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Berberine (BBR) is a plant derived quaternary benzylisoquinoline alkaloid, which

has beenwidely used in traditional medicines for a long term. It possesses broad

pharmacological effects and is widely applied in clinical. In recent years, the

anti-tumor effects of BBR have attracted more and more attention of the

researchers. The canonical right-handed double-stranded helical

deoxyribonucleic acid (B-DNA) and its polymorphs occur under various

environmental conditions and are involved in a plethora of genetic

instability-related diseases especially tumor. BBR showed differential binding

effects towards various polymorphic DNA structures. But its poor lipophilicity

and fast metabolism limited its clinical utility. Structural modification of BBR is

an effective approach to improve its DNA binding activity and bioavailability in

vivo. A large number of studies dedicated to improving the binding affinities of

BBR towards different DNA structures have been carried out and achieved

tremendous advancements. In this article, the main achievements of BBR

derivatives in polymorphic DNA structures binding researches in recent

20 years were reviewed. The structural modification strategy of BBR, the

DNA binding effects of its derivatives, and the structure activity relationship

(SAR) analysis have also been discussed.
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Introduction

Berberine (BBR, Figure 1) is the most important quaternary benzylisoquinoline

alkaloid widely distributed in several botanical families, such as Ranunculaceae

(Coptis chinensis), Rutaceae (Phellodendron amurense), and berberiaceae (Berberis

thunbergii), and so on (Imanshahidi and Hosseinzadeh, 2008; Bhadra and Kumar,

2011). It has been used in Traditional Chinese Medical systems in China and

Ayurvedic system in India for a very long time (Gaba et al., 2021; Xu et al., 2021).

Modern pharmacological studies have proved that BBR has abundant biological activities

including anti-inflammatory (Bai et al., 2020; Ma et al., 2020; Fu et al., 2021), anti-oxidant
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(Eissa et al., 2018; Seth et al., 2021), anti-bacterial (Wang et al.,

2009; Avci et al., 2018; Tong et al., 2021), viricide (Hayashi et al.,

2007; Cecil et al., 2011; Hung et al., 2019), cardiovascular

protection (Salehi and Filtz, 2011; Li et al., 2014; Wang L.

et al., 2020), hypolipidemic (Hu et al., 2012; Zhou et al.,

2014), anti-diabetic (Lee et al., 2006; Ye et al., 2016; Di et al.,

2021), anti-tumor (Liu et al., 2017; Zhang et al., 2020; Ren et al.,

2021), anti-ulcer (Li et al., 2020; Xiong et al., 2021), anti-

neurodegeneration (Liang et al., 2017; Hussien et al., 2018;

Živančević et al., 2022), and anti-rheumatoid arthritis (Huang

et al., 2021; Li et al., 2022) (Figure 1).

In recent years, the anti-tumor effects of BBR have attracted

more and more attention of the researchers. BBR can constrain

the growth of cancer cells through diverse mechanisms (Guamán

Ortiz et al., 2014; Liu et al., 2017; Zhang et al., 2020; Ren et al.,

2021), such as cell cycle regulation, autophagy, and inducing

apoptosis, repressing cell invasion and metastasis, regulating

tumor micro-environment, exerting anti-inflammatory and-

oxidant effects, immunomodulation, interacting with micro

ribonucleic acids (microRNAs) and suppressing telomerase

activity, etc (Wang Y. et al., 2020) (Figure 2).

Deoxyribonucleic acid (DNA) is a right-handed double-

stranded helical macro-molecule made up of two

polydeoxyribonucleotide chains (Watson and Crick, 1953).

DNA carries genetic information, either mutation or unusual

rearrangement of DNA can affect gene expression and other

biological processes (Khan et al., 2012; Sjakste et al., 2020). The

canonical right-handed DNA (B-DNA) has the capacity to

transform into its polymorphs that are often co-localized with

mutation sites which are implicated in genetic instability-related

diseases such as tumor. More than a dozen of polymorphic DNA

structures has been reported, including A-DNA, Z-DNA,

HL-DNA, protonated DNA, triplex DNA, and quadruplex

DNA, etc (del Mundo et al., 2019; Maiti and Kumar, 2007a).

The special planar tetracyclic system of BBR makes it a good

candidate for binding with different DNA structures. It exhibited

strong affinity to B-DNA with AT base pair preference by partial

intercalation in which the planar isoquinoline moiety

FIGURE 1
Pharmacological activities of BBR.

FIGURE 2
The anti-tumor mechanisms of BBR.
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intercalated between the base pairs (Mazzini et al., 2003; Chen

et al., 2004). It can also bind to the left-handed HL-DNA. The

interaction of BBR with HL-DNA resulted in opposite sign swift

and magnitude compared to B-DNA (Kumar et al., 2003). BBR

could be used as a sensitive probe to detect the alteration of

structural handedness due to the change in DNA on protonation.

