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Abstract 

Alzheimer’s disease (AD) is progressive and ultimately fatal, with current drugs failing to reverse and cure it. This study 
aimed to find plant species which may provide therapeutic bioactivities targeted to causal agents proposed to be 
driving AD. A novel toolkit methodology was employed, whereby clinical symptoms were translated into categories 
recognized in ethnomedicine. These categories were applied to find plant species with therapeutic effects, mined 
from ethnomedical surveys. Survey locations were mapped to assess how this data is at risk. Bioactivities were found 
of therapeutic relevance to 15 hypothesised causal bases for AD. 107 species with an ethnological report of memory 
improvement demonstrated therapeutic activity for all these 15 causal bases. The majority of the surveys were found 
to reside within biodiversity hotspots (centres of high biodiversity under threat), with loss of traditional knowledge 
the most common threat. Our findings suggest that the documented plants provide a large resource of AD thera-
peutic potential. In demonstrating bioactivities targeted to these causal bases, such plants may have the capacity 
to reduce or reverse AD, with promise as drug leads to target multiple AD hallmarks. However, there is a need to 
preserve ethnomedical knowledge, and the habitats on which this knowledge depends.
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1 Introduction
The global incidence of Alzheimer’s disease (AD) and 
other dementias is 43·8 million and rising, and a cause 
of 2·4 million deaths annually [1]. AD is also recalcitrant 
against modern pharmacological interventions, with a 
failure of treatments to reverse and cure disease progres-
sion [2–6]. Therapeutic strategies remain limited due to a 
lack of knowledge of the precise mechanisms underlying 
the observed pathology [7]. For Alzheimer’s treatment 
from 2002 to 2012, 413 clinical trials were performed, 
assessing 221 agents, with none being found to show 
disease-modifying potential [8]. The US Food and Drug 
Administration licensed only one AD drug in that dura-
tion (memantine), which provides just a minor clinical 
benefit [9]. Subsequently in 2021 the monoclonal anti-
body (mAb) Aducanumab was licensed by the U.S. Food 
and Drug Administration (FDA) for AD treatment, based 

on demonstrating amyloid reduction, but the drug has 
limited impact on reducing cognitive decline and dis-
ease progression (reviewed by [10, 11]). Trials with other 
mAbs, vaccines and other agents are still ongoing, with 
some providing symptomatic relief, but none showing 
strong evidence of halting the disease (reviewed by [5]).

There is thus a search for more effective drugs, and evi-
dence is mounting that plants may provide such a source. 
Of the new therapeutic drugs approved by the FDA and 
similar organizations in several of the years from 1981 to 
2019, 50% of all approvals were derived from natural prod-
ucts, including plants [12, 13]. However, it is likely that the 
bioactivity of most plant species remains to be investigated 
[14], and this represents a huge untapped resource.

Of the most useful drugs derived from plants, 80% were 
discovered by follow-up of ethnomedical uses (plants 
used in traditional medical practices) [15]. Screening 
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indigenous community ethnomedicine data can increase 
the “hit rate” for discovery of novel active compounds [16]. 
This is because it is the application of a knowledge-based 
strategy to detect therapeutic potential. This is in contrast 
to the screening of natural compounds at random, which 
has a low hit rate for identification of relevant bioactivity 
[14]. Moreover, for drugs derived from ethnomedicine, 
ethnomedical uses can provide insight of efficacy and 
safety [17], often long-established over many generations.

This study aimed firstly to find and document plant spe-
cies with reported therapeutic effects of AD relevance. 
A toolkit methodology was applied, which involved con-
struction of therapeutic categories which could be rec-
ognized by ethnomedical practitioners. These categories 
were then applied to mine ethnological data in search of 
therapeutic potential of relevance to neurodegenerative 
diseases (NDs). The rationale for this is to attain a wide 
set of relevant terms to maximise the mining of therapeu-
tic data. Although some hallmarks and symptoms, such as 
memory impairment, are easily recognised by both clini-
cians and ethnomedical practitioners, certain hallmarks 
such as neurotoxicity, of central importance in numerous 
NDs, cannot be easily translated into terms in ethnomedi-
cal use. Anti-neurotoxic effects in plants may indeed exist, 
which could be revealed from a wider probing of the many 
medicinal effects reported. The relevance of the findings 
to a wider range of ND diseases are reported separately. 
This study focuses on the relevance of the findings to AD.

A second aim was to map the geographical locations 
of the mined ethnomedical surveys, to assess how this 
ethnomedical data may be at risk, since mapping anthro-
pogenic threats is a key tool to guide management of 
these threats [18]. The world’s greatest biodiversity hot-
spots (BDH) are centres of high biodiversity that are 
under threat [19, 20], defined as having lost at least 70% 
of their primary  native vegetation (https:// www. cepf. 
net/ our- work/ biodi versi ty- hotsp ots/ hotsp ots- defin ed). 
In most hotspots, it is estimated that less than 10% of 
natural intact vegetation remains [21]. The survey loca-
tions were mapped to establish how many were located 
in these BDHs and therefore at elevated risk. The sur-
veys were examined systematically to discover what the 
threats were of most concern to the authors, to inform 
responses appropriate to how any valuable ethnomedical 
data of relevant therapeutic potential can be preserved.

The leading factor in AD pathogenesis remains 
unknown [22]. Numerous hypotheses have been proposed 
in which the disease is postulated to be initiated or driven 
by a particular causal agent (reviewed by [23, 24]). We 
were interested in finding what specific causal agents AD 
can be attributed to, since these provide a focus to be tar-
geted therapeutically. Our third aim was thus to search the 
literature for various causal hypotheses for Alzheimer’s 

disease, for which plant species mined in this study may 
provide bioactivities of AD therapeutic potential. The 
implication is that if plants can be found which can target 
the underlying causes of neurodegeneration driving AD 
pathogenesis, this could be of fundamental importance 
in the search for more effective therapies, since to date no 
drugs halt and remediate disease progression.

2  Results and discussion
2.1  Overview
2001 plant species were identified with reported uses 
for alleviating pathologies relevant to NDs, by applica-
tion of the toolkit methodology (Additional files 1: Addi-
tional Table S1, 2: Table S2). Bioactivities of therapeutic 
relevance were discovered from the literature for 1339 
of these 2001 species (67%) (Additional file 3: Table S3). 
Bioactivities were found for every one of the toolkit cate-
gories, and also beyond the toolkit categories (i.e., species 
with an ethnomedical use demonstrating other bioactivi-
ties of ND therapeutic potential). This paper focuses on 
the relevance of the data to AD.

We found that plant bioactivities were found of thera-
peutic relevance to 15 hypothesised causal bases for AD 
(Table  1). This plant therapeutic potential for a wide 
range of causal agents implicated in driving AD patho-
genesis is evidence that the toolkit methodology is useful 
for providing a wide reach in the search of this potential.

2.2  Plant bioactivities of relevance to AD causal 
hypotheses

The study found reports of plant therapeutic bioactivities 
potentially relevant to the following hypothesised causal 
bases and dysregulated processes. In this section the 
therapeutic effects are documented in more detail.

2.2.1  The amyloid hypothesis
The dominant model of AD pathogenesis is the amyloid 
hypothesis, in which the accumulation of Aβ is proposed 
to be causal [25, 26]. In the AD brain, lesions known as 
neuritic plaques are found, consisting of microscopic 
foci of amyloid protein deposition [27]. George Glen-
ner identified a distinctive amyloid β (Aβ) peptide found 
in these deposits [28], and proposed that the Aβ causes 
destruction of neuronal  fibres, which is intrinsic to the 
ensuing dementia of AD [29]. This pathology has come 
to be associated with aberrant metabolism of the amyloid 
precursor protein (APP) [30]. These findings have led to 
the amyloid cascade hypothesis, in which an imbalance 
between production and clearance of Aβ peptides initi-
ates the complex pathological cascade of AD [31, 32]. 
A variant of the cascade view is the amyloid-β oligomer 
(AβO) hypothesis, which postulates that the brain dam-
age of AD is instigated by toxic soluble amyloid oligomers 

https://www.cepf.net/our-work/biodiversity-hotspots/hotspots-defined
https://www.cepf.net/our-work/biodiversity-hotspots/hotspots-defined
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[33]. Substantial evidence supports these hypotheses: for 
instance, mutations in APP lead to more aggressive AD; 
humans with Down’s syndrome have 3 copies of APP 
and invariably develop AD; patients with an APP muta-
tion that decreases Aβ are associated with reduced AD 
and cognitive decline; and in animal and cell models 
Aβ induces tau hyperphosphorylation, reduces synapse 
density and impairs memory; and blocking AβO pro-
duction reverses synapse loss and memory impairment 
in APP mice (reviewed by [25, 34]). Moreover, various 
Aβ monoclonal antibodies (mAb) such as Aducanumab 
reduce brain Aβ brain deposits and result in small clini-
cal improvements (reviewed by [35]). Such evidence 
provides a rationale for the targeting of Aβ in AD dis-
ease pathology, but there is a scepticism that mAb treat-
ments reduce cognitive decline, in spite of the Food and 
Drug Administration in the United States licencing Adu-
canumab for AD treatment [11, 36]. Clinical effects of 
mAb also significantly increase the risk of adverse events 
(https:// www. eisai. com/ news/ 2018/ news2 01866. html 
accessed 25 Oct 2021).

The search thus remains for alternative, more effective 
treatments to target AD amyloid pathology. Of therapeu-
tic relevance to this, 46 plant species (Table  2) and 42 

phytochemicals (Additional file  5: Table  S5) have been 
found to demonstrate anti-amyloid activity in a variety 
of human cell line, animal in  vivo and in  vitro studies. 
Seven of these species (Allium sativum, Bacopa mon-
nieri, Centella asiatica, Cocos nucifera, Convolvulus pro-
stratus, Moringa oleifera and Rosmarinus officinalis all 
demonstrated both memory/ cognitive improvement and 
anti-amyloid activities, providing evidence that the anti-
amyloid activity may be of therapeutic effect in alleviat-
ing AD memory/cognitive dysfunction.

The therapeutic effects result from a variety of mecha-
nisms, which provide potential to target the various amy-
loid ligands and amyloidogenic processes. For instance, 
in a randomized, placebo-controlled, double-blind, mul-
ticentre 52-week phase 2 trial of resveratrol (Table 3) in 
individuals with mild to moderate AD, CSF Aβ40  levels 
significantly declined [37].

In various pre-clinical studies, treatment with Cor-
nus officinalis, Cyperus rotundus, Fragaria x ananassa, 
Opuntia ficus-indica and Satureja hortensis inhibited Aβ 
aggregation [43, 45, 48, 49]. Decrease in amyloid plaque 
deposition resulted from treatment with Centella asi-
atica [72] and Coptis chinensis [40]. Rosmarinic acid 
(Table  3) (from sources such as Rosmarinus officinalis) 
decreased brain deposition of A11-positive Aβ oligom-
ers [64]. Uncaria tomentosa disaggregated preformed Aβ 
fibrils [65]. Cajanus cajan stimulated amyloid β clearance 
[76]. Bacopa monnieri inhibited Aβ42 fibrillogenesis [56]. 
In mouse neurons exposed with metal–associated Aβ, 
EGCG (Epigallocatechin-3-gallate) (Table  3) increased 
cell survival [77] (Additional file 5: Table S5).

Molecular mechanisms have also been elucidated. Mor-
inga oleifera decreased amyloid production via β -site APP 
cleaving enzyme (BACE1) downregulation [53]. Morus 
alba reduced cerebral Aβ production and Aβ plaque bur-
den via upregulation of amyloid-degrading protease (e.g., 
NEP, IDE) [54]. Olea europaea blocked formation of toxic 
Aβ oligomers [63]. Phyllanthus emblica and silymarin (a 
mixture containing mainly silybin) (Table 3) from Silybum 
marianum reduced expression of amyloid precursor pro-
tein [41, 42]. Vaccinium myrtillus inhibited aggregation of 
Aβ1–42 via suppression of p44/42 MAPK [75]. Resveratrol 
remodelled Aβ into non-toxic structures [67]. Similarly, 
brasilin (Table  3) (from Caesalpinia sappan) remodelled 
Aβ fibrils into less toxic aggregates [66]. Apium graveolens 
treatment led to amyloid precursor protein (APP) process-
ing toward a non-amyloidogenic pathway [38].

