally, the potential 
mechanism of LHQW-C using an integrating network pharmacology 
method suggested that some anti-inflammatory ingredients may inhibit 
viral replication, suppress cytokine storm, and protect the pulmonary 
alveolar-capillary barrier in patients with serious COVID-19 illness. 

Similarly, Li et al. reported the antiviral and anti-inflammatory ef-
fects of Maxing Shigan decoction (MXSGD), the key formula for treating 
pulmonary diseases, using multiple open-source TCM databases, 
network pharmacology, PPI construction, as well as biological enrich-
ment analysis (Li et al., 2021c). Four TCM herbs in MXSGD formula 
consist of E. sinica, S. armeniacae amarum, G. Fibrosum, and G. uralensis 
have proved to be effective against COVID-19, and Lianhua Qingwen 
Capsule, Qingfei Paidu decoction, Huashi Baidu formula, and Xuanfei 
Baidu granule, were all formulated based on MXSGD. Ye et al. reported 
the ingredients of Toujie Quwen Granules were proved to have thera-
peutic effects on COVID-19 via regulating viral infection, immune and 
inflammatory related targets and pathways using network pharma-
cology, molecular docking, and surface plasmon resonance (SPR) tech-
nology (Ye et al., 2021). The results of SPR experiments revealed the 
combination of quercetin and isoquercitrin preferably bound to 
SARS-CoV-2 S protein while astragaloside IV and rutin selectively bound 
to ACE-2. He et al. identified the therapeutic effect of Xuebijing injection 
on COVID-19-induced cardiac dysfunction using bioinformatics analysis 
(He et al., 2021). Xuebijing injection indicated oxidative stress 
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inhibition, atherosclerotic plaque prevention, inflammatory repression 
and apoptosis by targeting 7 central hub genes including CCL2, CXCL8, 
FOS, IFNB1, IL-1A, IL-1B, SERPINE1 that have protective mechanism on 
COVID-19-induced cardiac dysfunction. Lin et al. systematically and 
comprehensively analyzed the active ingredients, targets, and possible 
mechanisms of Yinqiao powder for treating COVID-19 using 
drug-ingredient-gene and PPI network construction as well as GO and 
KEGG pathway analysis (Lin et al., 2021). The active ingredients of 
Yinqiao powder, such as hesperetin, eriodictyol, luteolin, quercetin, and 
naringenin have antagonistic effect on the inflammatory storm caused 
by COVID-19 and may be associated with the regulation of IL-6, MAPK3, 
TNF, and TP53 targets using network pharmacology. Tao et al. proposed 
the therapeutic mechanism of Shufeng Jiedu Capsule (SFJDC) against 
SARS-CoV-2 pneumonia using an integrated systemic study of ADME 
assessment, target fishing, network construction, and functional bioin-
formatics analyses to understand potential immunomodulatory and 
anti-inflammatory mechanisms (Tao et al., 2020). Many TCM pre-
scriptions have been investigated using network pharmacology methods 
due to complicated multiple TCM ingredients, targets, diseases, and 
mechanisms. Next, discussion part will be mentioned. 

System pharmacology 

The combination of herbal medicine formula contains over thou-
sands of chemical compounds, and only some parts of them show 
favorable pharmacokinetics along with potential biological effects (Li 
et al., 2012). Moreover, possible therapeutic effects of herbal products 
might result from cooperate actions of the herbal ingredients. This 
concept screens out the conventional analytical chemistry and phar-
macology technologies which attempt to isolate and identify possible 
pharmacological effects of chemical constituents. Also, the chemical 
components in multiple TCM herbs or even in one herb are too complex 
to identify because they produce various biological targets involving in 
various pathogenesis. Due to these addressed issues, systems pharma-
cology has been applied in a biological complex system for screening 
drug safety, active compounds, predicting the targets, and analyzing the 
potential ingredient target-disease networks. 