In addition, BBR showed stronger binding affinity towards

triplex T×AT DNA compared with AT duplex (Ren and

Chaires, 1999). This process stabilized the Hoogsteen strand

of triplex structures without affecting the Watson-Crick

strands, that leads to its use in triplex DNA-targeted therapies

(Das et al., 2003). BBR showed inhibitory activity on telomerase

elongation and bond to human parallel G-quadruplex DNA

(G4 DNA) through stacking interaction on the terminal

G-tetrad of quadruplex (Naasani et al., 1999; Parkinson et al.,

2002). In an examination to detect the interactions of BBR with

various G4 DNA structures and duplex DNA, it was found that

BBR showed selectivity towards G4 DNA structures in contrast

to duplex DNA, which verified the dominant role of aromatic

moiety in BBR for G4 DNA binding. Moreover, BBR is selective

in inducing intermolecular G4 DNA compared to intramolecular

ones (Franceschin et al., 2006). The differential binding affinity of

BBR with various polymorphic DNA structures may bring about

a new avenue for future rational design of BBR derivatives with

efficient and selective anti-tumor activities (Maiti and Kumar,

2007b).

Protoberberines (PBs) are a group of alkaloids with the same

5,6-dihydrodibenzo[a,g] quinolizinium (C17H14N
+) skeleton

(Grycová et al., 2007). BBR is the most widely distributed PB.

Besides BBR, palmatine (PMT), jatrorrhizine (JAT), coptisine

(COP), and berberrubine (BBRB) are other representatives of

PBs (Figure 3). They share a common skeleton, only with

substituents on position 2, 3, 9, 10 different. So, they show

close similarities in their biological properties (Basu and

Kumar, 2018). A study aiming at clarifying the SAR of

different PBs with ds DNA of different sequences revealed

that PMT, and JAT, COP possessed better binding affinities

towards the three test ds DNAs than BBR, and BBRB by

electrospray ionization mass (ESI-MS) spectrometric method.

While, BBR showed higher binding affinity than PMT by

fluorescence spectrometric method. Combining the results of

the two methods indicated that the slight structural differences of

these five alkaloids had no significant impact on their activities

towards ds DNA (Chen et al., 2005a). Like BBR, PMT also

showed AT base pair preference by mechanism of

intercalation (Bhadra et al., 2007). In addition to binding to

ds DNAs, PMT also binds to G4 DNA and RNA. The affinities of

PMT towards G4 DNA and different RNAs are comparable to

BBR, but a little weaker (Giri et al., 2006; Islam et al., 2008; Xiong

et al., 2015a; Kumar and Barthwal, 2018). Compared with PBs,

benzo[c]phenanthridines also belong to isoquinoline alkaloids.

They possess the similar quaternary nitrogen, polycyclic and

planar structure with PBs and showed obvious binding affinities

towards natural and synthetic DNAs. Sanguinarine (SG),

chelerythrine (CHE), and chelidonine (CHEN) are the most

common members of the benzo[c]phenanthridine family

(Figure 3). SG and CHE exhibited DNA damage and

cytotoxicity in both primary mouse spleen cells and mouse

lymphocytic leukemic cells (L1210 cells) in a dose-dependent

manner. While CHEN did not show a significant damage DNA

or cytotoxicity in both cell types, but it can also arrest the growth

of L1210 cells (Kaminskyy et al., 2008). The results of a ds DNA

binding experiment indicated that SG can intercalate in ds DNA

molecule with GC base pair preference. While CHEN interacts

with it weakly (Bashmakova et al., 2008). The fact that the

planarity of CHEN is not as good as SG may explain their

difference in DNA binding mode, and DNA damage and

cytotoxicity in mouse cells. Another ct DNA binding assay

manifested that the interactions of CHE and SG with ct DNA

are mainly via intercalation. SG intercalates into the DNA base

pair with its C and D rings. Because the existence of twomethoxyl

moieties on its D ring destroys its planarity, CHE intercalates to

FIGURE 3
The structures of representatives of PBs, and benzo[c] phenanthridines.
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ct DNA with its A and B rings. The binding affinity of CHE to ct

DNA is 3-fold weaker than that of SG (Li et al., 2012).

Additionally, SG also exhibited excellent affinities to

intercalate into protonated DNA and bind to single stranded

RNA (Giri and Kumar, 2007; Sen et al., 2020). The structures of

various PBs, and benzo[c]phenanthridines with DNA binding

effects can provide direction for the development of BBR

derivatives.

Although, BBR possesses binding effects towards

polymorphic DNA structures, the affinity is modest and its

bioavailability is undesirable due to its poor lipophilicity and

fast metabolism, which hinders its application in clinical (Liu

et al., 2016). Structural modifications of natural products are

always effective means to improve activities and reduce toxicities.

BBR, as a very promising pharmacophore (Singh et al., 2021), has

been optimized in various ways to improve its binding effects

with polymorphic DNA structures.