However, there is a body of evidence that confutes the 
amyloid cascade hypothesis as the central event in AD 
pathogenesis (reviewed by [78, 79]). For instance, there 
are numerous human subjects who were cognitively nor-
mal (without clinical expression of AD) despite harbour-
ing brain amyloid plaque deposits [80–82]. Moreover, 

Table 1 Summary: number of medicinal plant species with 
therapeutic bioactivity vs. proposed AD causal agents

Causal hypothesis Number of medicinal 
plant species 
with therapeutic 
bioactivity vs. 
hypothesised causal 
agent

Amyloid hypothesis 46

Tau hypothesis 18

Ubiquitin–proteasome hypothesis 8

Impaired autophagy hypothesis 7

Inflammation hypothesis 694

Immune dysregulation hypothesis 46

Oxidative Stress hypothesis 218

Mitochondria hypothesis 27

Neurogenic hypothesis 30

AChE inhibition 33

Vascular hypothesis

 Hypertension 124

 Atherosclerosis 11

 Dyslipidemia/high cholesterol 50

 Platelet aggregation/thrombolytic 45

Metal ion hypothesis 29

Oestrogen hypothesis 19

Infection hypothesis 768

Gut microbiome hypothesis 3

https://www.eisai.com/news/2018/news201866.html
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mice genetically engineered to produce brain amyloid 
deposits do not demonstrate neurodegeneration or cog-
nitive decline [83], suggesting that Aβ does not provide 

a sufficient cause for the complex symptoms of AD [84] 
(for counter-arguments to these and other objections, see 
[25]).

Table 2 A range of anti-amyloid activities demonstrated by medicinal plants

*[or extracted phytochemical]. Aβ amyloid β, CSF cerebro-spinal fluid

Treatment outcome Species* Model References

Reduced CSF Aβ40 Vitis vinifera [resveratrol] Clinical trial [37]

APP processing toward non-amyloidogenic 
pathway

Apium graveolens In vivo mouse [38]

Suppressed amyloid protein precursor gene 
expression/ APP levels

Convolvulus prostratus In vivo AD rat [39]

Coptis chinensis In vivo AD mouse [40]

Silybum marianum In vivo AD rat [41]

Phyllanthus emblica In vivo AD rat [42]

Inhibits amyloid Aβ aggregation Fragaria x ananassa Mouse microglia, in vitro [43]

Capsicum annuum In vitro [44]

Opuntia ficus-indica In vivo AD Drosophila melanogaster, 
Saccharomyces cerevisiae

[45]

Scoparia dulcis In vitro [46]

Uncaria rhynchophylla In vivo AD mouse [47]

Cornus officinalis, Cyperus rotundus, Myristica 
fragrans, Paeonia lactiflora, Prunella vulgaris

In vitro [48]

Mentha spicata, Satureja thymbra, Thymus 
vulgaris

In vitro [49]

Reduced Aβ production by reduced expression 
of β -site APP cleaving enzyme 1 (BACE1)

Asparagus racemosus In vitro [50]

Elsholtzia rugulosa In vivo AD mouse [51]

Chromolaena odorata In vivo AD mouse [52]

Moringa oleifera In vivo rat [53]

Upregulation of amyloid-degrading protease Morus alba In vivo AD mouse [54]

Inhibits β-secretase activity Capsicum annuum In vitro [44]

Inhibition of fibrillogenesis Allium roseum Human cell line, in vitro [55]

Bacopa monnieri In vitro [56]

Cuminum cyminum Rat neuron [57]

Pistacia lentiscus In vitro [58]

Salvia miltiorrhiza Human neuron cell line; in vitro [59]

inhibits aggregation of Aβ into toxic oligom-
ers/ attenuated Aβ oligomer neurotoxicity/
decreased oligomer deposition

Cocos nucifera In vivo AD mouse [60]

Elaeis guineensis In vitro, AD Saccharomyces cerevisiae [61]

Garcinia mangostana Rat neuron [62]

Olea europaea In vivo AD Caenorhabditis elegans [63]

Rosmarinus officinalis In vivo AD mouse [64]

Uncaria tomentosa a/vivo rat, mouse [65]

Remodelling of Aβ fibrils into less toxic struc-
tures

Caesalpinia sappan Human neuronal cell line; in vitro [66]

Vitis vinifera In vitro [67]

Reversal of plaque pathology Withania. somnifera In vivo AD mouse [68]

Decreased plaque burden/ reduced Aβ accumu-
lation or deposition

Panax ginseng In vivo AD mouse; human cell line [69]

Panax quinquefolius Hamster cell line, in vivo AD mouse [70]

Camellia sinensis In vivo AD mouse [71]

Centella asiatica In vivo AD mouse [72]

Curcuma longa In vivo AD mouse, mouse microglia [73]

Fibraurea recisa In vivo AD mouse, in vitro [74]

Enhanced clearance of Aβ/ cathepsin B upregu-
lation

Vaccinium myrtillus In vivo AD mouse [75]

Cajanus cajan In vivo AD mouse [76]
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Table 3 Examples of phytochemicals with therapeutic bioactivity for AD, with molecular structure indicated

Phytochemical CAS RN Molecular structure

Allicin 539-86-6

S
S

O

Apigenin 520-36-5

O

OOH

OH

OH
Berberine 2086-83-1

N+

O
O

O
O

Betulinic acid 472-15-1

OH

H

H

H

H
OH

O

Brasilin 474-07-7

OOH

OH

H

OH

OH

Butylphthalide 6066-49-5

O

O
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Table 3 (continued)

Phytochemical CAS RN Molecular structure

Cajaninstilbene acid 87402-84-4

OH

O

OH O

Carnosol 5957-80-2

H

OH
OH

O

O

Curcumin 458-37-7

OH

O
O O

O

OH
Epigallocatechin-3-gallate 989-51-5

O

O

OH

OH

OH
OH

OH

O
OH

OH
OH

Fibrauretine 10605-02-4

Genistein 446-72-0
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Table 3 (continued)

Phytochemical CAS RN Molecular structure

Ginsenoside RG2 52286-74-5

OH
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O O
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H

OH
H

OH
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OH
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2.2.2  The tau hypothesis
An alternative framework is the tau hypothesis, which 
states that the principle causative substance of AD is 
tau, not Aβ (reviewed by [79]). Tau is a protein regulat-
ing the function of microtubules, its microtubule bind-
ing affinity being determined by its phosphorylation 
[85]. In AD, tau becomes hyperphosphorylated, aggre-
gating into toxic neurofibrillary tangles (NFTs) within 
neurons [86, 87]. Moreover, tau may have a pathogenic 
role in mediating Aβ toxicity in AD [88]. Tau hyper-
phosphorylation may be induced by various factors, 
such as impaired glucose metabolism [89]. Evidence 
for a causative role for tau is suggested by an associa-
tion between the spreading of pathological tau and the 

patterns of neurodegeneration, and that tau lesions 
occur prior to Aβ accumulation (reviewed by [79]).

Of therapeutic relevance, at least 20 plant species or 
their associated phytochemical extracts have demon-
strated anti-tau bioactivity in various pre-clinical models 
(Table 4), via several mechanisms.

For instance, in pre-clinical models, reduced tau hyper-
phosphorylation was demonstrated in treatments with 
either L-3-n-butylphthalide (L-NBP) (Table  3) (from 
Apium graveolens) [103], EGCG (Table 3) (from Camellia 
sinensis) [91] or genistein (Table  3) (from Glycine max) 
[94]. In all these examples, the anti-tau effects were asso-
ciated with cognitive or memory improvements. Other 
species, such as Convolvulus prostratus, reduced tau gene 

Table 3 (continued)

Phytochemical CAS RN Molecular structure

Sarsasapogenin 126-19-2

O
O

OH
H

H

H

H
HH

Silybin 22888-70-6

O

O

O
OH

OH
O

OH

OH

OHO
Sominone 98569-64-3

O

OH

H H

H

OH

H

H O

OH

Sulforaphane 4478-93-7

N
SC

S
O

Urolithin A 1143-70-0

O

OH

OH
O

CAS RN Chemical Abstracts Service Registry Number
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expression [39]. Uncaria tomentosa disaggregated tau 
tangles/filaments [65]. Resveratrol (from species such as 
Vitis vinifera) reduced tau pathology [101] and myricanol 
(from Myrica cerifera) enhanced tau clearance [102].

Another possibility is the “dual pathway” model of cau-
sality, in which Aβ and tau may be linked to a common 
upstream driver [104], for which combined Aβ and tau-
directed therapies have been proposed [105]. Plant spe-
cies and derived phytochemicals demonstrating both 
anti-amyloid and anti-tau activity are attractive candi-
dates for this combination strategy. Such species include 
Curcuma longa, Fibraurea recisa, Fragaria ananassa, 
Moringa oleifera, Morus alba, Uncaria tomentosa, and 
the phytochemicals berberine and resveratrol (Table  3) 
(Additional file 5: Table S5).

In some of the studies, anti-tau effects were associated 
with yet other activities of therapeutic relevance. For 
instance, with resveratrol treatment, reduced aberrant 
amyloid production and tau pathology were also associ-
ated with enhanced proteasome activity [101]. Uncaria 
tomentosa treatment led not only to anti-amyloid and 
anti-tau effects but also memory improvement and anti-
inflammatory activity [65]. With Moringa oleifera, anti-
amyloid and anti-tau effects were associated with rescued 
cognitive impairment and recovery of decreased synaptic 
proteins [53].

Molecular mechanisms have also been revealed. For 
example, mice treated with L-NBP led to reduced tau 
hyperphosphorylation at Ser199, Thr205, Ser396, and 
Ser404 sites. Also expressions of cyclin-dependent kinase 
and glycogen synthase kinase 3β, key kinases involved in 
tau phosphorylation, were reduced [90].

2.2.3  The ubiquitin–proteasome hypothesis
According to the ubiquitin–proteasome hypothesis, 
impairment of the ubiquitin–proteasome system, by 
which damaged proteins are dismantled, is at the root of 
neurodegenerative diseases such as AD [106]. A protein 
quality control (PQC) system consists chiefly of molecu-
lar chaperones such as heat shock proteins. These sur-
vey misfolded proteins, unfolding and refolding them 
into natively functional forms [107] (reviewed by [108]). 
Misfolded proteins that are unable to be refolded are 
degraded through two protein clearance pathways, the 
ubiquitin–proteasome system (UPS) and the autophagy-
lysosome pathway (reviewed by [109]). In the UPS 
system, ubiquitin protein becomes conjugated to the 
misfolded protein, enabling the protein’s recognition and 
degradation within a multimeric enzyme cascade system 
known as the proteasome [110]. There is evidence for a 
central role of the UPS in AD pathology. For instance, 
in the AD brain, ubiquitinated proteins are found to 

Table 4 A range of anti-tau activities demonstrated by medicinal plants

*Nominal species: good source of the phytochemical

Treatment outcome Species [or extracted phytochemical] Model References

Reduced tau phosphorylation Apium graveolens [L-NBP] Human cell line, in vivo mouse [90]

Camellia sinensis [EGCG] In vivo AD mouse [91]

Cinnamomum zeylanicum [cinnamaldehyde] In vitro [92]

Crataegus spp.* [Quercetin] In vivo mouse [93]

Fragaria x ananassa [Fisetin] mouse microglia, in vitro [43]

Glycine max [Genistein] In vivo AD rat [94]

Moringa oleifera In vivo rat [53]

Morus alba [Morin] In vivo AD mouse [54]

Olea europaea [Oleocanthal] In vitro [95]

Psidium guajava In vitro [96]

Rosmarinus officinalis In vitro [97]

Reduced brain tau levels/reduced tau gene 
expression

Cocos nucifera In vivo rat [98]

Convolvulus prostratus In vivo rat [39]

Curcuma longa In vivo AD mouse [73]

Fibraurea recisa In vivo AD mouse, in vitro [74]

Passiflora edulis In vivo mouse [99]

Zataria multiflora In vivo rat [100]

Disaggregates tau tangles/filaments Uncaria tomentosa In vivo rat, mouse [65]

Reduced tau pathology Vitis vinifera [Resveratrol] In vivo mouse [101]

Enhanced tau clearance Myrica cerifera [Myricanol] Human neural cell line [102]
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accumulate, proteasome activity is decreased, and there 
is malfunction in the UPS pathway [111, 112], with a 
consequent impairment of neurotoxic protein clearance 
[113].

