
Citation: Venkatas, J.; Daniels, A.;

Singh, M. The Potential of

Curcumin-Capped Nanoparticle

Synthesis in Cancer Therapy: A

Green Synthesis Approach.

Nanomaterials 2022, 12, 3201.

https://doi.org/10.3390/

nano12183201

Academic Editors: Zyta M. Ziora,

Ahmed M. Omar, Abdelazeem

S. Eltaweil and Jose L. Luque-Garcia

Received: 23 July 2022

Accepted: 9 September 2022

Published: 15 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Review

The Potential of Curcumin-Capped Nanoparticle Synthesis in
Cancer Therapy: A Green Synthesis Approach
Jeaneen Venkatas, Aliscia Daniels and Moganavelli Singh *

Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001,
Durban 4000, South Africa
* Correspondence: singhm1@ukzn.ac.za; Tel.: +27-31-2607170

Abstract: Cancer nanotherapeutics is an important field of research which utilizes nanomaterials as
an approach to cancer therapy. Nano-mediated therapeutic delivery systems overcome the adverse
side effects of traditional cancer treatment methods. Nanoparticles (NPs) are considered excellent
tumor-targeting vehicles due to their compact and variable size, large surface area, ability to load
several genes and drugs, and mediation of increased therapeutic payload uptake. Despite the
rapid development of nanotechnology, there is growing concern regarding the possible long-term
side effects of NPs on the environment and human health. Green chemistry using plant materials,
such as curcumin, is a sustainable alternative to conventional reduction methods and confers dual
reducing and capping properties. Curcumin is a bioactive compound isolated from the rhizome
of the Curcuma longa plant, which exhibits various medicinal properties. Curcumin-capped NPs
exhibit increased solubility, bioavailability, therapeutic indices, and antitumor properties. This review
highlights the potential and antitumor properties of economical, simple, and eco-friendly curcumin-
synthesized and capped NPs for the localized delivery of therapeutic genes and drugs to the cancer
tumor microenvironment with fewer adverse side effects.
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1. Introduction

Cancer remains a leading cause of death worldwide with a poor prognosis. It is one of
the deadliest diseases in human history with an inferior prognosis [1]. Cancer transforms
healthy cells through inherited and acquired genetic mutations conferring growth and
survival advantages and ultimately generates malignant neoplasms that invade adjacent
tissues and spread to distant organs [2]. In 2020, 19.3 million novel cases and 10.0 million
deaths were reported as a result of cancer, according to the World Health Organization
(WHO), making the disease the second most common cause of death worldwide. The WHO
further predicted that the number of cancer patients will increase to 29.4 million annually
by 2040 [3]. The high global incidence and mortality rate of this non-communicable disease
costs the economy billions of dollars [4]. Cancer displays great complexity at the cellular,
epigenetic, and genetic levels, resulting in a reduction in long-term efficiency and the
development of multiple drug resistances, non-specificity, dosage limitations, and adverse
side effects. Conventional cancer treatment is also limited by the tumors’ pathological
characteristics and the abnormal architecture of blood vessels [5].

Nanotherapeutics can enhance therapeutic indices, targeting, biodistribution, oral
bioavailability, and aqueous solubility, making them promising candidates to challenge
conventional cancer treatments [6,7]. Nanoparticles (NPs) have many uses in nutraceuticals,
pollution management, and gene or drug delivery systems [8]. Various chemical, physical,
and biological methods have been used to synthesize NPs. Although physical and chemical
means of NP synthesis yield well-defined NPs, hazardous and expensive reducing reagents
are frequently utilized, restricting upscaling and possibly damaging the environment [9,10].
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Biological or green synthesis of NPs has gained much attention, as it employs plant
extracts to synthesize NPs in an ecologically sound, environmentally friendly, and non-toxic
manner [11]. In addition, using biological resources for NP manufacturing does not require
complicated processes. Globally, a host of botanical moieties have been successfully used
to synthesize different NPs [12]. Many of these NPs contain biologically active compounds
that display medicinal properties [13], with curcumin being one such compound.