The modifications of BBR have been reviewed by Singh and

Mahajan (2012), Jin et al. (2016), Zou et al. (2017), and Gaba

et al. (2021). Singh’s and Jin’s reviews compiled the patents

related with BBR derivatives before 2012, and 2016, and mainly

discussed their pharmacological applications (Singh and

Mahajan, 2012; Jin et al., 2016). Zou’s review focused on the

anti-inflammatory and anti-tumor advances of BBR derivatives

in digestive system (Zou et al., 2017). Gaba’s review covered the

development of BBR derivatives from 2016 to 2020,

emphasizing on their chemical diversities, biological

activities, structure activity relationships (SARs), molecular

modelling and mechanistic studies (Gaba et al., 2021). Each

review described the advances of BBR derivatives from different

angles. In this review, the structural modifications of BBR, the

double-stranded DNA (ds DNA) and G4 DNA binding effects

of its derivatives, and the corresponding SAR will be

summarized, which will make a good supplement to

previous reviews. And it will be of great help on anti-tumor

drug design and development of BBR as the lead compound

towards polymorphic DNA structures bindings.

Materials and methods

The information of BBR, polymorphic DNAs,

modifications of BBR and the ds DNA and G4 DNA binding

effects of BBR derivatives was collected by systematic survey of

literature. All the reference materials were retrieved from

scientific databases, such as Pubmed, Elsevier, Web of

Science, Springer, Willey, and CNKI. The keywords used as

search terms included “berberine”, “berberine’s pharmaceutical

effects”, or “berberine’s activities”, “DNA”, “polymorphic

DNAs”, “modification of berberine”, or “berberine

derivatives”, “berberine derivatives’ DNA binding effects” in

all the fields. The results were then cross-referenced to generate

maximum number of articles available.

Progress in the modifications of BBR for
polymorphic DNA structures bindings

The bindings of ds DNA
DNA variation is associated with many diseases, such as

tumor, virus infection, and so on (Blackledge and Melander,

2013). There is an increasing interest in the development of

DNA-binding agents that can be applied to explore the structure

and function of DNA, to elucidate the action mechanism of anti-

tumor and anti-virus drugs and to develop new

chemotherapeutic agents (Chen et al., 2005b; Chaires, 2015).

BBR is an attractive lead compound for development of potential

DNA-binding drugs in view of its ubiquitous pharmacological

effects and unique structure. In 2005, Chen and Jiang et al.

reported four 9-monomodified BBR derivatives (1a, and 2,

Figure 4) for DNA-binding evaluation (Pang et al., 2005). The

functional groups introduced into BBR are frequently used in the

design of DNA-binders. The results of biophysical and

biochemical experiments indicated that the four BBR

derivatives, especially 1a with a primary amino terminal,

strongly bond with calf thymus DNA (ct DNA), presumably

via an intercalation mechanism.

Based on the fact that position 9 of BBR decorated with a

primary amino on the endpoint can enhance the DNA-binding

activity, as well as the high DNA-binding affinities displayed by

polyamines, three new PB derivatives bearing two to six primary

amino groups at positions 3 and 9 (3, Figure 4) were synthesized

and evaluated for their binding affinities towards ct DNA by

Chen’s group in 2007 (Pang et al., 2007). The results indicated

that 3 possessed quite high DNA-binding affinities attributed to

the multivalent interactions between the polyamino groups and

DNA. While, 3c bearing six amino groups was only slightly more

effective in DNA binding than 3b bearing four amino groups.

These PB derivatives are exploitable as effective DNA-binding

agents.

From 2005 to 2006, Chen synthesized a series of alkyl diether

linked BBR homodimers (4, Figure 4), BBR-JAT heterodimers (5,

Figure 4) and JAT homodimers (6, Figure 4) (Chen et al., 2005b;

Long et al., 2006; Qin et al., 2006). Both BBR and JAT are

belonging to PB alkaloids, which exhibit extensive

pharmacological activities. The interactions of 4 with ct DNA

and two 10-mermbered ds DNA [d(AAGAATTCTT)2,

d(AAGCATGCTT)2] and one 12-mermbered ds DNA

[d(TAAGAATTCTTA)2] indicated that they possessed higher

binding affinities towards the four DNAs than their monomeric

BBR. To 10- and 12-mermbered ds DNAs, 4 showed a prominent

SAR related to the length of the alkyl linkers. The dimer linked by

a propyl chain exhibited the highest affinity. But no obvious SAR

was observed with ct DNA, because ct DNA is a mixture of

different ds DNA chains. In addition, 4 showed higher binding

affinities with 12-mermbered ds DNA than with 10-mermbered

ds DNA, because they can occupy a greater number of base pairs

in 12-mermbered ds DNA. The DNA-binding mode of BBR and
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4 was proposed to be intercalating. The quaternary ammonium