A unique system pharmacology platform of Chinese herbal medi-
cines named Traditional Chinese medicine systems pharmacology 
(TCMSP) was developed for accelerating drug discovery from herbal 
medicines (Ru et al., 2014). This database covers a large-scale structural 
data integration with experimentally validated information for all 
registered herbs in Chinese pharmacopoeia, active compound screening 
with key ADME-related properties from diverse sources, 
compound-target and target-disease network construction with applied 
TCM theory, as well as mechanisms of action and discovery of new 
drugs. Wang et al. systemically reported the pharmacological effects and 
mechanisms of Jingyin granule containing multiple herbs for treating 
respiratory system diseases using computational approaches (Wang 
et al., 2021a). Firstly, the ingredients in Jingyin granule were assessed 
using TCMSP and Traditional Chinese medicine integrated database 
(TCMID). These databases were used to search for the identified herbal 
ingredients with ADME properties, oral bioavailability (OB), and drug 
likeness (DL). A total of 168 selected druggable ingredients identified in 
Jingyin granule were screened in TCMSP database with the criteria of 
OB ≥ 30% and DL ≥ 0.18. Subsequently, 865 potential therapeutic 
targets of ingredients were identified using SwissTargetPrediction 
database, and for possible targets of COVID-19, Online Mendelian In-
heritance in Man (OMIM), DisGeNET, and GeneCards databases were 
implemented and identified 88 interacting genes as potential thera-
peutic targets of Jingyin granule to COVID-19. As a result of using these 
computational approaches, Jingyin granule could directly target the 
ACE gene, and ACE protein shared similar domain with ACE2, which 
had been identified as one of the most important targets for SARS-CoV-2 
entry (Wang et al., 2021a). Gene Ontology (GO) enrichment analysis 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

analysis were further investigated for these relevant target genes with 
similar functions using an R package clusterProfiler (Yu et al., 2012). 
The results of GO and KEGG analysis suggested Jingyin granule could 
regulate immunoreaction as Flos lonicera and Licorice demonstrated 
anti-inflammatory activities (Wang et al., 2021a). 

Another example of system pharmacology was included in the study 
of TCM Shenfuhuang Formula (SFHF) in treatment for septic syndrome 
of COVID-19 (Liu et al., 2020). Data mining was performed and 
collected 231 ingredients from SFHF, including 92 ingredients of Rheum 
palmatum L. (Da Huang), 74 compounds of Panax ginseng C.A.Mey (Hong 
Shen), and 65 compounds of Aconitum carmichaeli Debeaux (Fu Zi) from 
TCM pharmacology analysis databases, TCMSP and ETCM. Suitable 
drug candidates were selected when they fulfilled active screening 
criteria including oral bioavailability (OB) ≥ 30%, Caco-2 permeability 
(Caco-2) > − 0.4, drug-likeness (DL) ≥ 0.18, and half-life (HL) ≥ 4. Only 
49 potential SFHF compounds were selected. Weighted ensemble simi-
larity (WES) approach was also utilized to obtain comprehensive drug 
target information of SFHF. The results of 64 identified targets were 
predicted for the 49 potential drug compounds. In compound-target 
analysis network, compounds with most targets (sitosterol, emodin, 
chrysophanol, and deltoin) as well as proteins (GSK3β, ESR1, PPARG, 
PTGS2, AKR1B10, and MAPK14) were determined (Liu et al., 2020). 
SFHF was further analyzed in PharmGKB, Drugbank, and TTD databases 
for a target-disease network, and the results suggesting 46 targets were 
directly involved with immune system as well as nine potential targets 
on inflammatory disease. KEGG and DAVID databases were subse-
quently connected potential targets and related signaling pathways. 
These signaling pathways, such as Toll-like receptor, MAPK, JAK/STAT, 
PPAR, VEGF, NOD-like receptor and NF-kappa B have a strong rela-
tionship with sepsis, infection immunity, inflammatory response, 
coagulation function, organ damage, immune disorders and other dis-
eases. Furthermore, synergistic effects of three herbal compounds in 
SFHF were constructed, and the targets of this TCM formula were related 
with the calcium, MAPK, T cell receptor, and PI3K-AKT signaling 
pathways. These are main pathological pathways for sepsis. There are 
more upcoming studies on TCM formulas with system pharmacology 
approaches and MOA analysis for COVID-19 in the future. 