Curcumin is the principal curcuminoid obtained from the rhizomes of Curcuma longa.
This bioactive component has many biological and pharmacological properties, including
antioxidant, hypotensive, anti-inflammatory, anticoagulant, antifertility, antiulcer, antimi-
crobial, antivenom, antifibrotic, antimutagenic, antidiabetic, anticarcinogenic, and most
importantly anticancer activities [14]. Although the health benefits of curcumin have been
well established, the full potential of curcumin in biomedical applications has yet to be
fully exploited due to its crystalline structure, low solubility in water, and bioavailability
(~1%) [15]. Reducing the size of the curcumin improves its solubility and, consequently, its
bioavailability, with current studies aiming to increase the bioavailability of curcumin [16]
specifically. This has led to the discovery of hybrid NPs, which comprise organic or
inorganic NPs enveloped by curcumin [17].

Multidrug-loaded nanocarriers or curcumin NPs are a potential strategy for fighting
cancer. Incorporating co-delivery systems as a feasible treatment method has projected syn-
ergistic benefits and limited undesirable effects [18]. Curcumin-capped NPs can introduce
a synergistic effect by reducing the amount of the main therapeutic component needed.
This can improve the therapeutic activity while reducing toxicity. Compared with NPs only
and free curcumin, curcumin-capped NPs have shown a high level of cytotoxicity in some
malignant cells [13]. Curcumin-containing nanocomplexes’ strong anticancer characteristics
and their positive in vitro and in vivo results have prompted their in vivo investigation [19].
This review discusses curcumin’s antitumor properties and the potential of curcumin as a
reducing agent in the synthesis of NPs for cancer therapy. Although anticancer studies have
been conducted using curcumin, its use as a reducing or capping agent for synthesizing
organic and inorganic NPs (primarily metal NPs) to produce synergistic NPs has yet to be
fully explored in cancer therapy and is the main focus of this review.

2. Cancer Epidemiology

Cancer is a significant cause of death worldwide, with a global incidence and mortality
rate of 19.3 million and 9.6 million per year, respectively (Figure 1). Lung, colorectum,
liver, stomach, breast, cervical, and bladder cancer account for more than half of the annual
deaths (Figure 2) [20]. By 2017, the global cancer motility rate had almost doubled that
seen in 1990 [21]. Cancer is a multi-factorial disease induced by multistage carcinogenesis
involving genetic, cellular, and epigenetic abnormalities that transform healthy cells into
malignant ones [6]. The evolution of cells to their cancerous state is induced by mutational
damage to cancer susceptibility genes such as the tumor suppressor, DNA repair, and
proto-oncogenes [22].