These systems are of intense interest for developing 
novel therapeutic interventions for AD [114, 115], and 
several plant species have demonstrated a role in the 
targeting of these pathways. Treatment with resveratrol 
enhanced mouse brain proteasome function, and this 
was associated with attenuation of aberrant amyloid 
production and reduced tau pathology [101]. Betulinic 
acid (Table  3) (from sources such as (Betula pubescens 
and Ziziphus mauritiana) [116] activated proteasome 
activity in human cell lines [117]. Sulforaphane (Table 3) 
(from sources such as Brassica oleracea) [118] mediated 
degradation of misfolded huntingtin protein in mice and 
human cell lines through the UPS pathway [119]. Sul-
foraphane was also found to ameliorate scopolamine-
induced memory impairment in a rat model [120]. 
Mouse cell lines treated with sulforaphane protected cells 
from Aβ1–42-mediated cell death by upregulation of the 
26S proteasome [121]. These evidences taken together 
suggest that these various phytochemicals have therapeu-
tic potential for targeting proteasome impairment in AD.

2.2.4  Impaired autophagy hypothesis
Another hypothesis is that autophagy dysfunction plays 
an important role in AD pathophysiology [122]. If the UPS 
is impaired or cannot recognise the misfolded proteins, 
the misfolded proteins are destined for autophagy. This is 
a process of degradation and recycling of cell components 
within lysosomes [123], orchestrated by a complex net-
work of proteins [124]. Autophagy dysfunction is impli-
cated in AD (reviewed by [125]). Pharmacological agents 
acting to modulate autophagy are being explored for AD 
therapy [126, 127], and several plant species demonstrate 
this potential (Additional file  4: Table  S4). For instance, 
in a clinical trial with resveratrol, the lysosomal/ phago-
somal pathway was upregulated, indicating induction of 
autophagy [128]. Resveratrol also induced autophagy by 
directly inhibiting the mTOR-ULK1 pathway in an in vitro 
study [129]. Treatment of mice with the ginsenoside Rg2 
(Table 3) (from Panax ginseng) induced autophagy, result-
ing in enhanced clearance of protein aggregates [69]. 
Berberine (from sources such as Coptis chinensis, Phel-
lodendron amurense and Hydrastis canadensis) induced 
autophagy in numerous cell types including neurons, by 
mechanisms including AMPK/mTOR signaling upregula-
tion [130, 131]. Phenolic acids from Eucommia ulmoides 
leaves may also activate autophagy via the autophagy reg-
ulators (Pink1, Beclin1, Ulk2, and Atg5) [132]. Urolithin 
A (Table 3) (from Punica granatum) induced autophagic 

flux in mouse and human neurons, which also contrib-
uted to inhibition of neuroinflammation [133].

2.2.5  The inflammation hypothesis
Inflammation is a normal host defence response trig-
gered by damaging agents such as traumatic injury and 
invading pathogens, and is diminished once the tissue 
is repaired and resolved [134]. However, these normal 
mechanisms fail when there is an abnormal activation 
of inflammatory factors, leading to a chronic neuro-
inflammatory state, with harmful consequences [135]. 
The neuroinflammatory process involves the recruit-
ment of numerous cellular and molecular immune com-
ponents [136]. These include microglia and astrocytes, 
non-neuronal immune cells collectively known as glia, 
resident within the CNS. Microglia exhibit a surveil-
lance function, with long processes in dynamic activity 
to constantly sense their surroundings [137]. This enables 
them to perform their housekeeping functions such as 
phagocytic engulfment of damaged tissue and elimina-
tion of pathogens [138]. During CNS damage or infec-
tion, microglia are activated and recruited to the site of 
insult, where they secrete small proteins called cytokines 
which can promote inflammation (pro-inflammatory) 
(e.g., IL-1, IL-6) or promote anti-inflammatory pathways 
(e.g., IL-4, IL-10) [134]. The secretion of proinflammatory 
cytokines can be beneficial, leading to the clearing of cell 
debris and promotion of regeneration [139]. However, 
disruption of microglial housekeeping (such as by per-
sistent production of aberrant toxic proteins) leads to an 
exaggerated proinflammatory response [140]. This causes 
the microglia to shift to a reactive phenotype, secreting 
neurotoxins that kill neurons; hence correcting this mal-
adaptive response may be a potential mode for disease-
modifying therapy [141].

Astrocytes, comprising 25–50% of the brain volume, 
have a myriad of roles, such as ion homeostasis, neuro-
transmitter clearance, energy supply to neurons, synapse 
formation, remodelling of neural circuits [142], learn-
ing and memory [143], and the limiting of inflammation 
[144]. Astrocyte dysfunction has now been implicated 
in AD, associated with both loss-of-function and gain of 
toxicity phenotypes [145]. For instance, cytokine combi-
nations such as TNF-α and IFN-γ stimulate astrocytes 
to generate Aβ, and since astrocytes outnumber neurons 
in the brain, astrocytes may be a significant source of Aβ 
during neuroinflammation in AD [146]. In an in  vitro 
neuron-astrocyte co-culture, inhibition of astrocyte 
activation with an anti-inflammatory agent reduced the 
astrocytic inflammatory response and associated neu-
ronal loss [147]. Astrocytes can thus be a therapeutic tar-
get for drug discovery [148].



Page 12 of 37Tyler and Tyler  Natural Products and Bioprospecting           (2022) 12:34 

The inflammation hypothesis for AD is based on the 
adverse effects of a pro-inflammatory brain microen-
vironment [149, 150], in which neuroinflammation 
(inflammation within the CNS) has a vital role in driv-
ing the pathogenesis and progression of AD [151]. A 
modification of this is the amyloid cascade—inflamma-
tion hypothesis, which envisages AD resulting from the 
inflammatory response induced by Aβ, later enhanced by 
aggregates of tau [152].

Supporting evidence for an inflammatory involve-
ment in causality includes a reduced prevalence of AD 
in patients with rheumatoid arthritis treated with non-
steroidal inflammatory drugs (NSAIDs) [153–155]; 
preceding clinical AD onset, an elevation of plasma 
inflammatory proteins [156] and microglial activation 
markers [157]; inflammatory markers co-localising with 
amyloid and tau deposition [158] (reviewed by [159]); 
and cognitively normal patients with profuse amyloid 
and tau deposits demonstrating lower levels of inflamma-
tion compared with AD patients [160].

Of relevance to the targeting of these neuroinflam-
matory processes, at least 21 plant species have been 
found to demonstrate anti-neuroinflammatory activity 
(Table 5).

For instance, rats treated with Fibraurea recisa showed 
anti-neuroinflammatory activity and also anti-amyloi-
dogenic and anti-tau effects [74]. In another rat model, 
Peristrophe bicalyculata treatment led to anti-neuroin-
flammatory activity and reduced cognitive decline [163].

At least 9 species demonstrated reduced microglial or 
astrocyte activation (Additional file  4: Table  S4), and this 
was associated with enhanced clearance of Aβ with Vaccin-
ium myrtillus [75] (Table 5). Cajaninstilbene acid (Table 3) 
(from Cajanus cajan) reduced reactivity of both microglia 
and astrocytes, as well as stimulating Aβ clearance [76].

Evidence in favour of an anti-inflammatory involve-
ment of AD causality based on therapeutic NSAID effects 
have been called into question. NSAIDs have failed to 
delay the onset of AD in adults with a family history 
of dementia [175]. There is also the possibility that AD 
does indeed develop less often in rheumatoid arthritis 
patients, but it is difficult to exclude the possibility that 
this is unrelated to anti-inflammatory drugs [176].

NSAIDs also increase the frequency of adverse health 
effects such as cardiotoxicity, upper gastrointestinal bleed-
ing and perforation, notably with cyclooxygenase-2 (COX-
2) inhibitors [177]. Medicinal plants demonstrating both 
COX and Lipoxygenase (LOX) inhibition bioactivity such 
as Canarium patentinervium may have less adverse effects, 
since there is evidence that dual COX and LOX inhibition 
reduces gastric and cardiovascular side effects [178].

Nuclear factor-κB (NF-κB) is a network hub consisting 
of a family of transcription factors [179, 180]. It serves as 
a pivotal mediator of inflammatory responses, inducing 
expression of various pro-inflammatory genes, and sus-
tained NF-κB activation is integral to the persistence of 
inflammation [181]. Drug discovery units are searching 
for inhibitors of the NF-κB pathway as a pivotal target for 

Table 5 Examples of species with anti-neuroinflammatory bioactivity, which also validate reports of anti-inflammatory ethnological 
use

Treatment outcome Model Species [or phytochemical] References

Reduced neuro-inflammation In vivo rodent Fibraurea recisa [74]

Iresine diffusa [161]

Panax japonicus [162]

Peristrophe bicalyculata [163]

Withania somnifera [164]

Zingiber officinale [165]

Mouse microglial cells Betula pendula [166]

Blumea balsamifera [167]

Capsella bursa-pastoris [168]

Reduced microglial + /astrocyte reactivity Human neuronal cell line Camellia sinensis [169]

In vivo mouse Pueraria montana var. lobata [170]

Cajanus cajan [76]

Olea europaea [171]

Vaccinium myrtillus [75]

Mouse microglial cells Sambucus nigra [172]

NF-κB inhibition Human cell line Lycium shawii [173]

Mouse microglial cells Tussilago farfara [174]
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AD pathologies [181, 182], thus medicinal plants dem-
onstrating such activity are of therapeutic potential. For 
instance, treatment of mouse microglia with Tussilago 
farfara inhibited NF-κB inhibition and reduced micro-
glial activation [174]. NF-κB inhibition was also demon-
strated in a mouse microglia inflammation model treated 
with sulforophane [183]. However, targeting NF-κB may 
require cell-type specificity to preclude off-target delete-
rious effects [184].

2.2.6  The immune hypothesis
According to the immune hypothesis proposed by Fiala 
and colleagues [185, 186], a dysfunctional immune sys-
tem may be the main player in the pathogenesis of AD 
[187]. In this view, a number of dysfunctional immune 
elements have been implicated. The innate immune 
response (which subjects are born with) primar-
ily involves immune microglia cells within the brain, 
as described earlier. In AD, microglia change from a 
homeostatic state to disease-related pro-inflammatory 
phenotypes which cause neuronal damage [188]. There 
is also an adaptive immune system response, involv-
ing a proliferation of lymphocytes (types of white blood 
cells) circulating peripherally in the body outside the 
brain. T lymphocytes (the T denoting their thymus ori-
gin) have a major sub-set, T-helper  (TH) cells, which 
“help” other immune cells, and can also be distinguished 
by their surface cluster of differentiation (CD) protein 
expression profile, notably ones expressing CD4, which 
once activated by antigens become  CD4+ T cells. There 
are numerous  CD4+  T cell subsets, such as T helper 1 
 (TH1), T helper 2  (TH2), T helper 17  (TH17), T helper 22 
 (TH22) and regulatory T cells (Treg) [189]. A number of 
research studies have implicated immune dysfunction in 
AD pathogenesis and clinical progression (reviewed by 
[190]). For instance, elevated peripheral immune-inflam-
matory markers are associated with future cognitive 
decline and phosphorylated tau [191, 192]. Also in AD, T 
cells invade the CNS when the blood–brain barrier (BBB) 
is disrupted, and localize in regions associated with AD 
neuropathology, where they are associated with neuro-
toxicity and enhanced inflammation (reviewed by [193]).

There is a lack of success with immunotherapy trials 
for AD to date, perhaps due to recruited patients being 
affected with the established disease that can no longer 
be halted [190]. Hence there is a search for novel immu-
nomodulatory treatments which may alter the AD course 
[187], and a number of plants demonstrate this poten-
tial (Additional file 4: Table S4). For instance, in addition 
to microglial enhanced clearance of Aβ, sodium rutin 
(Table 3) (derived from sources such as Ruta graveolens) 
activated microglial phagocytosis of Aβ amyloid via up-
regulation of phagocytosis-related receptors [194].

TH17 immune cells produce the cytokine interleukin-
17A (IL-17A), and in AD patients there is an association 
between brain amyloid levels and elevated  TH17 cytokine 
production (reviewed by [195]). IL-17 also inhibits hip-
pocampal neurogenesis [196]. Extracts of Allium sativum 
inhibited IL-17 gene expression in human blood mono-
nuclear cells [197]. In an autoimmune encephalomyeli-
tis mouse model of multiple sclerosis, carnosol (Table 3) 
(originally extracted from Rosmarinus officinalis) pro-
moted a microglial switch to an immunomodulatory 
phenotype and suppressed reactive  TH17 cells [198].