Discussion 

COVID-19 pandemic has globally brought researchers to conduct 
extensive studies in order to comprehend pathological diseases, viral 
components of protein structure, and viral-host interactome. The cur-
rent search for potential antiviral inhibitors, such as vaccines seems to 
be massively time-consuming as well as conventional drugs with un-
desirable effects in a long term. Hence, the search for accelerated 
methods, safe, and effective antiviral drugs is required. Computer-aided 
drug discovery (CADD) approaches play a significant role in simulating 
drug-target interactions, analyzing potential drug targets, and accu-
rately predicting hit compounds by using bioinformatics databases, 
docking tools, software, and other computational methods for the 
optimization of drug design. In the early stage of drug discovery, CADD 
can save time, financial investment, and economical resources spending 
on wet lab, and prove chemical safety profile of natural ingredients in 
TCM. An effective CADD approach was previously utilized to study 
modern sciences of complex multi-target diseases and mechanisms using 
TCM formula and/or natural products derived from TCM (Yang, 2013). 
Moreover, a recent study on CADD, publication resources, and other 
computational approaches was implemented to discover novel drug 
candidates against COVID-19 (Muratov et al., 2021). We truly inspired 
by the concept of these two studies, so we focus on small molecule drugs 
derived from natural products and Traditional Chinese medicine (TCM) 
in treatment of COVID-19 using CADD approaches. 

In this review, there are more studies mentioning on databases and 
research resources, docking tools, and MD simulation software that aid 
TCM drug discovery against COVID-19. For instances, the identification 
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of natural hit compounds named Gracillin and Proanthocyanidins from 
traditional medicinal plants were virtually screened using AutoDock 
Vina and visualized by Discovery Studio Visualizer, and both exhibited 
the highest binding affinity of 9.2 kcal/mol to 3CLpro (PDB ID: 6WNP) 
(Khanh and Hoa, 2021). Elekofehinti et al. reported post-docking anal-
ysis by MM/GBSA of the natural hit compound named STOCK1N-98687 
from natural products library and confirmed binding stability of the 
ligand and 3CLpro complex (Elekofehinti et al., 2021). STOCK1N-98687 
has high GLIDE docking score against SARS-CoV-2 3CLpro, induced-fit 
docking score, and satisfactory calculated binding free energy score 
with good predicted inhibitory prowess (pIC50) compared to the 
experimental drug lopinavir. 50 ns MD simulation was performed using 
GROMACS software and revealed high stability with low fluctuation of 
the complex suggesting STOCK1N-98687 as the potential 3CLpro inhib-
itor. Pie charts are illustrated in Figs. 2, 4, 5, and the most popular 
database, docking tool, and MD simulation software on TCM research 
articles against COVID-19 are TCMSP, AutoDock Vina, and GROMACS, 
respectively. However, this can be further indicated that databases, tools 
or MD software conducting on TCM research articles against COVID-19 
are low in number of publications. Many readers could take this op-
portunity to exploit and develop their own TCM-related research field 
against COVID-19 from our review. 