Oncogene mutations occur in the alleles of genes responsible for cellular growth, de-
velopment, and maintenance. Mutations in the Ras family mediate cellular communication
pathways, growth, and death. The HER2 oncogenes, which mediate the growth and spread
of cancer, lead to breast, ovarian, and cervical cancer [23]. Tumor suppressor genes regulate
cell growth by slowing cell division, repairing DNA irregularities, and inducing apoptosis
or programmed cell death. More than 50% of cancers are caused by mutations within
the p53 tumor suppressor gene [24], while germline mutations induce breast, ovarian,
prostate, and pancreatic cancer in the BRCA1 or BRCA2 genes [25]. DNA repair genes that
correct genome errors act as tumor suppressor genes. These mutations may be inherited or
acquired [26].
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The first step in cancer development involves initiating or altering the cancer-susceptible
genes. Once a cell is transformed, it becomes susceptible to the effects of promoters, which
bind to receptors on the cell’s surface. This inhibits the apoptotic pathways, leading to un-
controllable cell proliferation [27]. As cancer progresses, the cancerous cells are transported
throughout the body via the lymphatic system or bloodstream. Once these cells reach their
destination, they proliferate and develop into new tumors through metastasis [28]. Figure 3
illustrates the progression of a cancer cell.
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Cancer cells metastasize throughout the body via the lymphatic or blood system,
where they produce tumors [8] and induce the formation of new blood vessels through the
secretion of hormones. The sprouting of the new capillaries invades the surrounding tissues
via angiogenesis to allow for a continuous blood supply to the tumor microenvironment [29].
The age-standardized incidence and death rates were 1.5 times higher in males than
females, with individuals over 50 and residing in developing countries displaying a higher
cancer incidence [21]. The increase in cancer morbidity and mortality is attributed to the
population’s growth, distribution, and dominant age as well as the distribution of cancer
risk factors often associated with socioeconomic development [5]. Several risk factors
influence an individual’s susceptibility to cancer, including lifestyle, age, genetics, physical
inactivity, weak immune systems, infections, environment, sex, dietary choices, carcinogens,
and physical agents [30]. Oral cancers are induced by alcohol (7–19%), smoking or chewing
tobacco (25%), and micronutrient deficiency (10–15%). In South Asian countries such as
Sri Lanka, Vietnam, Indonesia, India, and Malaysia, the chewing of betel nut accounts for
50–70% of oral cancers [31]. Higher skin cancer and melanoma fatalities were observed in
regions with high levels of UV exposure due to damage to the ozone layer [32].

3. The Promise of Cancer Nanotherapeutics
3.1. The Limitations of Conventional Cancer Therapy

Despite growing knowledge of cancer epigenetics, genetics, biology, and etiology,
cancer treatment strategies remain suboptimal, primarily due to their off-target side effects,
multiple drug resistances, and physiological barriers, limiting their optimal dosages and
efficiency [5]. Furthermore, the pathological properties of tumors and their aberrant blood
vessel architecture decrease traditional cancer therapy’s effectiveness [8]. Chemotherapy,
the preferred choice, fails to distinguish tumor cells from non-metastatic, healthy cells and
targets all rapidly dividing cells, including cells of the lymph, bone marrow, gastrointestinal
tract, and hair follicles [33]. This often leads to nausea, fatigue, loss of appetite, hair
loss, nephrotoxicity or kidney damage, neuropathy or peripheral neuropathy, anemia,
neutropenia, and thrombocytopenia [34]. Surgical removal of tumors is often challenging,
leading to further complications, such as metastasis and recurrence. The organ may also be
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inoperable due to the size and distribution of the tumor [35]. Hence, the intervention by
nanomedicine may be beneficial in overcoming many of these challenges.

3.2. Overcoming Cancer Therapy Limitations with Nanomedicine

Nanomedicine is a rapidly evolving field of biotechnology. The core concept of nan-
otechnology dates to 1959, when Feynman demonstrated the ability of NPs to aid in the
detection and pharmaceutical treatment of various human ailments [36]. The scientific
understanding of the principles governing the interaction of matter with biological sys-
tems at the nanoscopic scale has advanced dramatically during the last three decades [37].
Nanomedicine utilizes nanomaterials (1–100 nm) for various biomedical applications,
including tissue engineering, therapy, imaging, and diagnostics [31]. The therapeutic
effect of nanomaterials is strongly influenced by their surface properties (hydrophilic-to-
hydrophobic ratio and charge), physical characteristics (shape and size), and function-
alization [38]. Figure 4 provides a general illustration of the favorable physicochemical
properties of NPs. Carbon nanostructures, inorganic NPs (e.g., gold, silver, and selenium),
lipids (e.g., liposomes), dendrimers, mesoporous silica, magnetic NPs, and polymeric NPs
are among the NPs used in nanomedicine [4], with inorganic metal NPs yet to be fully
explored [39].
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NPs protect the therapeutic agent from opsonization and premature phagocytosis.
They are absorbed at an enhanced rate by epithelial diffusion [40]. They can alter the
therapeutic compound’s distribution profile and pharmacokinetics within the tumor mi-
croenvironment (TME), promoting intracellular efflux in the cells [41]. Furthermore, NPs
can act as passive or active targeting agents to deliver therapeutic agents to the TME and
elevate intracellular anticancer activity. Passive targeting enhances the anticancer agents’
permeability and retention effects due to the NPs’ favorable size and shape [42]. Active
targeting involves the conjugation of ligands (e.g., folate) on the NP surface that can bind
to receptors overexpressed on the surface of cancer cells [43,44]. This is easily facilitated
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by the flexible surface chemistry of the NP, which allows for the conjugation of various
targeting ligands.