In the  TH1/TH2 paradigm first proposed by Mos-
mann and colleagues,  TH1 and  TH17 cells release pro-
inflammatory and  TH2 cells anti-inflammatory cytokines 
respectively [199]. This view has become expanded, in 
which both  TH1 and  TH2 cells together orchestrate a vari-
ety of adaptive immune responses to maintain a healthy 
CNS [200], with the  TH1/TH2/TH17/Treg cell balance 
resulting in either a tissue-protective or tissue-destruc-
tive immuno-inflammatory response [201]. A dysfunc-
tional  TH1/TH2 ratio has been regarded as a causative 
event in neurodegeneration. Several plants demonstrate 
a  TH1 to  TH2 shift. For instance, treatment with Nigella 
sativa favours a shift to a  TH2 cytokine profile in mouse 
lymphocytes [202], and in human lymphocytes with 
Sambucus nigra [203].

Prostaglandin  E2  (PGE2) is a downstream lipid product 
of the COX pathway, and a major modulator of inflam-
mation [204]. In aging mice, inhibition of  PGE2 in mye-
loid cells (non-lymphocyte peripheral immune cells e.g., 
monocytes, macrophages) promoted a more homeo-
static anti-inflammatory state and reducing cognitive 
decline [205]. Since rejuvenating non-brain myeloid cells 
by reducing  PGE2 signaling reverses age-related cogni-
tive decline, this manipulation of the peripheral immune 
system can have a profound therapeutic effect within the 
brain [206]. Hence plants with this capacity for  PGE2 /
E2 reduction could also be of therapeutic potential. For 
instance, mangosteen (from Garcinia mangostana) 
inhibited  E2 synthesis in rat glioma cells [207]. In mouse 
microglial cells curcumin (Table  3) (from Curcuma 
longa) reduced  PGE2 and also reduced the inhibitory 
effect of  PGE2 on Aβ42-induced microglial phagocytosis 
[208].

2.2.7  The oxidative stress hypothesis
According to the Oxidative Stress Hypothesis, free radi-
cal-associated oxidation appears to have a fundamental 
role in driving the pathogenesis of neuron degeneration 
and death in AD [209–211]. Reactive oxygen species 
(ROS) are oxygen-derived compounds with highly reac-
tive free radicals, such as anion superoxide (O2·–). Reac-
tive nitrogen species (RNS) are free radicals derived 
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from nitrogen (e.g., peroxynitrite) [212]. Harmful effects 
of ROS/RNS are known as oxidative stress/ nitrosative 
stress respectively. Supporting evidence of a role for these 
stresses in AD progression includes a brain region cor-
respondence between AD pathology and oxidative stress 
markers [213, 214] (reviewed by [215]). For instance, the 
oxidation marker 8-hydroxy-2’-deoxyguanosine (OH8dG) 
increases with aging and is further still increased in the 
AD brain [216]. Subjects with a diet high in fruits and veg-
etables had higher plasma anti-oxidants, lower oxidative 
stress biomarkers and better cognitive performance com-
pared with subjects with a low fruit and vegetable con-
sumption [217]. Hence a good anti-oxidant status appears 
to be protective against cognitive decline [22].

However, anti-oxidant treatments have failed to reduce 
oxidative damage (the ‘anti-oxidant paradox’) [218], sug-
gesting that oxidative stress is a downstream effect. 
Another reason for this failure may be that in contrast to 
anti-oxidant supplements containing a single/ few anti-
oxidants, plants contain phytochemicals with a wide 
range of anti-oxidant properties [219]. Particularly prom-
ising are plants with high anti-oxidant capacity associated 
with other therapeutic effects targeted to AD patholo-
gies in various preclinical models. For instance, in an AD 
mouse model, treatment with apigenin (Table  3) (from 
sources such as Elsholtzia rugulosa) inhibited oxidative 
stress, lowered insoluble Aβ levels and amyloid plaque 
burden, and rescued learning and memory [51]. In other 
animal models, reduced oxidative stress was associated 
with heat shock protein modulation with allicin (from 
Allium sativum) (Table  3) [220], AChE inhibition with 
Elettaria cardamomum [221], memory improvement 
and anti-aging effects with Polygonatum sibiricum [222], 
anti-atherosclerotic activity with Cynara scolymus [223], 
reduced apoptotic cell death with Moringa oleifera [224], 
DNA damage protection with Pilea microphylla [225] and 
anti-hyperlipidemic effects with Carthamus tinctorius 
[226].

Oxidative stress and inflammation are interdepend-
ent, thus therapeutic agents may be required that target 
both inflammation and oxidative stress simultaneously 
[227]. Many plants demonstrate anti-inflammatory and 
anti-oxidant/reduced ROS activities (Additional file  3: 
Table  S3) in studies associating the two, such as in a 
human study with Campomanesia speciosa treatment 
[228].

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a 
master regulator of anti-oxidative responses, inducing 
expression of anti-oxidants, anti-inflammatory mediators 
and cytoprotective genes [229]. Its expression is decreased 
in AD patients [230]. Administration of Nrf2 activators 
reverses memory and synaptic impairments in AD rodent 
models [231], indicating that Nrf2 pathway activation  is 

a therapeutic target for AD. Plants reported to demon-
strate increased Nrf2 expression are thus also of potential 
therapeutic relevance. For instance, in human cell lines, 
quercetin (found in numerous plants such as Crataegus 
spp.) upregulated Nrf2 expression and subsequent expres-
sion of anti-oxidant enzymes [232]. Similarly, in other 
human cell line models, Nrf2 was activated with phene-
thyl isothiocyanate (from Nasturtium officinale) [233] and 
plumbagin (from Plumbago zeylanica) [234]. These exam-
ples suggest that such plants have therapeutic potential in 
targeting various oxidative stress effects that may be inte-
gral to numerous pathologies implicated in AD.

2.2.8  The mitochondrial cascade hypothesis
According to the “mitochondrial cascade hypothesis”, mito-
chondrial dysfunction triggers Aβ accumulation and AD 
pathogenesis [235, 236]. Evidence of impaired mitochon-
drial function is suggested by low brain glucose consump-
tion, decreased oxygen utilization and impaired enzyme 
gene expression in AD (reviewed by [237]). Moreover, 
mitochondrial dysfunction precedes Aβ in a senescent AD 
rat model, suggesting that mitochondrial dysfunction may 
mediate or even initiate the development of AD pathol-
ogy [238]. Treatment strategies aimed at boosting mito-
chondrial and bioenergetic function have shown some 
benefit in mainly animal models of AD, but clinical trials 
lag behind the more predominant target strategies such 
as amyloid [237]. Hence plants reported to enhance mito-
chondrial functions could provide novel treatment pros-
pects (Table 6; Additional file 4: Table S4). For example, in 
a double blind RCT clinical study of 63 post-menopausal 
women, treatment with Panax ginseng resulted in increased 
mitochondrial DNA numbers, improved anti-oxidant sta-
tus and reduced fatigue symptoms [239]. In a double blind 
RCT clinical trial enrolling 364 cancer patients, treatment 
with Panax quinquefolius led to a significant improvement 
in fatigue symptoms [240]. In various pre-clinical models, 
plant species demonstrated a number of activities, such as 
reduced mitochondrial dysfunction with Boerhavia diffusa 
[241], restored mitochondrial integrity with Hippophae 
rhamnoides [242] and increased mitochondrial biogen-
esis with Paullinia cupana [243]. A molecular mechanism 
for mitochondrial biogenesis was demonstrated in mouse 
muscle cells treated with Cinnamomum cassia, which stim-
ulated energy expenditure via upregulation of mitochon-
drial biogenesis factors such as PGC1αα, NRF-1, and Tfam 
[244].

2.2.9  The neurogenesis hypothesis
New neurons continue to be generated in the adult 
human brain from endogenous neural stem cells, mainly 
in specialized niches within the hippocampus [251] 
(reviewed by [252]). Most brain areas also appear to 
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possess progenitor cells capable of generating new neu-
rons and glial cells [253, 254]. A neurogenesis hypoth-
esis for AD has been raised as a possibility [255], based 
on experimentally-reduced neurogenesis resulting in 
impaired memory in animal models [256]. There is also 
evidence of impaired neurogenesis in AD (reviewed by 
[257]). For instance, Moreno-Jiménez et  al. [258] dem-
onstrated that adult hippocampal neurogenesis (AHN) 
persists into the ninth decade in healthy humans, but 
progressively declines in AD. AHN is also reduced in 
early stages of cognitive decline, suggesting that AHN 
deficits may proceed and even promote cognitive defi-
cits in AD [259]. Thus, identifying drugs to stimulate 
AHN could provide novel therapeutic strategies for AD 
patients [260]. A number of medicinal plants demon-
strating neurogenic activity could provide such sources. 
For instance, Calotropis procera root accelerated neu-
ronal regeneration in a mouse nerve injury model [261]. 
Neurotrophic factors such as brain-derived neurotrophic 
factor (BDNF) and nerve growth factor (NGF) enhance 
the growth and survival of neurons (https:// www. nature. 
com/ subje cts/ neuro troph ic- facto rs). The phytochemical 
morin (Table  3) (from sources such as Morus alba and 
Acridocarpus orientalis) demonstrated increased BDNF 
and NGF in a rat model [262].

Both neurogenic and memory/cognitive improvement 
activity were demonstrated in 9 species documented in 
this study (Additional file 3: Table S3). For example, mice 
treated with Prunella vulgaris demonstrated improved 
cognitive performance, associated with up‐regulation 
of adult hippocampal neurogenesis [263]. Sominone 
(Table  3) (from Withania somnifera) enhanced memory 
in mice via activation of RET (a receptor for the glial cell 
line-derived neurotrophic factor) [264]. With oil palm 
phenolics (from Elaeis guineensis), treated mice showed 

improved learning and cognitive ability, associated with 
up-regulation  of genes in the Bdnf  network and synap-
togenesis genes such as Arc and Fos [265].

2.2.10  The cholinergic hypothesis
In the cholinergic hypothesis, memory dysfunction and 
the cause of AD are attributed to disruption of the cho-
linergic neurotransmitter system within the brain [266–
268]. Cholinergic neurons produce the neurotransmitter 
acetylcholine (ACh), which mediates its action within 
the synapse and is then inactivated by the enzyme, ace-
tylcholinesterase (AChE) [269]. In AD acetylcholine is 
depleted, due to structural alterations in cholinergic 
synapses, loss of specific ACh receptors and death of 
ACh-generating neurons, all of which lead to a relative 
accumulation and activity of AChE [270]. Cholinesterase 
inhibitors (AChEIs) increase available ACh within the 
synapses of cholinergic neurons by inhibiting its degrada-
tion, but lead to only a modest improvement on cogni-
tion [271], with limited effects on the pathology and the 
disease progression [272]. However, AChEIs may have 
potentially disease-modifying effects [273]. Clinical tri-
als with AChEIs on AD and VD patients have demon-
strated a slowing of brain atrophy, which is implicated 
in AD pathology [274]. AChEIs are also associated with 
lower risk of stroke and death [275, 276]. A limitation is 
that AChEIs mediate adverse gastrointestinal symptoms 
at doses that are too low to be effective, and there are 
other adverse effects such as cardiac arrhythmia [268, 
277]. Hence there remains much room for improvement 
in this drug class [278], and a search for drugs with more 
CNS-selective AChE inhibition profiles [279] would be 
desirable. From this study the 34 plant species with a 
documented AChEI activity are thus of prospective inter-
est (Table 7; Additional file 4: Table S4).