We have found more in vitro examples of active ingredients on TCM 
using structure-based approaches while ligand-based approaches will be 
summarized using in silico methods. QSAR classification modeling was 
constructed using RF machine learning techniques in order to propose 
five marine natural products (Reaxys ID: 7450892, 19384758, 
26845562, 10714788, and 10720065) as top SARS-CoV-2 Mpro in-
hibitors (Gaudêncio and Pereira, 2020). Deep neural networks were 
employed for generating de novo design of small molecules and 
compared 33 NCEs with TCM phytochemicals in order to determine 
which compounds are able to inhibit SARS-CoV-2 3CLpro (Bung et al., 
2021). In this study, aurantiamide from TCM herb Baphicacanthus cusia 
possessed antiviral properties, and this method can accelerate drug 
discovery process. For knowledge mining tools, the use of COVID-19 
knowledge graph can be applied in TCM prescriptions for diagnostic 
and medical treatment (Yan et al., 2020). The applications of systems 
pharmacology focus mainly on a biological system including active 
ADME screening model, target prediction, and compound target-disease 
network analysis. For network pharmacology, the integration across 
multiple drug-target and ingredient-disease pathways totally shifts the 
paradigm of drug discovery from one gene, target, and pathway to 
complex network theory, biological systems, and multiple target 
mechanisms. Many TCM formula have included both systems pharma-
cology and network pharmacology in their research articles for better 
understanding of their multiple mechanisms and targets. Different 
CADD approaches that support TCM research on COVID-19 have been 
reviewed in this paper. After determining hit selection, every study re-
quires further experimental validations in order to be readily tested in 
animal and clinical studies. 

Conclusion 

Overall, different approaches supporting TCM research on COVID-19 
including research databases, docking tools, and MD simulation soft-
ware have been totally summarized. The application of databases and 
research resources on TCM ingredients for COVID-19 listed in this paper 
facilitates a wide range of audience to employ CADD tools to datasets 
and biological targets regarding to SARS-CoV-2 drug discovery. 
Computational investigation including databases, molecular docking 
tools and MD simulation software on natural compounds and TCM herbs 
have been applied and predicted as potential targets for COVID-19. The 
most commonly used database, molecular docking tool, and MD simu-
lation software include TCMSP, AutoDock Vina, and GROMACS, 
respectively. These are subsequently illustrated in Figs. 2, 4, and 5 as pie 
charts. MD simulation software is implemented for MM/PBSA and MM/ 

GBSA methods for binding free energy calculation. Several examples of 
active components derived from TCM by structure-based and ligand- 
based approaches were also mentioned, which were conducted in vitro 
and in silico, respectively. Active components derived from natural 
products or TCM for structure-based approaches are summarized against 
key COVID-19 targets including ACE2, 3CLpro, and PLpro. Only few 
studies were found in active ingredients of natural products derived 
from TCM for ligand-based approaches. COVID-19 knowledge graph, an 
example of knowledge mining tool, is used to analyze complex TCM 
relationships between TCM herbal properties and therapeutics on 
COVID-19 infected patients. System/network pharmacology databases 
were used to identify the multitarget mechanisms of COVID-19 due to 
the complex of chemical ingredients, targets, and pathological mecha-
nisms in multiple TCM herbs. In the future, computational approaches, 
tools, and resources are necessary for the upcoming unknown diseases. 
We recommend readers to exploit our information for the development 
of future drug discovery in TCM. 
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products targeting SARS-CoV-2–ACE2 receptor interface–a MixMD based htvs 
pipeline. Front. Chem. 8, 1084. 

Grisoni, F., Schneider, G., 2019. De novo molecular design with generative long short- 
term memory. Chimia 73, 1006–1011 (Aarau).  

Grosdidier, A., Zoete, V., Michielin, O., 2011. SwissDock, a protein-small molecule 
docking web service based on EADock DSS. Nucleic Acids Res. 39, W270–W277. 

Gu, S., Xue, Y., Xue, S., Tang, Y., Hu, Z., Wu, H., Cai, G., Dou, D., 2021. Mechanism of E 
Lian granule reversing chronic atrophic gastritis with intestinal metaplasia based on 
integrated pharmacology and GEO gene chip. Res Sq. https://doi.org/10.21203/ 
rs.3.rs-174231/v1. 

Guo, S., Wu, W.X., Xie, H., Li, Q., Wang, H.B., Duan, J.A., 2020. Molecular mechanism of 
Bufei Huoxue capsule on COVID-2019 based on network pharmacology and 
molecular docking. Chin. Tradit. Herb. Drugs 9, 2307–2316. 