cation and planar structure of 4 played key roles in the DNA-

binding process (Chen et al., 2005b; Qin et al., 2006). Based on

the results of 4, compounds 5 and 6were synthesized (Long et al.,

2006). 5 and 6 showed much higher DNA-binding affinities than

their monomeric components similar with 4. For 6, the best

linker was ethyl chain, which is different from 4. Whereas 5

possessed comparable binding abilities, which suggested that

they averaged the effects of BBR homodimers and JAT

homodimers. It meant that the binding affinities of PB dimers

can be modulated by varying the length of the linkers. For the PB

dimers with the same linkers, BBR-containing dimers showed

higher binding affinities than JAT homodimers. Because PMT,

the parent compound of JAT, has comparable DNA-binding

affinity with BBR (Qin et al., 2007a), it is supposed that attaching

positions have significant impacts on the DNA-binding affinities

of PB dimers.

Topoisomerases are DNA processing enzymes that relieve

supercoiling (torsional strain) in DNA (Castelli et al., 2012).

There are two types of topoisomerases, Top I and Top II. Top I

catalyzes the conversion of the DNA topology by introducing

single-strand breaks into the DNAmolecule during basic cellular

processes such as DNA replication, transcription, recombination,

repair and chromatin remodeling (Parchment and Pessina, 1998;

Giovanni et al., 2008). Top II is able to cleave ds DNA and

support more complex interconversions of the DNA topology by

an ATP- dependent strand passage mode in transcription,

replication, and segregation of chromosomes processes during

cell division (Sutormin et al., 2021). Due to their crucial roles in

replication and transcription, Top I and Top II are attractive

clinical molecular targets for cancer therapy by camptothecin

series and doxorubicin series of antineoplastics agents,

respectively. In order to reveal the relationship between drug-

DNA interaction and Top I poisoning, Jiang et al. further

evaluated the Top I inhibitory activities of natural PBs,

monomodified BBRs (2), BBR homodimers (4), JAT

homodimers (6), and BBR-JAT heterodimers 5) (Qin et al.,

2007b). The results revealed that PBs and 2 showed only weak

activities, while the PB dimers showed stronger Top I inhibition

potency than their natural congeners or monomodified BBRs,

which was consistent with the SAR result discovered in previous

DNA-binding studies. The mechanism of Top I inhibition by

dimeric PBs was concentration-dependent. At low

concentration, they inhibit Top I by stablization of the

enzyme-mediated DNA “cleavable complex” as camptothecin

does. At high concentration, obvious inhibition of the relaxation

FIGURE 4
The structures of compounds 1-6.
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activity of Top I is observed, probably due to their high binding

affinities towards plasmid DNA. The findings of Chen and Jiang

et al. also suggests that the synthesis of dimeric alkaloid analogues

is a useful tool in rational drug design for the cooperative

interactions of the two subunits targets.

In 2011, Kumar’s group synthesized five 9-O-amino alkyl

BBR derivatives (1, Figure 4) and determined their interactions

with ct DNA (Islam et al., 2011a). All the derivatives dramatically

enhanced the fluorescence emission and remarkably enhanced

the DNA binding affinities compared with BBR. The binding

affinity was directly dependent on the alkyl chain length. 1b and

1c with long alkyl chains exhibited remarkable changes in the

spectral and binding properties.

Compared with the relatively simple ds DNA structure, RNA

molecules have diverse and complex structures. The plentiful

roles of RNA playing in the progression of many diseases,

particularly cancers, have led to a growing interest in

exploiting RNA as a cellular target for therapeutic drugs

(Tucker and Breaker, 2005). Studies on the interaction of

small molecules with polyadenylic acid [poly (A)] have been

reported in recent years (Hyun et al., 2006). In view of these,

Kumar evaluated the interactions of 1 with poly(A) (Islam et al.,

2011b). The results showed that all the compounds including

BBR induced cooperatively self-structure formation in poly(A).

The length of the alkyl chain had a significant influence on the

formation of self-structure. The reasons may be that the

flexibility of the alkyl chain confers a better geometry

probability for the 9-terminal amino group interacting with

poly(A) base pairs and phosphates. It is pertinent to mention

that in the previous study the DNA binding affinities of these

analogues have been found to be enhanced by about thirty times.

This study further confirmed the importance of 9-O-substitution

in BBR and the role of flexible and long alkyl chain for stronger

nucleic acid binding.

Then Kumar synthesized another three 9-O-N-aryl/aryl-

alkyl amino carbonyl methyl BBR derivatives (7, Figure 5)

and evaluated their DNA binding properties (Basu et al.,

2012). The results revealed that 7 retained the DNA binding

mode of intercalation and showed remarkable enhanced binding

affinities and thermal stabilization of DNA. Although the binding

affinities of the derivatives were dependent on the lengths of the

side chains, further chain elongation gradually reduced the

binding affinity. Their thermal stabilization effects of DNA

may be ascribed to the side chains, for their participation in

hydrogen bonds formed with either the base pairs or the

phosphates of DNA. All the derivatives bounded to DNA

non-cooperatively through multiple weak non-covalent

interactions, different form the parent alkaloid BBR.