Multiple drug resistance (MDR) occurs when cancer cells build resistance to numerous
chemotherapeutic agents, leading to drug inactivation and efflux from the malignant
cell. MDR poses a severe hurdle to treatment [45]. The compact size of the NPs enables
the therapeutic to be administered at safe doses, increasing their antitumor effect and
overcoming tumor drug resistance [46]. This further improves the therapeutic indices and
pharmacokinetics of the delivered biomolecule.

NPs are amenable to steric stabilization using polyethylene glycol (PEG), which affords
further stability to the NP by reducing surface-surface interactions and aggregation [47].
The PEG coating prevents the opsonization of the nanocomplexes. It allows the nanocom-
plex to avoid phagocytosis and clearance by the reticuloendothelial system (RES) and
mononuclear phagocyte system, which are effective defense systems in the body that
remove foreign material from the blood [48–50]. This increases the circulation time of the
nanocomplex and allows the therapeutic to accumulate within the TME [51]. Figure 5
provides a simple illustration of the above process.
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4. Green Synthesis of NPs

Various chemical, physical, and biological methods have been used to synthesize
NPs, all with some advantages and disadvantages (Table 1). Although physical and chem-
ical means of NP synthesis yield well-defined NPs, hazardous and expensive reducing
reagents are frequently utilized, restricting upscaling and possibly damaging the environ-
ment [9,10]. This has created a niche for developing novel methods of NP synthesis which
produce NPs with desired shapes, high thermal stability, and which use few or no toxic
compounds [52,53]. This has prompted the start of the green nanotechnology revolution,
where eco-friendly bioactive agents are employed in NP synthesis.

Table 1. Summary of nanoparticle synthesis methods and their advantages and disadvantages.

Synthesis Advantages Disadvantages Types

Physical
- Simple procedure
- Produced in large quantities
- Controlled particle interspacing

- High energy consumption
- Expensive
- Specialized equipment

required

Radiation
Sonication
Laser ablation
Membrane filtration
Ion exchange
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Table 1. Cont.

Synthesis Advantages Disadvantages Types

Chemical

- Size, shape, and morphology
controlled

- Simple procedure
- Narrow size distribution

- Toxic chemicals
- Long reaction time
- Limited by external factors

(pH and temperature)

Reduction
Oxidative process
Photochemical
Electrochemical destruction
Condensation Sol-gel method

Biological

- Eco-friendly
- Use of non-toxic chemicals
- Inexpensive
- Less energy required

- Degree of reducibility
- Reducing extract needs to be

elucidated
- Limited knowledge of

controlled shape and size

Plants
Bacteria
Fungi
Viruses

Peralta-Videa et al. (2016) stated that although plant-based green synthesis is com-
parable to conventional physical and chemical methods, they do not provide sufficient
information on the ion’s reduction mechanisms, yield, or the stability of the NPs [54].
The mass production of NPs requires highly reactive substances and energy-consuming
procedures, which are not considered environmentally friendly. The growing need to
overcome these problems has prompted researchers to experiment with more economical
and environmentally friendly methods. The green synthesis approach to creating NPs has
gained tremendous strides as an alternative to physical and chemical syntheses [55].