Gurung, A.B., Ali, M.A., Lee, J., Farah, M.A., Al-Anazi, K.M., 2021. An updated review of 
computer-aided drug design and its application to COVID-19. Biomed. Res. Int. 
2021, 8853056. 

Gyebi, G.A., Adegunloye, A.P., Ibrahim, I.M., Ogunyemi, O.M., Afolabi, S.O., Ogunro, O. 
B., 2020. Prevention of SARS-CoV-2 cell entry: insight from in silico interaction of 
drug-like alkaloids with spike glycoprotein, human ACE2, and TMPRSS2. J. Biomol. 
Struct. Dyn. 40, 2121–2145. 

Han, L., Wei, X.X., Zheng, Y.J., Zhang, L.L., Wang, X.M., Yang, H.Y., Ma, X., Zhao, L.H., 
Tong, X.L., 2020. Potential mechanism prediction of cold-damp plague formula 
against COVID-19 via network pharmacology analysis and molecular docking. Chin. 
Med. 15, 78. 

Hasan, A., Biswas, P., Bondhon, T.A., Jannat, K., Paul, T.K., Paul, A.K., Jahan, R., 
Nissapatorn, V., Mahboob, T., Wilairatana, P., 2022. Can artemisia herba-alba be 
useful for managing COVID-19 and comorbidities? Molecules 27, 492. 

He, D.D., Zhang, X.K., Zhu, X.Y., Huang, F.F., Wang, Z., Tu, J.C., 2021. Network 
pharmacology and RNA-sequencing reveal the molecular mechanism of Xuebijing 
injection on COVID-19-induced cardiac dysfunction. Comput. Biol. Med. 131, 
104293. 

Heberle, H., Meirelles, G.V., da Silva, F.R., Telles, G.P., Minghim, R., 2015. 
InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC 
Bioinform. 16, 1–7. 

Henss, L., Auste, A., Schürmann, C., Schmidt, C., von Rhein, C., Mühlebach, M.D., 
Schnierle, B.S., 2021. The green tea catechin epigallocatechin gallate inhibits SARS- 
CoV-2 infection. J. Gen. Virol. 102, 001574. 

Hu, B., Guo, H., Zhou, P., Shi, Z.L., 2021a. Characteristics of SARS-CoV-2 and COVID-19. 
Nat. Rev. Microbiol. 19, 141–154. 

Hu, S., Wang, J., Zhang, Y., Bai, H., Wang, C., Wang, N., He, L., 2021b. Three salvianolic 
acids inhibit 2019-nCoV spike pseudovirus viropexis by binding to both its RBD and 
receptor ACE2. J. Med. Virol. 93, 3143–3151. 

Huang, J., Tao, G., Liu, J., Cai, J., Huang, Z., Chen, J.X., 2020. Current prevention of 
COVID-19: natural products and herbal medicine. Front. Pharmacol. 11, 588508. 

Huang, K., Zhang, P., Zhang, Z., Youn, J.Y., Zhang, H., Cai, H.L., 2021. Traditional 
Chinese medicine (TCM) in the treatment of viral infections: efficacies and 
mechanisms. Pharmacol. Ther. 225, 107843. 

Humphrey, W., Dalke, A., Schulten, K., 1996. VMD: visual molecular dynamics. J. Mol. 
Graph. 33–38. 

Huynh, T., Wang, H., Cornell, W., Luan, B., 2020. In Silico exploration of repurposing 
and optimizing traditional Chinese medicine rutin for possibly inhibiting SARS-CoV- 
2’s main protease. ChemRxiv. https://doi.org/10.26434/chemrxiv.12281078.v1. 

Jo, S., Kim, S., Shin, D.H., Kim, M.S., 2020. Inhibition of SARS-CoV 3CL protease by 
flavonoids. J. Enzyme Inhib. Med. Chem. 35, 145–151. 

Joshi, G., Sindhu, J., Thakur, S., Rana, A., Sharma, G., Poduri, R., 2021. Recent efforts for 
drug identification from phytochemicals against SARS-CoV-2: exploration of the 
chemical space to identify druggable leads. Food Chem. Toxicol. 152, 112160. 