Table 6 Examples of plants demonstrating anti-fatigue/ improved mitochondrial function and biogenesis activities

Treatment outcome Model Species [or extracted 
phytochemical]

References

Increased mitochondrial DNA numbers Clinical trial Panax ginseng [239]

Reduced mitochondrial dysfunction In vivo mouse/rat Citrus paradisi [245]

Matricaria chamomilla [246]

Vitis vinifera [247]

Rat cell line Boerhavia diffusa [241]

Maintained/ restored mitochondrial integrity Rat glial cells Hippophae rhamnoides [242]

Rat neuron Solanum indicum [248]

Mitochondrial biogenesis upregulation In vivo mouse Paullinia cupana [243]

Theobroma cacao [249]

Mouse muscle cells Cinnamomum cassia [244]

Improved mitochondrial energy metabolism Rat brain mitochondria Carthamus tinctorius [250]

Reduced fatigue Clinical trial Panax quinquefolius [240]

https://www.nature.com/subjects/neurotrophic-factors
https://www.nature.com/subjects/neurotrophic-factors
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For instance, AChE inhibition was associated with 
improved memory and/or cognition in rodent studies 
with extracts from Carthamus tinctorius [281], Evolvulus 
alsinoides [282] and Xylia xylocarpa [285]. In an in vitro 
and rat brain cell study, sarsasapogenin (Table  3) (from 
Asparagus racemosus) demonstrated AChE inhibition, 
anti-amyloidogenic activity, anti-oxidant and neuropro-
tective effects, suggesting a multi target directed ligand 
potential of sarsasapogenin for AD therapy [50].

2.2.11  The vascular hypothesis
The vascular hypothesis of AD (VHAD) proposes that 
an impaired vascular system is a major contributor to 
AD disease progression [286, 287]. In this view, vascu-
lar risk factors to AD result in chronic brain hypoperfu-
sion, leading to oxidative stress and a neuronal energy 
crisis, with progressive neurodegeneration and eventu-
ally AD [288]. There are various supportive evidences for 
VHAD (reviewed by [288]). For instance, vascular dys-
function and reduced cerebral blood flow (CBF) occur 
before Aβ and hyperphosphorylated tau accumulation 
[289]. Patients exhibiting multiple vascular risk factors to 
AD demonstrate a faster rate of cognitive decline [290]. 
A chronic, ischemic-hypoxic state provoked by vascu-
lar dysfunction is sufficient to activate APP processing 
and thence brain Aβ deposition [291]. Positron emission 
tomography image assessments accurately predict con-
version to AD in hypometabolic mild cognitive impair-
ment patients, indicating that impaired cerebral blood 
flow reduces glucose supply for the brain’s metabolic 
needs [292]. A variant of the VHAD is the two-hit vascu-
lar hypothesis, which envisages that BBB damage allows 
leakage of neurotoxic molecules, resulting in neuronal 
dysfunction and impaired amyloid-β clearance (hit one). 
These processes lead to accumulation of Aβ in the brain 
(hit two), with neurotoxic effects [293].

Plants have been found to demonstrate therapeu-
tic activities for various vascular risk factors including 
endothelial inflammation, atherosclerosis, hyperlipidemia, 
platelet agglutination and thrombotic components, which 
are next examined in more detail. An attractive character-
istic of some of these species is that they provide multiple 
activities to target the diverse vascular pathologies impli-
cated in AD.

2.2.11.1 Anti-hypertensive bioactivity Patients devel-
oping AD and VD have been found to have higher blood 
pressure than cognitively normal individuals [294]. Hyper-
tension leads to impairment of cerebral blood vessels and 
their occlusion, damaging the brain regions the vessels 
serve [295]. Hypertension also impairs vascular clearance 
of brain Aβ [296] and increases amyloid and tau deposi-
tion [297, 298]. In a meta-analysis of 12 RCTs, blood pres-
sure lowering with antihypertensive agents was associ-
ated with a reduced risk of dementia [299], although data 
for patients with established AD are more scarce [300]. 
However, there is an incidence of adverse drug effects and 
adverse other outcomes [301]. A major issue is adherence 
with treatment (global average < 50%) [302]. Prospectively 
such limitations may be ameliorated by the many plants 
demonstrating anti-hypertensive activity.

In clinical trials, 17 plant species have significantly 
reduced hypertension (for examples, see Table  8). For 
instance, in treatment of hypertensive patients with aged 
garlic (Allium sativum) for 12  weeks, blood pressure 
was reduced by 12.5%, comparable to that achieved with 
common antihypertensive medication [303]. Similarly, 
in a review of 10 randomised double-blind placebo con-
trolled trials, Allium sativum treatment was associated 
with blood pressure reductions in patients with an ele-
vated systolic blood pressure (SBP) [312]. In a systematic 
review of the effects of beetroot juice on blood pressure 

Table 7 Examples of plant species demonstrating AChE inhibitory activity

Model Species [or extracted 
phytochemical]

Bioactivities References

In vivo rodent Albizia lebbeck AChE inhibition, improved memory + cognitive impairment [280]

Carthamus tinctorius AChE inhibition, memory improvement [281]

Evolvulus alsinoides AChE inhibition, anti-inflammatory, memory improvement [282]

Leea indica AChE inhibition, reduced memory deficits [283]

Peristrophe bicalyculata AChE inhibition, reversed memory impairment, anti-neuroinflammatory [163]

Salvia officinalis AChE inhibition, cognitive improvement [284]

Xylia xylocarpa AChE inhibition, cognitive improvement [285]

In vitro Asparagus racemosus AChE inhibition, anti-amyloidogenic [50]
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of humans in 22 eligible studies, the overall SBP was sig-
nificantly lower (3.55 mm Hg) in the beetroot juice–sup-
plemented groups than in the control groups [313].

In a double-blind, randomised parallel arm study in 
90 elderly individuals with mild cognitive impairment, 
drinking high flavanol (≈  990  mg) cocoa (from Theo-
broma cacao) was associated with significantly reduced 
SBP and diastolic blood pressure. The treatment was also 
associated with improved cognitive function [314].

2.2.11.2 Anti-atherosclerotic activity AD patients also 
demonstrate atherosclerotic vascular wall thickening 
[315], reducing cerebral  O2/nutrient supply which may 
lead to neuronal loss [316]. Atherosclerosis is associated 
with an elevation in triglyceride-rich lipoproteins and 
low-density lipoproteins (LDL), and low levels of protec-
tive high-density lipoprotein (HDL) [317]. The disease 
develops initially from injury to the vascular endothelium, 
such as from toxins (e.g., oxidized cholesterol). This results 
in an activated and leaky endothelium with increased 
cytokine expression, and monocytes and T‐lymphocyte 
recruitment. These migrate, along with various modified 
lipids such as oxidized low-density lipoprotein, through 
the leaky endothelium into the sub-endothelial space, 
and proliferate. An excessive inflammatory response of 
these various cells leads to atherosclerotic plaque for-
mation, which can impede blood flow within the vessel, 
with ischaemic or fatal consequences (reviewed by [318, 
319]). Medical interventions have majored on reduc-
tion of cholesterol and lipid levels with dietary modifi-

cation and strategies employing intensive lipid-lowering 
agents including statins [320]. However, adverse side 
effects including muscle pain, fatigue and potentially life-
threatening rhabdomyolysis, are reported in 10% to 25% 
of patients receiving statin therapy [321]. There can also 
be impaired mitochondrial function [322], which could 
aggravate AD-related mitochondrial dysfunction. In view 
of these factors, plants with lipid-lowering capability pro-
vide an alternative treatment option (Table 8; Additional 
file 4: Table S4). For instance, in a double blind RCT trial 
of 26 patients with metabolic syndrome treated with red 
yeast rice and olive extract supplement, LDL cholesterol 
was lowered by 24% [308]. Blood pressure was also sig-
nificantly reduced. An RCT trial with 67 hyperlipidemic 
patients treated with Salvia officinalis resulted in a reduc-
tion of total cholesterol, triglyceride (TG), LDL and very 
low-density lipoprotein in the sage group compared with 
baseline [309]. In a prospective double blind study of 
17 overweight menopausal women given a diet supple-
mented with Chenopodium quinoa (quinoa), there was 
a significant reduction in LDL cholesterol and TG com-
pared with baseline [323].

2.2.11.3 Improved vascular endothelial function How-
ever, there is now considerable evidence that atherosclero-
sis is a chronic inflammatory disease [324]. Clinical trials 
have shown that targeting inflammation can reduce car-
diovascular events [317]. The healthy vascular endothe-
lium inhibits platelet adhesion to the surface [325] but 
cardiovascular risk factors (e.g., hypertension) increase 

Table 8 Examples of plant species demonstrating improved vascular effects in clinical studies

*Treatment combined with red rice. **Treatment combined with anti-platelet and lipid-lowering therapy

C cholesterol, CVD cardio-vascular disease, LDL low-density lipoprotein, HDL high density lipoprotein, MetS metabolic syndrome, N [C] number of patients treated 
[number of untreated controls], RCT  randomised controlled trial, SBP systolic blood pressure, X2B RCT  double-blind randomised controlled trial, TG triglycerides, Ox 
oxidised, VLDL very low-density lipoprotein, ↓ lowered level, ↑ elevated level

Vascular dysfunction Plant species Subjects N [C] Type of study Outcome References

Hypertension Allium sativum Hypertensive patients 25 [25] X2B RCT SBP ↓12.5% [303]

Beta vulgaris Hypertensive patients 16 [16] X2B RCT SBP ↓7.2% [304]

Leonurus cardiaca Hypertensive patients 50 Pilot study SBP ↓10.5% [305]

Punica granatum Haemodialysis patients 41 [40] Crossover RCT SBP ↓5.1% [306]

Solanum lycopersicum Hypertensive patients 130 X2B RCT SBP ↓7.4% [307]

Dyslipidemia/ elevated LDL 
cholesterol

Olea europaea* Dyslipidemic [MetS] 
patients

26 [24] X2B RCT LDL-C ↓24%, Ox-LDL ↓20% [308]

Punica granatum Haemodialysis patients 41 [40] Crossover RCT HDL ↑23.4% [306]

Salvia officinalis Hyperlipidemic patients 34 [33] X2B RCT Total C ↓19.6%, TG ↓22.8%, 
VLDL ↓13.3%, LDL ↓19.7%, 
HDL ↑ 20.2%

[309]

Platelet aggreg-ation/
endothelial dysfunction

Apium graveolens** 
[DL-3-n-butylphthal-
ide]

Stroke patients 86 [84] RCT elevated circulating 
endothelial progenitor cells, 
stroke improvement

[310]

Malus pumila At risk CVD patients 30 RCT crossover Improved endothelial 
function

(311)
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oxygen free radical production, causing the endothelium 
to switch to a pro-coagulant, pro-inflammatory and vaso-
constrictor phenotype [326, 327].

The 38 species of plants with demonstrated anti-plate-
let aggregation/improved endothelial function have a 
bearing on these pathologies (Table  8; Additional file  4: 
Table S4). For instance, in a randomised controlled clini-
cal trial, consumption of apple (Malus pumila) improved 
endothelial function in individuals with cardiovascu-
lar disease risk [311]. Phyllanthus amarus treatment 
improved endothelial function and prevented hyperten-
sion effects in a rat hypertension model [328]. Molecular 
mechanisms have been discovered: for instance, EGCG 
(from Camellia sinensis) demonstrated anti-inflam-
matory effects on endothelial cells, via inhibition of the 
MAPK/ERK pathway and downstream inflammatory 
markers such as TNF-α, IL-6, and ICAM-1 expression 
[329].

2.2.11.4 Thrombolytic activity Atherosclerosis contin-
ues to develop to form atherosclerotic plaques, which are 
mainly unstable, and their rupture triggers thrombus for-
mation, which can occlude the vessel [330], leading to the 
decreased cerebral blood flow associated with AD [316]. 
Seven plant species in this study were found to possess a 
thrombolytic activity (the capacity to dissolve thrombi), 
for instance in human and animal blood cell models with 
Mauritia flexuosa [331], and Typha angustifolia [332] 
(Table 8).

2.2.11.5 Anti-obesity activity Obesity (particularly as 
indicated by increased waist circumference) increases the 
risk of AD and dementia [333, 334]. In obesity, excess cir-
culating fatty acids cause adipose tissue cells to become 
dysfunctional, inducing dyslipidemia and inflamma-
tion, which contribute to atherosclerosis [335, 336]. Sev-
eral plant species surveyed in this study demonstrated 
anti-obesity activities (Additional file  4: Table  S4). For 
instance, obese rats treated with Cyphomandra betacea 
extracts raised high-density lipoprotein cholesterol and 
total anti-oxidant status, and lowered total cholesterol, 
body weight and pro-inflammatory TNF-α and IL-6 activ-
ities [337]. With Cinnamomum cassia treatment, weight 
gain in obese mice was reduced by increasing energy 
expenditure via up-regulation of mitochondrial biogen-
esis [244]. In mice fed a high-fat diet, Alstonia scholaris 
treatment attenuated lipogenesis by reducing expression 
of lipogenic enzymes ACC-1, PPARγ, LXRα and SCD-1, 
and upregulating expression of lipolytic enzymes CPT1A, 
PPARα and ACOX1 [338].