While studying 9-substituted BBR derivatives, Kumar also

synthesized a series of 13-substituted BBR derivatives. Six BBR

derivatives with alkyl chains of various length and a terminal

phenyl group at position 13 (8, Figure 6) were synthesized and

investigated for their binding effects with ct DNA and nucleic

acid triplex (Bhowmik et al., 2012; 2014a). Nucleic acid triple

helices are oligo-nucleotides containing natural units, which can

tightly bind to the major grooves of complementary DNA and

RNA duplexes and were used to treat a wide range of diseases

including tumor (Jain et al., 2008). Because they are not stable

under physiological conditions, it is necessary to take advantage

of small molecules to bind with them so as to improve their

stability (Escudé et al., 2001). In the ct DNA binding study, all the

derivatives bond to ct DNA non-cooperatively. The binding

affinities increased until the chain length up to three -CH2-

unites. The DNA stabilization effects were achieved by

intercalating. The complexation effects were dominated by

nonpolyelectrolytic forces, while polyelectrolytic forces

contributed only a quarter to the total free energy (Bhowmik

et al., 2012). In the nucleic acid triplex binding study, the similar

results were found as ct DNA binding study. 8 bond non-

cooperatively to the RNA and DNA triplex by intercalation.

The affinity enhanced up along with the linker length of the

substituent increasing, until the length reached to four -CH2-

unites. They can change the conformations of the triplexes and

enhance their stability. Moreover, energetics of the interaction

revealed that the binding was more entropy driven, as the alkyl

chain length increased (Bhowmik et al., 2014a).

In 2014, Kumar synthesized six 13-diphenylalkyl BBR

derivatives (9, Figure 6) and evaluated their DNA binding

affinities (Bhowmik et al., 2014b). The biophysical evaluation

results demonstrated that all the compounds showed improved

binding abilities towards one natural and two artificial ds DNAs.

The binding affinities increased along with the lengthening of the

linker alkyl groups, until the length reached three -CH2- unites.

In addition, 9 displayed great preference to AT abundant

sequences compared with GC abundant sequences.

These results verified that substitution of position 13 is also a

good avenue to enhancing the DNA binding ability of BBR.

The bindings of G4 DNA
G4 DNA is a type of quadruple helix structure formed by a

continuous guanine-rich DNA sequence (Luedtke, 2009). It is

involved in several physiological processes, such as regulation of

DNA replication, transcription of disease-related genes (c-MYC,

FIGURE 5
The structures of compounds 7.
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BCL-2, KRAS, c-KIT, etc), telomere maintenance, and epigenetic

regulation. It has been considered as a novel and promising target

for anti-tumor drug design (Teng et al., 2021).

From 2007 to 2015, Huang’s group reported a series of 9-

substituted, and 8, 9-cyclized BBR derivatives (10–15, Figure 7),

and investigated the interactions between these derivatives and

G4 DNA (Zhang et al., 2007; Ma et al., 2008; Ma et al., 2009; Ma

et al., 2011; Ma and Huang, 2012; Xiong et al., 2015b).

Compounds 10 are 9-O-substituted BBR derivatives with

different amino alkyl side chains (Zhang et al., 2007). They

exhibited stronger binding affinities with G4 DNA and higher

inhibitory activities for telomerase than BBR. The activities of

compounds with three -CH2- unites side chains are stronger than

those with two -CH2- unites side chains. The substitutions of

position 9 with amino terminals are beneficial to the activities.

10a with a terminal piperidine group displayed the best activity.

Compared with 10, compounds 11 contain aza-aromatic

terminal groups in their structures (Ma et al., 2009). 11

owning positive charged aza-aromatic terminal groups had

high binding affinities and superior selectivity in biophysical

evaluation, polymerase chain reaction (PCR) termination

experiment, and molecular docking studies because of the

possible multiple interactions of them with G-quartet,

grooves and loops of G4 DNA. When the linker length is

more than three -CH2- unites, it has subtle influence on

activity. From the results of 10 and 11, it can be deduced

that the length of the linker and the alkalinity of the terminal

group on position 9 contribute to the interactions between BBR

derivatives and G4 DNA.

According to the structures of 10 and 11, compounds 12with

three kinds of basic amino acid residues were designed and

synthesized (Ma and Huang, 2012). They showed better

stabilization potency and selectivity towards G4 DNA than

BBR. And they can effectively prevent DNA amplification.

From the SAR analysis, it can be concluded that the activity

will be enhanced with the increase of the amino group number of

the side chain, the alkalinity of the terminal group and the length

of the linker, which is consistent with the results of 10 and 11.

FIGURE 6
The structures of compounds 8 and 9.