Kalyaanamoorthy, S., Chen, Y.P.P., 2011. Structure-based drug design to augment hit 
discovery. Drug Discov. Today 16, 831–839. 

Kanehisa, M., Goto, S., 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic 
Acids Res. 28, 27–30. 

Khan, A., Heng, W., Wang, Y., Qiu, J., Wei, X., Peng, S., Saleem, S., Khan, M., Ali, S.S., 
Wei, D.Q., 2021. In silico and in vitro evaluation of kaempferol as a potential inhibitor 
of the SARS-CoV-2 main protease (3CLpro). Phytother. Res. 35, 2841–2845. 

Khanh, N.T., Hoa, T.T., 2021. In silico studies of natural products from medicinal plants 
to identify potential inhibitors for SARS-CoV-2 3C-like protease. Vietnam J. Chem. 
59, 557–562. 

Khuntia, B.K., Sharma, V., Qazi, S., Das, S., Sharma, S., Raza, K., Sharma, G., 2021. 
ayurvedic medicinal plants against COVID-19: an in silico analysis. Nat. Prod. 
Commun. 16, 1–9, 1934578X211056753.  

C. Ruchawapol et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0012
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0012
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0012
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0013
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0013
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0013
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0014
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0014
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0014
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0015
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0015
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0015
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0016
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0016
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0017
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0017
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0018
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0018
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0018
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0019
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0019
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0019
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0019
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0020
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0020
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0020
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0021
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0021
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0021
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0021
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0022
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0022
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0022
http://refhub.elsevier.com/S0944-7113(22)00403-2/optipogfWaGKv
http://refhub.elsevier.com/S0944-7113(22)00403-2/optipogfWaGKv
http://refhub.elsevier.com/S0944-7113(22)00403-2/optipogfWaGKv
http://refhub.elsevier.com/S0944-7113(22)00403-2/optipogfWaGKv
http://refhub.elsevier.com/S0944-7113(22)00403-2/optLT3TtFUmtr
http://refhub.elsevier.com/S0944-7113(22)00403-2/optLT3TtFUmtr
http://refhub.elsevier.com/S0944-7113(22)00403-2/optLT3TtFUmtr
http://refhub.elsevier.com/S0944-7113(22)00403-2/optLT3TtFUmtr
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0025
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0025
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0026
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0026
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0027
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0027
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0027
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0027
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0028
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0028
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0028
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0028
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0029
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0029
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0029
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0029
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0029
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0030
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0030
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0030
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0030
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0031
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0031
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0031
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0032
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0032
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0032
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0033
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0033
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0034
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0034
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0034
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0034
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0035
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0035
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0035
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0036
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0036
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0036
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0036
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0037
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0037
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0037
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0038
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0038
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0039
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0039
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0039
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0040
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0040
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0040
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0041
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0041
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0041
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0042
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0042
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0042
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0042
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0043
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0043
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0044
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0044
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0044
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0045
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0045
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0046
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0046
https://doi.org/10.21203/rs.3.rs-174231/v1
https://doi.org/10.21203/rs.3.rs-174231/v1
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0047
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0047
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0047
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0048
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0048
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0048
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0049
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0049
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0049
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0049
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0050
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0050
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0050
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0050
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0051
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0051
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0051
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0052
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0052
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0052
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0052
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0053
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0053
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0053
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0054
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0054
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0054
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0055
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0055
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0056
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0056
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0056
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0057
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0057
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0058
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0058
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0058
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0059
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0059
https://doi.org/10.26434/chemrxiv.12281078.v1
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0060
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0060
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0061
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0061
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0061
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0062
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0062
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0063
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0063
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0064
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0064
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0064
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0065
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0065
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0065
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0066
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0066
http://refhub.elsevier.com/S0944-7113(22)00403-2/sbref0066