2.2.12  The metal ion hypothesis
Certain metals are essential nutrients for the body’s 
metabolism. For instance, iron has a role in a network of 
151 components orchestrating respiration, energy metab-
olism, DNA synthesis and neurotransmission [339]. The 
metal ion hypothesis proposes a role of metal ions in AD 
pathogenesis [340], based on evidence of dysregulation 
in metal homeostasis (reviewed by [341]). For instance, 
elevated levels of zinc, copper and iron are found in the 
brains of AD patients [342]. Such metals interact with 
amyloid and tau, promoting their aggregation and neu-
ronal toxicity [343]. These effects have been ameliorated 
by the application of iron, copper, zinc and nickel metal 
chelators in AD animal/ in vitro models [344–346]. Such 
chelators bind with the metal to form less toxic metal 
complexes which can be excreted [347]. It has thus been 
suggested that chelation therapy is a promising treatment 
strategy [348]. However, in clinical trials, synthetic chela-
tors have shown limited efficacy for AD treatment and 
are associated with adverse side effects [349, 350] such as 
allergic reactions, along with liver, renal, eye and auditory 
toxicities [351, 352] and may even worsen AD pathology 
[353]. The plants in this study may provide more prom-
ising and safer alternatives, in which metal chelation or 
other metal-reduction activity was reported in 30 species 
(Additional file 4: Table S4). For instance, in several clini-
cal studies with thalassemia patients, iron overload was 
reduced by treatment with Nigella sativa extract [354] and 
silymarin (from Silybum marianum) [355] (reviewed by 
[356]) and in a case report with Camellia sinensis [357]. 
In rodent models, iron overload was reduced by treatment 
with extracts from Emblica officinalis [358] and Triticum 
aestivum [359].

Iron chelation activity is demonstrated in in vitro mod-
els in 19 species (Additional file 4: Table S4). Moreover, 
these plants all demonstrate pleiotropic effects of AD 
therapeutic potential. For instance, Cocos nucifera dem-
onstrated both iron chelation, anti-amyloid and anti-
tau activity (Additional file 3: Table S3). Commonly, the 
active phytochemicals of such plants are polyphenols of 
dietary origin, which are considered safe, and thus repre-
sent strong candidates for metal chelation therapy in AD 
[360].

Exposure to non-essential metals (e.g., lead, arse-
nic, cadmium and aluminium) can also exacerbate AD 
brain pathogenesis. For instance, lead, arsenic and cad-
mium increase APP and BACE1 expression, leading 
to increased Aβ production, plaque formation and tau 
phosphorylation [361, 362]. Aluminium competes with 
iron binding sites, resulting in increased iron-mediated 
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ROS, and accumulates in neurons [341]. Medicinal plants 
from the current survey have also demonstrated activi-
ties to reduce non-essential metal toxicity. For instance, 
in patients with chronic occupational lead poisoning, 
treatment with allicin (from Allium sativum) resulted in 
clinical improvement, which could be attributed to lead 
chelation, reduced oxidative stress and inhibition of lead 
absorption from the gut [363]. Curcumin (from Curcuma 
longa) reduced arsenic-induced oxidative stress and 
induced DNA repair expression in a chronically arsenic-
exposed human population [364]. A reversal or reduction 
of arsenic-induced toxicity in rat models was demon-
strated with silibinin (from Silybum marianum) [365] 
and Ananas comosus [366]. Lead induced toxicity in rats 
was ameliorated by treatment with Zingiber officinale 
[367] and Moringa oleifera [368]. In another rat model, 
treatment with Cynara scolymus leaf extract protected 
against cadmium toxicity [369]. In an aluminium exposed 
mouse model, Allium cepa treatment reduced brain alu-
minium deposition, possibly via PPAR-γ receptor ago-
nism, to reduce aluminium transfer across the BBB [370]. 
In a rat model, aluminium toxicity-induced neurodegen-
eration was reduced by treatment with Aloe vera [371]. 
The effects were also associated with reduced memory 
deficits. Solanum lycopersicum extract protected mouse 
keratinocytes from nickel toxicity [372]. In a rat brain 
mitochondria model, the phytochemical EGCG pro-
tected against cadmium-induced damage, with in  vitro 
evidence supporting metal chelating activity [373]. Fur-
ther species demonstrating reduction of metal toxicity 
are reviewed by Amadi et al. [351] and Susan et al. [374].

2.2.13  The oestrogen hypothesis
Worldwide around 62% of persons with AD are women 
[375]. A major driver for this risk may be the precipi-
tous decline in oestrogens with the menopause [376], 
which suggests that oestrogens have a neuroprotective 
role. Oestrogens have essential brain functions such as 
regulation of synaptic plasticity and learning [377] and 
also reduce oxidative injury, Aβ toxicity, and Aβ genera-
tion (reviewed by [378]). Thus oestrogen replacement 
therapy has been advocated, but from a review of nine 
clinical trials of oestrogen-containing hormone therapy, 
the findings suggested that hormone therapy (HT) fails 
to improve AD cognitive symptoms [379]. For instance, 
in an RCT treatment of 42 post-menopausal women 
with raloxifene, a selective oestrogen receptor modula-
tor, no cognitive benefits were conferred in the treated 
group [380]. However, oestrogen provided a neuropro-
tective effect if administered to women under 50 years of 
age. This has been explained by the “critical window” or 
“window of opportunity” hypothesis, which suggests that 
the neuroprotective effects of oestrogen depend on age 

at the time of administration [381]. This is supported by 
clinical evidence that dementia risk is increased by sur-
gical removal of ovaries prior to the menopause, which 
results in prematurely reducing sex steroid hormone 
production [382]. Opinion remains divided whether HT 
in postmenopausal women provides beneficial or harm-
ful oncological and cardiovascular effects. Clinical data 
taken in total neither establishes nor refutes the pos-
sibility that HT causes breast cancer [383], and for can-
cer survivors the oncological risk of HT varies with the 
cancer type, with an increased risk associated with breast 
and brain cancers [384]. According to a revised global 
consensus statement, with menopausal HT there is an 
increased risk of venous thromboembolism and ischemic 
stroke, and if initiated over the age of 65 increased risk 
of dementia [385]. Medicinal plants rich in phytoestro-
gens provide a potentially safer therapeutic alternative. 
Phytoestrogens are a group of non-steroidal polyphenolic 
plant metabolites that induce the action of endogenous 
oestrogens, often by binding to oestrogen receptors 
[386]. Although almost ubiquitous in plant products, lev-
els may be quite low or moderate in most foods, but are 
particularly high in soya-based foods and other legumes 
[387]. Of the plants documented in this study, 18 species 
demonstrated significant oestrogenic activity (Additional 
file  4: Table  S4). For instance, in an RCT study of post-
menopausal women treated with Glycine max (soy bean), 
therapeutic effects on reproductive system atrophy were 
attributed to oestrogenic action via an increased per-
centage of oestrogen receptor positive cells [388]. RCTs 
examining the effects of soy treatment have reported 
mixed results [389]. Beneficial effects in post-menopau-
sal women included improved visual memory [390] and 
cognitive performance [391]. In men, enhanced working 
memory was reported, suggesting a role for oestrogen in 
mental processes in males [392]. A study reported nega-
tive effects [393] although it had limitations (e.g., short 
duration of 16 weeks). Moreover, the treatment given was 
soy milk, which is relatively low in phytoestrogen content 
[394] in contrast to high levels in other soy foods such 
as the soya bean and soya flour [387]. Overall, the data 
from RCTs indicate a need for further, much larger stud-
ies with more controlled methodological standards and 
mediating factors [389].

Oestrogenic activity or high phytoestrogen content 
was demonstrated on rodent and in vitro models with 19 
plant species (Additional file 4: Table S4). For instance, in 
an ovariectomized rat model, phytoestrogens from Gly-
cine max resulted in improved memory performance, 
which may be attributed to increased bdnf and synaptic 
protein gene expression [395]. In other ovariectomized 
rodent models Pueraria lobata extract promoted oestro-
genic activity, by upregulating expression of oestrogen 
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receptor α (ER-α) [396] and Medicago sativa prevented 
bone loss induced by oestrogen deficiency [397]. Many of 
these plant species also demonstrate other bioactivities of 
AD therapeutic potential. For instance, genistein (from 
Glycine max) alleviates hyperphosphorylation of tau pro-
tein through regulating CAMK4 [94].

Male sex hormones (androgens) in men, but also 
women, have roles in reproduction, cardiac health, bone 
remodelling, muscle mass, and brain function [398]. 
Reduced androgen levels in aged men and women may 
also be risk factors for cognitive impairments and AD, 
and thus testosterone therapy may have potential ben-
efits [399]. Testosterone–raising activity is demonstrated 
in rat models with Pistacia atlantica, Punica granatum, 
Tamarindus indica, and Zingiber officinale. Tamarindus 
indica is noteworthy in its capacity to raise both oestro-
gen and testosterone levels [400], indicating a promising 
pleiotropic potential in targeting various hormone defi-
ciencies implicated in AD.

2.2.14  The infectious agent hypothesis
Itzhaki and colleagues [401] have summarized evidence 
in favour of an infectious agent in AD which may have 
a causative role in the pathology. For instance, patho-
gen signatures specifically colocalize with AD pathol-
ogy. Moreover, antivirals such as acyclovir block 
virus-induced Aβ and tau pathology in  vitro [402]. 
Microbes implicated in AD include Herpes simplex virus 
type 1 (HSV1) and type 2 (HSV2), Garcinia mangostana, 
Escherichia coli, and several spirochaete and fungal spe-
cies [401, 403]. Of therapeutic potential are the 769 spe-
cies demonstrating anti-microbial activity, the most 
common bioactivity documented in this study (Addi-
tional file 3: Table S3; for examples, see Additional file 6: 
Table S6). For instance, Alstonia scholaris demonstrated 
effective anti-viral and anti-bacterial activity against 
HSV-1 [404] and E. coli [405], which are both implicated 
in AD brain pathology.

The studies were reported in various preclinical mod-
els, with anti-bacterial effects being predominantly 
in  vitro. The anti-microbial inhibition ranged from 
highly potent to more moderate inhibition, according to 
the species. For instance, with Gossypium barbadense 
and Ficus benghalensis, HSV-1 inhibition was 99.9% 
and 96.6% respectively [406] and with Coptis chinen-
sis it was 100% inactivated [407]. Another example of 
high potency is the anti-bacterial activity of Dacryodes 
edulis, which was higher than that of gentamicin, the 
standard reference drug [408]. Morinda lucida extracts 
were more active against all the tested bacteria than the 
standard antibiotics (chloramphenicol and ciprofloxa-
cin) [409]. Justicia gendarussa inhibited HIV reverse 
transcription, by inhibition of both the early and late 

gene transcription at levels greater than the drug AZT 
[410].

Clinically approved antiviral drugs exist for only 10 
of the 220 + viruses known to infect humans [411]. This 
highlights a crucial need for anti-viral drug discovery. The 
202 plant species in this study documented with anti-viral 
activity could provide a source of novel anti-viral agents, 
with the capacity to act by a number of mechanisms. For 
example, Phyllanthus amarus targeted various stages of 
the HIV life cycle, thereby presenting multiple antiviral 
activities, and demonstrated significant anti-HIV activ-
ity in human-derived cells [412]. Isatis tinctoria acted 
on human influenza virus by targeting viral endocytosis, 
interfering with viral ribonuclear protein export from the 
nucleus [413]. Urtica dioica  inhibited SARS-CoV infec-
tion in mice by targeting adsorption or penetration stages 
of the replication cycle, and by binding to the SARS-CoV 
spike glycoprotein [414]. An obstacle to the eradication of 
HIV is the persistence of latent virus in infected patients. 
Euphorbia tirucalli demonstrated a capacity to elimi-
nate this latent viral reservoir. This is executed in a dual 
action, by upregulation of the pathway to reactivate the 
virus out of latency, and downregulation of the viral sur-
face proteins essential for HIV replication [415]. This is of 
potential high relevance in targeting latent viruses in the 
brain, implicated in AD pathogenesis [416]. Punica gra-
natum demonstrated multiple anti-viral activity against 
HSV, Sindbis virus, polio [417], influenza, [418] and HIV 
[419], indicating a broad spectrum anti-viral activity to 
target as yet unidentified viral pathogens involved in AD.