FIGURE 7
The structures of compounds 10–15.
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Compound 13 was found by virtual screening campaign on

Huang’s in-house library of 9-substituted BBR derivatives with

long side chains (Xiong et al., 2015b). In vitro and in vivo studies

indicated that it can bind to G4 DNA and cause the dissociation

of shelterin proteins, which lead to cell cycle arrest, DNA

damage, and cell senescence in cancer cells.

When developing 9-O-substituted BBR derivatives, Huang

also designed and synthesized a series of 9-N-substituted BBR

derivatives (14). The terminal groups on position 9 of 14 are

mainly nitrogen-containing groups, additionally, hydroxyl and

phenyl groups (Ma et al., 2008). The interactions of 14 with

G4 DNA in the promoter region of the c-MYC indicated that 14

could selectively stabilize the parallel G-quadruplet structure

formation in c-MYC DNA, thus lead to down-regulation of

transcription of c-MYC in HL60 cell line. 14a with a 1,6-

diaminohexyl side chain on position 9 showed the best

inhibitory activity and selectivity. Although the activities of 14

were not higher than those of the previously synthesized

compounds, they increased the diversity of BBR derivatives.

Because expanding the size of aromatic planar surface of the

target compound might enhance its binding affinity and

selectivity towards G4 DNA, a series of quinoline-benzo-[5,6]-

dihydroisoquindolium compounds (15) were designed and

synthesized by cyclization of position 8 and 9-amino groups

in 14 (Ma et al., 2011). Biophysical and biochemical evaluation

demonstrated that the introduce of pyridine ring into BBR

scaffold improved the binding ability and selectivity towards

c-MYC G4 DNA. Furthermore, 15a with the same side chain as

14a showed excellent inhibitory effect on the transcription of

c-MYC in HL60 cell line but slightly affect normal ECV-304 cell,

which was consistent with the behavior of an effective G4 DNA

ligand targeting c-MYC oncogene. The results also indicated that

expanding of central aromatic moiety of BBR was another

practicable way to improve the stabilizing potency and

selectivity of BBR derivatives towards G4 DNA over ds DNA.

Although monomeric G4 DNA is common, there are still

some multimeric G4 DNAs, which are also associated with some

cancers (Frasson et al., 2022). Subsequently, improved dimeric or

multimeric G4 DNA binders have been developed to find

potential anti-tumor drugs. From 2016 to 2017, Zhou and

Chen et al. reported three polyether-tethered dimeric BBR

derivatives (16, Figure 8) (Zhou et al., 2016; Li et al., 2017).

After the binding affinity, selectivity and thermal stabilization

detections towards dimeric and monomeric G4 DNA, 16a with

the shortest polyether linker showed the best activity towards

mixed-type dimeric G4 DNA over anti-parallel dimeric G4 DNA

and three monomeric G4 DNA via end stacking and external

binding modes. 16bwithmodest polyether linker showed highest

binding affinity to anti-parallel dimeric G4 DNA, but it did not

show discrimination towards mixed-type and anti-parallel

dimeric G4 DNA. The polyether linkers in the compounds

played important roles in regulating the binding affinity and

selectivity towards mixed-type dimeric G4 DNA. Bisquinolinium

scaffold has been proved to be a G4 DNA binder in Zhou’s

FIGURE 8
The structures of compounds 16 and 17.
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previous study (Liao et al., 2018). In 2020, Zhou’s group

synthesized another two BBR-bisquinolinium conjugates (17,

Figure 8) (Liao et al., 2020). The results of the DNA binding

affinity evaluation indicated that compounds 17 were selective,

sensitive and fluorescence responsible to distinguish human

telomeric dimeric G4 DNA from other types of G4 DNA and

ds DNA by binding to two adjacent G4 DNA units. They also

possessed strong telomerase inhibitory activities and toxicity

towards tumor cell lines. Microscopy experiments

demonstrated that 17b entered the nucleoli and targeted

G4 DNA in organelles. These results suggest that the

combination of an efficient optical tag and a well-known

G4 DNA binder is an effective approach to identify new

imaging agents for dimeric G4 DNA. From Zhou’s research, it

can be concluded that highly selective probes for dimeric and/or

multimeric G4 DNA may help to understand the structures and

functions of G4 DNA and provide useful guidance for the

rational design of G4 DNA-targeting anti-tumor drugs.

Telomerase is an RNA-dependent DNA polymerase, which

can extend the telomeres of chromosomes and counteract

progressive telomeres shortening during cellular replication.

High telomerase activity is detected in about 90% of human

tumors. An important characteristic of tumor cells is

uncontrollable proliferation, which is mainly achieved by

telomerase-mediated telomere maintenance in the majority of

advanced tumors (Buseman et al., 2012). Telomerase inhibitors

are able to disrupt the replicative capacity of telomerase-positive

cancer cells and could be used as selective anti-tumor therapeutic

agents. G4 DNA stabilizing is a good way to inhibit telomerase

activity. This sequestering mode can interfere the access of the

telomerase to its substrate and, therefore, the elongation of the

telomeres (Calvo and Wasserman, 2016). Platinum-based

complexes are kinds of famous anti-tumor drugs, which could

also be used as excellent G4 DNA stabilizers (Bai et al., 2017).