Phytomedicine 104 (2022) 154324

14

Klemm, T., Ebert, G., Calleja, D.J., Allison, C.C., Richardson, L.W., Bernardini, J.P., Lu, B. 
G.C., Kuchel, N.W., Grohmann, C., Shibata, Y., Gan, Z.Y., Cooney, J.P., 
Doerflinger, M., Au, A.E., Blackmore, T.R., Heden van Noort, G.J., Geurink, P.P., 
Ovaa, H., Newman, J., Riboldi-Tunnicliffe, A., Czabotar, P.E., Mitchell, J.P., 
Feltham, R., Lechtenberg, B.C., Lowes, K.N., Dewson, G., Pellegrini, M., Lessene, G., 
Komander, D., 2020. Mechanism and inhibition of the papain-like protease, PLpro, 
of SARS-CoV-2. EMBO J. 39, e106275. 

Kong, Q., Wu, Y., Gu, Y., Lv, Q., Qi, F., Gong, S., Chen, X., 2020a. Analysis of the 
molecular mechanism of Pudilan (PDL) treatment for COVID-19 by network 
pharmacology tools. Biomed. Pharmacother. 128, 110316. 

Kong, R., Yang, G., Xue, R., Liu, M., Wang, F., Hu, J., Guo, X., Chang, S., 2020b. COVID- 
19 docking server: a meta server for docking small molecules, peptides and 
antibodies against potential targets of COVID-19. Bioinformatics 36, 5109–5111. 

Kumar, B.K., Faheem, Sekhar, K.V.G.C., Ojha, R., Prajapati, V.K., Pai, A., Murugesan, S., 
2022. Pharmacophore based virtual screening, molecular docking, molecular 
dynamics and MM-GBSA approach for identification of prospective SARS-CoV-2 
inhibitor from natural product databases. J. Biomol. Struct. Dyn. 40, 1363–1386. 

Kumari, M., Subbarao, N., 2021. Deep learning model for virtual screening of novel 3C- 
like protease enzyme inhibitors against SARS coronavirus diseases. Comput. Biol. 
Med. 132, 104317. 

Land, H., Humble, M.S., 2018. YASARA: a Tool to Obtain Structural Guidance in 
Biocatalytic investigations, Protein Engineering. Springer, pp. 43–67. 

Lee, J., Cheng, X., Swails, J.M., Yeom, M.S., Eastman, P.K., Lemkul, J.A., Wei, S., 
Buckner, J., Jeong, J.C., Qi, Y., 2016. CHARMM-GUI input generator for NAMD, 
GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the 
CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413. 

Li, H., Wei, W., Xu, H., 2022a. Drug discovery is an eternal challenge for the biomedical 
sciences. Acta Materia Medica 1, 1–3. 

Li, J., Huang, Z., Lu, S., Luo, H., Tan, Y., Ye, P., Liu, X., Wu, Z., Wu, C., Stalin, A., 
Wang, H., Liu, Y., Shen, L., Fan, X., Zhang, B., Yi, J., Yao, L., Xu, Y., Wu, J., Duan, X., 
2021a. Exploring potential mechanisms of Suhexiang Pill against COVID-19 based 
on network pharmacology and molecular docking. Medicine 100, e27112 
(Baltimore).  

Li, J., McKay, K.T., Remington, J.M., Schneebeli, S.T., 2021b. A computational study of 
cooperative binding to multiple SARS-CoV-2 proteins. Sci. Rep. 11, 1–9. 

Li, L., Ma, L., Hu, Y., Li, X., Yu, M., Shang, H., Zou, Z., 2022b. Natural biflavones are 
potent inhibitors against SARS-CoV-2 papain-like protease. Phytochem 193, 112984. 

Li, X., Xu, X., Wang, J., Yu, H., Wang, X., Yang, H., Xu, H., Tang, S., Li, Y., Yang, L., 2012. 
A system-level investigation into the mechanisms of Chinese traditional medicine: 
compound Danshen formula for cardiovascular disease treatment. PLoS ONE 7, 
e43918. 