Another example of an infectious agent implicated 
in AD is Porphyromonas gingivalis, a key bacterium in 
chronic periodontitis. The pathogen was identified in the 
brain of AD patients, bacterial toxin levels correlating 
with tau and ubiquitin pathology [420]. Of therapeutic 
relevance are medicinal plants such as Musa paradisiaca 
and Pistacia lentiscus, which demonstrated anti-bacterial 
activity specifically against Porphyromonas gingivalis 
[421, 422] (Additional file 3: Table S3).

2.2.15  The gut microbiome hypothesis
Alterations in gut microbial communities in AD patients 
may result in pathophysiological changes in the brain 
[103, 423]. This hypothesis is supported by evidence of 
decreased microbial diversity in the gut microbiome of 
AD patients [424]; an increase in pro-inflammatory gut 
bacterial taxa is associated with brain amyloid pathology 
in AD patients [425]; and mice raised with germ-free gut 
conditions have less cerebral amyloid deposition [426]. 
Gut microbiome alterations may increase permeability of 
the gut barrier and result in immune activation, impaired 
BBB, neuroinflammation, and ultimately neurodegen-
eration [427]. In an RCT study of healthy older adults, a 
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probiotics-rich diet was associated with reduced inflam-
matory-causing gut microbiota and improved mental 
flexibility [428]. Modulation of gut microbiota in AD 
mouse models led to restoration of an impaired ubiqui-
tin proteasome system and autophagy, reduced cognitive 
decline and amyloid deposition [429, 430]. These findings 
suggest that targeting impaired gut microbiota is a prom-
ising therapeutic strategy. In the current study, reports of 
gut microbiota modulation activity were found for Morus 
alba, Punica granatum and Vaccinium myrtillus. For 
instance, in a randomised cross-over human trial with 
Punica granatum consumption, subjects were conferred 
with higher gut microbiome diversity and more favour-
able microbiota profile [431]. Resveratrol and quercetin 
administration in rat models also modified gut microbi-
ota favourably (reviewed by [432]). Various species (e.g., 
Olea europaea, Solanum lycopersicum) documented in 
this study are components of the Mediterranean diet. 
Frail adults’ adherence to a Mediterranean diet was asso-
ciated with microbiome alterations, reduced inflamma-
tion and improved cognitive function, suggesting that 
such a diet has a beneficial impact on the gut microbi-
ome, which in turn may promote healthier aging [433].

2.2.16  Other effects: apoptosis and aging
Apoptosis, a programme of controlled cell death [434], 
may have a role in the neuronal cell death associated 
with AD, based on evidence of increased apoptosis in the 
AD brain compared with the normal brain [435, 436]. 25 
plant species in this study had reports of anti-apoptotic 
bioactivity (Additional file  4: Table  S4). For instance, 
fibrauretine (Palmatine chloride) (Table 3) from Fibrau-
rea recisa  suppressed pro-apoptotic caspase-3 and Bax 
protein expression, and increased anti-apoptotic Bcl-2 
expression in an AD mouse model [74].

Age is the main risk factor for AD, with cellular senes-
cence and other hallmarks of aging thought to contribute 
to AD pathology [437, 438]. 13 plant species were found 
to exhibit anti-aging activity (Additional file 4: Table S4), 
with molecular mechanisms such as upregulation of tel-
omerase activity.

2.3  Plants with ethnological use of memory improvement 
demonstrate bioactivities of therapeutic relevance 
to 15 causal bases for AD

The next part of our study focused more particularly on 
the subset of 107 species in which the ethnological report 
of memory improvement was validated by an AD-rele-
vant bioactivity. We found that the various species within 
this subset together demonstrated therapeutic activ-
ity for all AD causal bases hypothesised in the previous 
Section (Additional file 7: Table S7). 69 of these species 

demonstrated multiple bioactivities of AD therapeutic 
relevance (for examples see Table 9). Some of the species 
or their phytochemical extracts demonstrated pleiotropic 
activity targeted to many of the causal bases. For three of 
these species (Centella asiatica, Rosmarinus officinalis 
and Zingiber officinale) the ethnomedical use of memory 
improvement is also validated by clinical studies confirm-
ing memory/cognitive improvement, along with multiple 
other bioactivities of relevance.

The implication is that the effectiveness of this set of 
plants is based on their action in targeting multiple key 
pathologies implicated in AD. If this is so, the plant spe-
cies with ethnological reports of memory improvement 
could provide an attractive source of drug leads of AD 
therapeutic potential.

2.4  Distribution of surveys
2.4.1  Overall distribution pattern of surveys with ND 

relevance
The distribution of the surveys from which data of ND 
relevance was mined are indicated in Fig.  1. Of the 67 
countries represented by the surveys, these were located 
most commonly in Africa, Asia, Central and South 
America. This suggests a particular abundance of studies 
of ND relevance from those continents. More than one 
survey within a country was mined if there were suffi-
ciently distinct habitat types or regional identity between 
them (e.g., Amazonian versus Atlantic Forest of Brazil) 
or where ND-relevant data richness was revealed in the 
literature searches. The latter is exemplified by India, in 
which 10 separate surveys were found that cited species 
with uses reported for memory improvement. The over-
all distribution pattern of the surveys across the world 
revealed by online search engines reflects the abundance 
of ethnomedical surveys for certain countries (e.g., India, 
Nigeria), but a paucity of surveys for other countries (e.g., 
Chad, Libya).

Figure  1 demonstrates that the biggest cluster of 
surveys [40 in total] occurs in India, Bangladesh and 
Pakistan. This cluster is concentrated particularly in 
the Himalayan ranges and environs, and although this 
may be associated with the very high species diversity 
there, there are other countries with even higher spe-
cies diversity in which ethnomedical surveys are less 
common, such as parts of South America. For instance, 
the Pacific region of Columbia has one of the highest 
pockets of biodiversity in the world with 50,000 spe-
cies of plants, and yet both scientific knowledge on 
Colombian flora and ethnomedical investigations are 
lacking [439]. The cluster of surveys yielding such high 
levels of data in the India-Bangladesh-Pakistan coun-
try block could be attributed to the philosophy of the 
Ayurvedic medicine system, in which every plant on 
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earth is considered to have a medicinal property [440], 
which provides great motivation to search for novel 
medicinal plant uses, although this could return false 
positives.

2.4.2  Data at risk—an assessment of causes of concern
The surveys were then mapped in relation to the loca-
tions of biodiversity hotspots (BDH) (Fig. 1). 90 out of 
157 (57%) of the studies were found to reside within 

BDHs and therefore are under threat. Since BDH 
regions have by definition lost at least 70% of their native 
vegetation, species with valuable therapeutic potential 
may already have been lost, and there is a threat to the 
survival of the remaining species. For instance, 40 of 
the included surveys reside in the Himalayan BDH. In a 
recent study of 12 Himalayan regions within this BDH, 
of 112 documented medicinal plant species, 19 species 
were found to be at risk of extinction, with seven species 

Table 9 Examples of plant species with multiple bioactivities of ND therapeutic relevance

For references see Additional file 3: Table S3 and Table References

Species [or 
extracted 
phytochemical]

Model Bioactivity of ND therapeutic potential

Centella asiatica Clinical studies Memory improvement

Human cell line Mitochondrial biogenesis

Anima in vivo studies Anti-amyloidogenic; attenuated cognitive deficits; anti-inflammatory; neuronal growth stimulus; anti-
hypertensive

In vitro Anti-bacterial

Rosmarinus officinalis Clinical studies Memory improvement

Anima in vivo studies Anti-amyloidogenic; reduced cognitive and mitochondrial dysfunction; promotes microglial switch to 
immunomodulatory phenotype; anti-hypercholesterolaemic; anti-inflammatory

In vitro Inhibition of tau aggregation; anti-oxidant; anti-viral, anti-bacterial, anti-fungal

Zingiber officinale Clinical studies Cognitive improvement; anti-viral; anti-inflammatory; anti-platelet aggregation

Animal in vivo studies Anti-neuroinflammatory, improved cognitive function

Rat astrocyte cells Reduced apoptosis, increased bdnf + ngf gene expression, attenuated mitochondrial impairment

In vitro Anti-bacterial; anti-oxidant

KEY
Survey location
Biodiversity 
hotspot 

Fig. 1 Distribution of ethnomedical surveys with potential therapeutic relevance for neurodegenerative diseases. The survey distribution on the 
map indicates that the surveys were located most commonly in Africa, Asia, Central and South America, suggesting an abundance of studies of ND 
relevance from those continents. There is also an abundance of surveys for certain countries (e.g., India, Nigeria), with the biggest cluster of surveys 
[40 in all] in India, Bangladesh and Pakistan combined. 90 out of 157 (57%) of the studies were found to reside within biodiversity hotspots and 
therefore are under threat. Inset: surveys located in Pacific islands
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being critically endangered [441]. The threats are not 
limited to the BDH regions either. The BDH regions rep-
resent only 36 of the world’s most threatened areas, with 
numerous areas outside BDH status still being vulner-
able, such as much of the Brazilian Amazon forest [442]. 
Another example outside a BDH is a study in Mizoram, 
India, in which 13 of the 81 species of therapeutic ND 
relevance listed were reported to be rare, vulnerable or 
endangered there [443].

Next, the 115 main surveys were examined systemati-
cally to determine what the specific threats of concern 
were to the authors. The threat of most common con-
cern was loss of traditional knowledge (reported by 58% 
of authors). This was a problem reported in communities 
worldwide, ranging from South America to Europe, Asia 
and the Pacific. For instance, in Albania the knowledge 
erosion is due to urbanization and economic migration 
away from the villages [444]. In Ethiopia, India and Nepal 
the knowledge erosion is attributed to the younger gen-
eration’s disinterest in ethnomedical knowledge or a lack 
of knowledge flow [445–447]. In Fiji, Martinique and 
the Philippines its decline is the result of preferences for 
Western-type medicine [448–450]. Once such knowledge 
is lost, a major consequence reported in Italy is that the 
remedies that remain treat only unimportant pathologies 
[451].

The second-most common threat was habitat loss 
(reported by 34% of authors). For instance, the Atlantic 
Forest region of Brazil agriculture is now based on bra-
zilwood, sugarcane, coffee and cattle. Relocating 50% of 
the Brazilian population to cities once covered by forest 
resulted in only 5% of the original forest remaining [452]. 
In Ethiopia, habitat loss resulted from various anthropo-
genic threats such as deforestation to expand agricultural 
land and for firewood collection [447]. Medicinal plants 
can also be under threat from invasive weeds [453] and 
grazing [454]. Over-harvesting is an issue in countries 
such as Peru [455]. This can lead to species with ND ther-
apeutic potential becoming rare, as for Sideritis athoa 
in Turkey [454] and in Vietnam for Aquilaria crassna, 
which is now critically endangered [456].

Loss of medicinal knowledge and habitat loss are often 
intertwined. As Ji and colleagues comment regarding the 
Lisu people, in NW Yunnan, China, over-exploitation 
and deforestation have led to disappearance of some 
medicinal plants and the associated knowledge of their 
use [457]. Similar such associations were reported in 
Côte d’Ivoire [458] and Ethiopia [453].

Analysis of the knowledge erosion problem can be 
found in the study by Voeks and Leony [459], who attrib-
ute the key reason for this loss to formal education 
access, in which the healing properties of their forests 
and fields no longer find their way into the curriculum. In 

contrast to this, traditional knowledge (TK) is sustained 
in the Kenyan Masai tribe by children spending time with 
their parents, and this TK persists even with children’s 
enrolment into formal education [460].

Several remedial strategies are illustrated from the 
authors surveyed in this study. For instance, harvesting of 
medicinal plants which are introduced species have less 
impact on the local habitat, in order to preserve sites of 
native species under threat [461]. This low-impact har-
vesting of medicinal plants can bring economic benefits, 
such as the agro-industrial credit initiative in Panama 
for producers of medicinal plants that can be marketed 
[462]. In the Hakka communities of China there is 
already an awareness of which plants are endangered, 
and over-harvesting is prevented by using more common 
species [463]. Environmental education can be fostered 
by key individuals of a community being included into 
management programs [461]. The Nicobarese commu-
nity harvest mainly the leaves of the plants, since these 
are the most renewable parts [464]. In Northern Peru, 
healers are open to new knowledge, watching interna-
tional health trends to incorporate new species such as 
Noni (Morinda citrifolia) fruits into their own repertoire, 
the fruit products being harnessed in local plant pharma-
cies to benefit the local economy and population [455]. 
One of the most striking examples of an improvement in 
ethnomedical knowledge in recent years has occurred in 
Kyrgyzstan. Under the 70 years of Soviet rule, traditional 
medicinal practices in such Central Asian societies were 
neglected and suppressed, leading to a loss of TK [465]. 
However, in the post-Soviet era there has been a remark-
able revival of ancestral TK [466].