Green synthesis can be defined as the use of various biological or bioactive agents such
as plant extracts, microorganisms, fungi, and even biowastes to effectively synthesize metal-
lic NPs in an eco-friendly and bio-reductive manner (Figure 6) [56,57]. Green synthesis
vaunts a mechanism of reducing NPs while utilizing relatively low energy and maintaining
a cost-effective method [58,59]. This approach, which was initially brought about due to
the urgent need for “sustainable development”, requires three fundamental aspects for its
success: a non-toxic reducing agent, a solvent of an environmentally friendly nature (for ex-
ample, ethanol, water, and their combinations), and finally a stabilizer [60,61]. Furthermore,
green synthesis offers a biocompatible, environmentally friendly, and non-toxic approach,
as the byproducts and capping agents are natural to the environment, which is highly
beneficial in the medical sector [56]. These NPs were reported to have a larger surface
area with reduced aggregation than those produced with toxic chemical-reducing agents
such as formaldehyde, hydrazine, sodium borohydride, aniline, polyvinylpyrrolidone, and
sodium dodecyl sulfate [62–64]. In addition, these NPs showed improved photocatalytic
and antioxidant capacities [54].

From the different biological agents used for green NP synthesis, microorganisms
have shown some promising results. Since many inorganic metal salt ions can be toxic to
microorganisms, they manufacture extra or intracellular enzymes that convert hazardous
ions into harmless NPs [65]. A change in the redox state within the cell caused by foreign
ions enables microbial reduced NPs to be applied in bioremediation [66]. Microorganisms
can produce NPs within their cell walls. For example, the Klebsiella aerogenes bacterium
was used to synthesize cadmium NPs [67], and Escherichia coli and Deinococcus radiodurans
synthesized gold NPs [68,69]. Fungi are also attractive for large-scale production since
they have a high tolerance for toxic elements and produce vast amounts of extracellu-
lar enzymes, as evidenced by silver and gold NPs extracted from Aspergillus oryzae and
Verticullium [70,71]. However, compared with microbe-based synthesis, green synthesis of
metallic NPs using plant-based extracts is a relatively more straightforward process which
eliminates the constant maintenance of cultures [72].
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NPs derived from plant-based syntheses have been employed to eradicate biofilms
from clinically relevant surfaces, for targeted drug delivery, as 3D culture models, and
in cancer therapy. In addition, the raw resources used in this green synthesis are renew-
able [73]. Plant extracts have been noted to produce NPs of varied sizes and shapes that
range from rod-like to spherical, cubic, and triangular [74]. This is due to the phytochemi-
cal make-up of the plant utilized, which promotes natural stability in NP creation while
doubling as a reducing agent [75]. Plant-based green synthesis is an extensive process
involving the use of the whole plant biomass or extracts from different parts of the plant
(stems, leaves, flowers, roots, seeds, bark, etc.) to synthesize different types of NPs [54]. The
use of whole plants to synthesize metallic NPs is an intrinsic process with NPs deposited
within the plant tissues, while plant extract-mediated NP synthesis occurs extracellularly.
The composition of the plants affects their bioreductive ability, which in turn determines the
morphology, composition, and dimensions of the nanoparticles formed [56]. Complemen-
tary to the effects of the phytochemicals present, biomolecules (carbohydrates, co-enzymes,
and proteins) found in the plant extract also portray an exemplary reduction of metal salts
into the desired metallic NPs. Functional compounds obtained from plant extracts, such as
carboxylic acids, alkene, alkane, amine, and methylene, serve as promising reducing agents
for synthesizing metallic NPs [72]. The biological activity of the synthesized NPs is primar-
ily determined and fine-tuned by the biomaterial utilized for the stability and reduction
of the metal ions [76]. The secondary metabolites of plants, such as tannins, flavones, and
polyphenols, possess antioxidant, antimicrobial, and anticarcinogenic properties [77].