They can induce high degrees of G4 DNA stabilization and

inhibit telomerase activity (Wei et al., 2013).

In 2019, Qin et al. synthesized a BBR-Pt (II) complex (18,

Figure 9) and a JAT-Pt (II) complex (19, Figure 9) and

explored their inhibitory activities towards telomerase (Qin

et al., 2019). In vitro and in vivo cytotoxicity results suggested

that these two compounds showed good anti-proliferative

activities towards human bladder T-24 tumor cells, especially

19. They can induce cancer cell apoptosis via targeting

telomerase, along with inducing mitochondrial

dysfunction, damaging telomere DNA and arresting cell

cycle. These two complexes showed low systemic toxicities

and could be used as novel platinum-based anti-tumor drug

candidates.

Kumar’s group dedicated much efforts in the development of

DNA binding agents. In 2015, they conducted a telomeric

G4 DNA sequence binding experiment with two most potent

compounds (1c, Figure 4, 8a, Figure 6) in the previous DNA

binding experiment (Islam et al., 2011a; Bhowmik et al., 2012;

Bhowmik et al., 2015). 1c is a 9-substituted BBR derivative and 8a

is a 13-substituted BBR derivative. Both of them exhibited

stronger binding affinity than BBR. And the binding mode

was non-cooperative binding through stacking interaction. A

series of biophysical assays verified that the two compounds

FIGURE 9
The structures of compounds 18 and 19.

FIGURE 10
The structure of compound 20.
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could stabilize the structure of G4 DNA, and 1c showed better

activity than 8a. Compounds with DNA binding activities can

also be used for the development of G4 DNA binding agents.

In 2006, Franceschin in Neidle’s group synthesized 13-[3-(1-

piperidino) propyl] BBR hydrochloride (20, Figure 10), which

showed good selectivity for G4 DNA compared to ds DNA.

Molecular modelling studies indicated that the aromatic moiety

stacked on the terminal G-quartet of G4 DNA, and the 3-(1-

piperidino) propyl side chain can interact with one of the four

grooves of G4 DNA (Franceschin et al., 2006). The aromatic

planar moiety of BBR and the side chain on position 13 are

indispensable for binding to G4 DNA.

In 2006, Bremner’s group synthesized a new compound (21,

Figure 11) by conjugating BBR to a multi-drug resistance pump

inhibitor, INF55, for anti-microbial research (Ball et al., 2006). In

2007, Beck’s group took 21 as a candidate for G4 DNA binding

and determined the binding affinity of it towards G4 DNA and ds

DNA (Gornall et al., 2007). The results showed that the binding

affinity of 21 for G4 DNA is modest. However, its preference for

G4 DNA over ds DNA is obvious. In 2010, Beck assessed the

binding affinities of compounds 22 (Figure 11), reported by

Bremner (Bremner and Kelso, 2010), compounds 23 and 24

(Figure 11), reported by Samosorn’s group (Samosorn et al.,

2009) and the newly synthesized compound 25 (Figure 11) to

inter- and intra-molecular G4 DNA (Gornall et al., 2010).

Compounds 22 are meta and para isomers of 21 with

chlorine as the negative ion part. The results manifested that

all the compounds, except for 24, can stabilize the quadruplet

structure of G4 DNA and perform selectivity for G4 DNA over ds

DNA. The reason may be that the molecular structure of most

compounds are not planar, they are unlikely to bind to ds DNA

as classic minor groove binding or intercalating ligands. These

13-substituted derivatives may serve as a new class of G4 DNA-

selective ligands.

In 2021, Ihmels’s group successfully synthesized 9-

dimethylaminophenyl BBR and 12-dimethylaminophenyl BBR

(26 and 27, Figure 12) (Wickhorst and Ihmels, 2021). They bond

to G4DNAs with high affinities, both at neutral conditions and at

pH 5. While the binding constant towards ct DNA is lower at

pH 5 than under neutral conditions. An increase of emission

intensity upon association with G4 DNAs at pH 5 was also

observed. That is to say, only when the simultaneous detection of

G4 DNA and lower pH values are bothmet, compounds will light

up as fluorescent probes. This property may be applied for

selective fluorimetric detection of G4 DNA in cancer cells,

which often provide a medium with slightly lower pH than

healthy cells.

At the same time, Ihmels synthesized a series of 10-O-aryl-

substituted BBR derivatives (28, Figure 12) and studied the

DNA-binding properties of them (Wickhorst et al., 2021). The

derivatives showed moderate affinity towards G4 DNA and ct

DNA and exhibited fluorescence light-up effects upon

complexation to both DNA forms, with slightly higher

intensity to G4 DNA. It was also revealed that 28 bind to ds

DNA by intercalation and G4 DNA by terminal π stacking.