Li, Y., Chu, F., Li, P., Johnson, N., Li, T., Wang, Y., An, R., Wu, D., Chen, J., Su, Z., 2021c. 
Potential effect of Maxing Shigan decoction against coronavirus disease 2019 
(COVID-19) revealed by network pharmacology and experimental verification. 
J. Ethnopharmacol. 271, 113854. 

Liao, Q., Chen, Z., Tao, Y., Zhang, B., Wu, X., Yang, L., Wang, Q., Wang, Z., 2021. An 
integrated method for optimized identification of effective natural inhibitors against 
SARS-CoV-2 3CLpro. Sci. Rep. 11, 1–12. 

Lin, A., Baskin, I.I., Marcou, G., Horvath, D., Beck, B., Varnek, A., 2020a. Parallel 
generative topographic mapping: an efficient approach for big data handling. Mol. 
Inform. 39, 2000009.  

Lin, E., Lin, C.H., Lane, H.Y., 2020b. Relevant applications of generative adversarial 
networks in drug design and discovery: molecular de novo design, dimensionality 
reduction, and de novo peptide and protein design. Molecules 25, 3250. 

Lin, H., Wang, X., Liu, M., Huang, M., Shen, Z., Feng, J., Yang, H., Li, Z., Gao, J., Ye, X., 
2021. Exploring the treatment of COVID-19 with Yinqiao powder based on network 
pharmacology. Phytother. Res. 35, 2651–2664. 

Lionta, E., Spyrou, G., K Vassilatis, D., Cournia, Z., 2014. Structure-based virtual 
screening for drug discovery: principles, applications and recent advances. Curr. 
Top. Med. Chem. 14, 1923–1938. 

Liu, C., Zhu, X., Lu, Y., Zhang, X., Jia, X., Yang, T., 2021a. Potential treatment with 
Chinese and Western medicine targeting NSP14 of SARS-CoV-2. J. Pharm. Anal. 11, 
272–277. 

Liu, H., Ye, F., Sun, Q., Liang, H., Li, C., Li, S., Lu, R., Huang, B., Tan, W., Lai, L., 2021b. 
Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 
3C-like protease in vitro. J. Enzyme Inhib. Med. Chem. 36, 497–503. 

Liu, T., Guo, Y., Zhao, J., He, S., Bai, Y., Wang, N., Lin, Y., Liu, Q., Xu, X., 2020. Systems 
pharmacology and verification of ShenFuHuang formula in zebrafish model reveal 
multi-scale treatment strategy for septic syndrome in COVID-19. Front. Pharmacol. 
11, 1464. 

Liu, Z., Guo, F., Wang, Y., Li, C., Zhang, X., Li, H., Diao, L., Gu, J., Wang, W., Li, D., 2016. 
BATMAN-TCM: a bioinformatics analysis tool for molecular mechANism of 
traditional Chinese medicine. Sci. Rep. 6, 1–11. 

Lyu, M., Fan, G., Xiao, G., Wang, T., Xu, D., Gao, J., Ge, S., Li, Q., Ma, Y., Zhang, H., 
Wang, J., Cui, Y., Zhang, J., Zhu, Y., Zhang, B., 2021. Traditional Chinese medicine 
in COVID-19. Acta Pharm. Sin. B 11, 3337–3363. 

Mahmud, S., Uddin, M.A.R., Paul, G.K., Shimu, M.S.S., Islam, S., Rahman, E., Islam, A., 
Islam, M.S., Promi, M.M., Emran, T.B., 2021. Virtual screening and molecular 
dynamics simulation study of plant-derived compounds to identify potential 
inhibitors of main protease from SARS-CoV-2. Brief. Bioinform. 22, 1402–1414. 

Mazzini, S., Musso, L., Dallavalle, S., Artali, R., 2020. Putative SARS-CoV-2 Mpro 
inhibitors from an in-house library of natural and nature-inspired products: a virtual 
screening and molecular docking study. Molecules 25, 3745. 

Medina-Franco, J.L., Sánchez-Cruz, N., López-López, E., Díaz-Eufracio, B.I., 2021. 
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