2.5  Future perspectives
The bioactivities documented in this study of therapeutic 
relevance to the various pathological causal bases for AD 
are mainly pre-clinical or in vitro studies. These provide 
a basis for further studies to ascertain clinical relevance, 
standardize dosage, ensure safety, and characterize del-
eterious off-target effects. State of the art technologies 
exist, such as sequencing, metabolomic and proteomic 
tools, to excavate undiscovered plant metabolites, 
improve yield and eliminate toxic compounds from valu-
able plant extracts [467, 468]. Plant tissue culture tech-
niques can eliminate the reliance on wild plants under 
threat [469].

The ability of the plant products to cross the BBB can 
be tested with various in  vitro and in  vivo BBB models 
[470]. However, major challenges remain with current 
BBB models, which have limited ability to recapitulate 
barrier dysfunction and plaque deposition [471]. Prom-
ising next generation models apply tissue engineering 
technologies, which aim to more effectively replicate BBB 
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architecture [472]. For instance, an in  vitro 3D neuro-
vascular model under development combines cells from 
the nervous system with a BBB endothelial cell interface, 
which could provide a platform to assess drug effects on 
neural function [473, 474].

There are yet other less known causal bases implicated 
in AD pathology [24], for which a plant therapeutic role 
is largely unexplored. For instance, according to the cal-
cium homeostasis hypothesis, Aβ destabilizes neuronal 
calcium homeostasis, which renders neurons more vul-
nerable to environmental insults [475]. There is evidence, 
for example, of cognitive decline in AD associated with 
changes in calcineurin/nuclear factor of activated T-cells 
(NFAT) signaling [476]. Thus NFAT inhibition and appli-
cation of other agents aiming to correct neuronal  Ca2+ 
dysregulation are therapeutic strategies for AD treat-
ments [477, 478]. However, here too there is potential 
from medicinal plants, with phytochemicals (e.g., gos-
sypol, kaempferol and arctigenin) demonstrating NFAT 
and calcineurin inhibition [479], which could be promis-
ing candidates for further investigation.

Another underlying factor driving AD pathology may 
be meningeal lymphatic vessel dysfunction, which thus 
might be therapeutically targeted [480]. In peripheral tis-
sues, the lymphatic system drains wastes from the spaces 
between cells, but no such system has been found within 
the CNS. However, waste fluids have been found to drain 
into spaces surrounding the blood vessels, a paravascu-
lar pathway or “glymphatic” system, so-called because 
of dependence on glial cells and function similar to the 
peripheral lymphatic system [481]. Since Aβ is trans-
ported along this route, its impairment may contribute 
to accumulation of amyloid [482], tau and lead to neu-
rodegeneration [483]. Plants with therapeutic bioactivity 
in stimulating lymphatic drainage, such as Aesculus hip-
pocastanum [484], could thus be explored for a possible 
similar role in improving glymphatic function.

The study excluded algae, in view of taxonomic place-
ments outside the plant kingdom (Plantae), but there is a 
new consensus that red and green algae should be placed 
within Plantae [485]. Promising algal neuroprotective 
activities of relevance to AD have been reported. For 
instance in pre-clinical models, fucoxanthin (from the 
alga Sargussum horneri) inhibited Aβ assembly, reversed 
memory impairment and enhanced bdnf expression 
[486]. Future studies could investigate the potential of 
other algal species, which are underexplored [487].

The focus of the paper was the therapeutic potential of 
plants for the causal pathologies of AD, but there is also 
scope to explore a role for plants in relief of AD-related 
symptoms in addition to memory and cognitive improve-
ment. For instance, subjects with AD show a higher prev-
alence of sarcopenia (degenerative loss of skeletal muscle 

mass and strength) [488]. The plants Withania somnifera 
and Silybum marianum rescued myotubes of sarcopenic 
subjects, indicating the potential of such plants to reverse 
the muscle functional decline in sarcopenia [489].

Some of the causal hypotheses are founded on evidence 
of the causal agent appearing early or earlier than other 
proposed causalities. An early chronology in the appear-
ance of a pathology in pre-symptomatic individuals in 
itself does not prove its causality in the disease. There 
is a need to probe this further, to establish if AD clini-
cal symptoms can convincingly be attributed to a specific 
causal agent. There is a need also for further clarity of the 
relationships between the various proposed causal fac-
tors: is it a linear and hierarchical one, with upstream and 
downstream effects, or is it a syndromic disease driven by 
multiple initial causes? The answers to these question are 
still needed, to inform more effective targeting of drugs 
to the key causal agents.

Initiatives to maintain and promote the vanishing 
ethnomedical knowledge are needed, which may pro-
vide valuable information of yet further novel plant spe-
cies of therapeutic relevance. Gaps need to be filled in 
TK (such as effective dosage) that is fragmentary in the 
ethnological literature for species with important thera-
peutic potential. There is a need to document species 
that are vulnerable or at risk of extinction, and if possi-
ble, to reduce the risks. For instance, the survey of plants 
within the Himalayan BDH recommended prohibition of 
unmanaged harvesting of medicinally important threat-
ened plants from the wild, encouraging instead their cul-
tivation [441]. There are alternative modes of cultivation, 
such as micropropagation, which enable rapid regenera-
tion of plantlets [490]. Another alternative is hydroponic 
technology, in which nutrients are supplied to the plant 
in irrigation water [491]. Several medicinal plant species 
grown with hydroponics have produced higher biomass 
in a much shorter time period, with a higher concentra-
tion of bioactive secondary metabolites, compared with 
field-grown plants [492]. There are challenges to such 
cultivation, such as unavailability of seeds, equipment 
costs, and difficulties of domesticating plants from the 
wild [493]. There can be a need too for crop management 
skills to monitor and modify nutrient solutions [494]. 
However, some of these obstacles are being overcome. 
For instance, simplified hydroponics, focused on low pro-
duction costs, have produced promising results in rural 
communities throughout South America [495, 496].

Finally, this study was not exhaustive. Whilst around 
46% of the angiosperm families are represented in this 
data, the number of species (1339) documented with 
therapeutic bioactivities is still quite small in relation to 
the estimated ≥ 300,000 species just within the angio-
sperms alone. Since many of these species still remain to 
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be surveyed for their ND therapeutic potential, it is likely 
that the plant kingdom has an even greater repository of 
potential yet to be tapped. There is thus all the more need 
for TK and habitats to be preserved so that this resource 
is not lost.

3  Conclusions
Our first aim was to search for plant species with 
reported therapeutic effects of AD relevance. Our find-
ings suggest that the documented plants provide a large 
resource of AD therapeutic potential. The toolkit meth-
odology was found useful for providing a wide reach in 
the search of this potential. The bioactivity reports of 
AD relevance were mainly pre-clinical. However, clinical 
studies were also found, conferring anti-amyloid effects, 
autophagy induction, increased mitochondrial biogenesis 
and improved energy metabolism, anti-hypertensive and 
anti-hyperlipidemic effects, improved endothelial func-
tion, reduced iron overload, reduced metal toxicities, 
oestrogenic activity, anti-microbial effects for pathogens 
implicated in AD, and gut microbiome modulation to a 
more favourable microbiota profile. These findings dem-
onstrate that the capacity of plants to target AD patholo-
gies can be translated across to humans. There is much 
scope for further exploration of the pre-clinical studies 
that mostly remain to be tested for clinical efficacy. Par-
ticularly promising are plant multiple molecular mecha-
nisms targeted to a pathology. For instance, the plants 
can reduce Aβ via various mechanisms including BACE1 
downregulation, upregulation of amyloid-degrading pro-
tease, blocking formation of toxic Aβ oligomers, reducing 
expression of amyloid precursor protein, and remodelling 
Aβ into non-toxic structures. There are prospects that at 
least some of the 46 plant species demonstrating these 
effects may possess phytochemicals that are BBB perme-
able, and reach their target pathology.

For our second aim, to assess how this ethnomedi-
cal data may be at risk, we found that 58% of the mined 
ethnomedical surveys reside within biodiversity hot-
spots and are thus under threat, with loss of traditional 
knowledge the threat most commonly reported. There 
is therefore an urgent need to preserve the knowledge 
of ethnomedical use, as well as the habitats on which 
this knowledge depends. Encouraging signs such as the 
reversal of such knowledge loss in Central Asian coun-
tries such as Kyrgystan indicate that this can indeed be 
possible.

Our third aim was to find AD causal hypotheses for 
which the mined plants may have therapeutic relevance. 
The outcome was that the documented plants in total 
demonstrated bioactivities targeted to 15 proposed causal 
pathologies. In particular, the species with an ethnologi-
cal report of memory improvement as a subset, together 

demonstrated therapeutic activity for all these AD causal 
bases, from which it is concluded that this ethnologi-
cal data is a very valuable resource of AD therapeutic 
relevance. The fact that there are a large number of AD 
causal hypotheses is an indication that multiple patholo-
gies may be involved in a complex interplay, and that a 
primary causal agent (if it exists) remains to be unequivo-
cally discerned. A number of the individual plant species 
also demonstrated pleiotropic therapeutic bioactivities 
for a range of pathologies implicated in the various causal 
hypotheses. These findings suggest that such plants have 
promise as drug leads to target these multiple hallmarks 
of pathology. By further probing of their molecular 
effects, the plants may also provide insight into delineat-
ing more clearly the causal basis or bases of AD, which is 
still crucially needed to inform therapeutic strategies.

4  Materials and methods
4.1  Toolkit methodology and data extraction
Three literature searches were performed using the data-
bases PubMed and Google Scholar, conducted from 
October 2017 to March 2022, with no time limits on the 
years of publication. Additional sources of data included 
reference lists of included articles. The first search ena-
bled an assessment of ND pathologies and symptoms, in 
order to construct therapeutic categories recognized by 
ethnomedical practitioners (Additional file  1: Table  S1). 
The search terms of numerous neurodegenerative dis-
eases were applied in relation to terms such as pathology 
and symptoms (e.g., Alzheimer’s disease AND pathol-
ogy). A second search consisted of finding ethnomedical 
surveys containing species with reported ethnological 
uses which could also be of ND therapeutic potential. 
The search terms were: ethnomedical survey, ethnobot-
anical survey, medicinal plants, medical herb, ethnobot-
any OR indigenous tribe. These search term alternatives 
were then also combined with country-specific searches 
to find further surveys not revealed in the initial searches. 
The therapeutic categories were then applied as a toolkit 
to find plant species with reported therapeutic effects of 
ND relevance, mined from 115 ethnomedical surveys. A 
further 42 ethnomedical surveys were mined for thera-
peutic benefit of a single symptom only (e.g., memory 
improvement). Thus, 157 surveys were studied in total 
(Additional file  2: Table  S2). In addition, two ethno-
medical databases were accessed: the Prelude database 
of medicinal plants in Sub-Saharan Africa [497] (http:// 
www. metaf ro. be/ prelu de) and the Native American Eth-
nobotany database (http:// naeb. brit. org). The surveys 
were also analysed to determine how the data may be at 
risk, and the specific threats of concern to the authors 
were documented. A third search was to find various 
hypothesized causal bases for Alzheimer’s disease, and 

http://www.metafro.be/prelude
http://www.metafro.be/prelude
http://naeb.brit.org
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for bioactivities of the above documented plants which 
could be of therapeutic relevance to these causal bases. 
For method details with reference to inclusion/exclusion 
criteria and taxonomy, see S File 1.

4.2  Mapping of survey locations
The RStudio package was used to map the locations 
of the studies, using the rgdal, rgeos, dplyr and ggplot2 
packages. Biodiversity hotspots spatial data was obtained 
from Hoffman and colleagues [498]. Locations of the 
studies were determined from maps included in the 
surveys, and where necessary precise coordinates were 
obtained using LatLong (www. latlo ng. net).
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