Although the derivation of position 10 on BBR is rare, it is a

method worth considering to develop new G4 DNA stabilizer.

SAR analysis
Taken together, the SAR of BBR derivatives towards ds DNA

and G4 DNA could be concluded (Figure 13). The unique

aromatic planar surface combined by the four rings of BBR

and its derivatives plays a vital role in their DNA binding effects,

because it can intercalate into the base pairs of different DNA

structures. Meanwhile, the quaternary ammonium nitrogen

atom is also very important. The reason may be that the

cation can form a strong ionic interaction with the target. The

structural modifications of BBR to improve its DNA binding

effects are mainly focused on positions 9, and 13. In general,

hydrophobic alkyl groups with hetero atom containing terminals

or aromatic groups or acyl groups introduced to these positions

are favorable to improve the lipophilicity of BBR, balance its lipid

FIGURE 11
The structures of compounds 21–25.
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FIGURE 12
The structures of compounds 26–28.

FIGURE 13
SAR of BBR derivatives towards ds DNA and G4 DNA.

TABLE 1 The main modification strategies of BBR towards polymorphic DNAs.

MainTargets Modification
position

Introduced groups

ds DNA 9-O- Aminoalkyl, Hydroxyalkyl, Alkyl tethered PBs, Aminocarbonyl methyl

13- Aralkyl

G4 DNA 9- Dimethylamino phenyl

9-O- Aminoalkyl, Amino acid amide alkyl, Chloroalkyl, Polyether tethered BBR, Polyether tethered bisquinolinium scaffold,
Alkylamine tethered Pt-complex

9-N- Aminoalkyl, Phenylalkyl, Hydroxyalkyl

8 and 9 Fused pyridine

10- Substituted phenyl

12- Dimethylamino phenyl

13- Aminoalkyl, Aryl methyl, Aryloxy methyl

Triplex DNA 13- Phenylalkyl

RNA 9-O- Aminoalkyl
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water partition coefficient and increase the bioavailability of BBR.

In addition, the introduced hydrophobic groups can form

hydrophobic bonds or aromatic ring interactions with the

targets and the hetero atoms in the terminal groups or acyl

groups can from hydrogen bonds with the targets. SAR analysis

showed that the length of the side chain significantly influence on

the DNA binding affinities of BBR derivatives. Beyond that,

expanding the size of the central aromatic moiety of BBR,

combining BBR with some active compounds or active

fragments, homodimerizing of BBR or heterodimerizing of

BBR with other PB, are also common structural modification

methods to enhance its DNA binding affinity and selectivity, and

DNA stabilizing effect. Introducing of substituted phenyl groups

to position 10 did not improve the activity, but can induce

different binding modes towards ds DNA and G4 DNA.

Introducing of p-dimethylaminophenyl group to position

12 enhanced G4 DNAs binding affinities, both at neutral

conditions and at pH5.

Conclusions and perspective

In conclusion, the DNA binding researches of modified BBR

derivatives mainly focused on ds DNA and G4 DNA, in addition

to nucleic acid triplex and single stranded RNA. The unique

aromatic planar surface combined by four rings of BBR and its

derivatives plays a vital role in their DNA binding effects. The

quaternary ammonium nitrogen atom is also a key component.

The structural modifications of BBR to improve its DNA binding

effect are mainly focused on positions 9, and 13. SAR analysis

showed that the length of the side chain on positions 9, and

13 exerted significant influence on the DNA binding affinities of

BBR derivatives. Positions 2, 3, 10 and 12 were seldom modified

(Table 1).

While, the BBR derivatives synthesized by different groups

overlapped sometimes and the modification strategies were

slightly the same, which is not beneficial for the structural

diversification of BBR derivatives. And all the derivatives

reviewed in this article, even those synthesized by the same

group, only have horizontal activity evaluation of the same

series of compounds synthesized in the same period of time,

but have no vertical activity evaluation of all the compounds

synthesized in different periods and in different groups, which

hindered the study of the SAR of BBR derivatives and the

development of BBR derivatives with DNA binding effects.

In view of these, more BBR derivatives with DNA binding

effects should be synthesized and the molecular diversity should

be considered in the synthesis process. The binding affinities of

all reported BBR derivatives should be determined at the same

time, and then SAR should be summarized, so as to lay a

foundation for further effective structural modifications of

BBR. After several rounds of research, it is believed that the

most potential BBR derivative will appear. Moreover, traditional

medical theory is a valuable resource for mankind. BBR is not

only an effective component in Traditional Chinese Medicine,

but also a component in many Traditional Chinese Medicine

prescriptions. Combining the structural modification methods of

BBR with the theory of Traditional Chinese Medicine is a good

and creative way to find lead compounds for DNA bindings and

then for tumor treatments.

The above conclusions and perspectives can provide a

valuable information for researchers devoted in developing

DNA binding agents with BBR as the lead compound. It also

provides a research model for the structural modifications of

other natural products.
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