Apiin, isolated from Lawsonia inermis, reduced silver and gold metal salts via electro-
static interaction between the extract’s carbonyl groups and metal ions [78]. Phyllanthin
extracted from Phyllanthus amarus was used to synthesize silver and gold NPs by exchang-
ing the metal ions and the plant extract’s methoxide group [79]. Researchers discovered
that compounds isolated from propolis extract could produce a broader range of NP sizes.
These findings suggest that many chemicals with various reducing properties can compli-
cate the synthesis process, impacting its simplicity and NP size distribution [80]. Spherical
copper, gold, silver, selenium, and platinum of <100 nm in size were produced by extracts
from either leaves, flowers, stems, fruit, or seeds from various plants [81–89]. However,
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triangular and hexagonal shapes were also reported for green synthesized gold, silver, and
silver-selenium bimetallic NPs [86,88,90], while titanium dioxide NPs produced unusual
tetragonal shapes [91,92].

However, there are still barriers to be overcome in relation to more conventional
methods for synthesizing NPs [9]. The ability to control the shape and size of biologically
synthesized NPs has been a significant impediment, since the size and shape of the NP
are predetermined by the different phytochemical compositions of the plant extract [81].
Similar plants grown in other geographical areas or harvested at different times can produce
varied bioactive constituents. As a result, the shape and size of the NPs produced are
altered [84]. This in turn can cause a decline in their market value, as the morphology of
commercially manufactured NPs is uniform. Moreover, plant extracts contain many active
phytochemicals which require isolation and purification [73]. However, the benefits of
green synthesis outweigh the disadvantages, providing a niche for scientists to improve
their means of plant-mediated synthesis.

5. The Properties of Curcumin

Curcuma longa, also known as turmeric, is an ancient perennial plant native to India that
belongs to the Zingiberaceae family. Curcuma has evolved via continuous crossbreeding
and selection. Over 100 Curcuma species have been identified to date [93]. The perennial
herb grows in subtropical and tropical regions worldwide and is widely cultivated in Asian
countries, such as India, Taiwan, Japan, Vietnam, Indonesia, Thailand, Burma, Bangladesh,
and China [94]. The C. longa rhizome has an oblong pyriform shape with short branches.
Turmeric is considered a significant plant in Ayurvedic history, having been used to treat a
broad range of ailments in Indian Ayurvedic medicine since 1900 BC, including wounds,
aches and pains, sprains, gastrointestinal system disorders, and liver disorders [95]. The bi-
ological constituent has been extensively studied for its bioactivity [96]. Curcumin exhibits
antimicrobial, antioxidant, anticancer, anti-inflammatory, hyperlipidemic, hepatoprotective,
and neuroprotective activities [95].

Turmeric can be broken down into three curcuminoids (Figure 7): bisdemethoxycur-
cumin, demethoxycurcumin, and diferuloylmethane [96]. The latter, a polyphenol, is a
primary constituent of turmeric which accounts for turmeric’s vibrant yellow color and
is commonly referred to as curcumin. The additional components of turmeric include
proteins, sugars, resins, and volatile oils (zingiberone, atlantone, and turmerone) [94]. Cur-
cumin (C21H20O6) comprises two polyphenolic rings connected by a C7-linker containing
an unsaturated β-diketone motif [97]. The bioactive component is insoluble in water under
neutral and acidic pH levels. Still, it is soluble in acetone, dimethyl sulfoxide (DSMO), and
ethanol, with a melting temperature and molecular weight of 183 ◦C and 368.37 g·mol−1,
respectively [95].

Curcumin contains two tautomeric forms: keto and enol, with the former being ener-
getically stable in both the solid and liquid phases. However, the bioactive components
take the form of a bis-keto (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione)
under acidic and neutral conditions [96]. It was reported that curcumin had enhanced an-
tioxidant properties compared with its curcuminoid counterparts. This was attributed to the
transition metal chelation attaching the o-methoxy and diketone phenols [93]. Curcumin
blocks the NFkB and hemeoxygenase-1 pathways, which are responsible for the struc-
tural moieties of the α, β-unsaturated diketone that serves as an acceptor in the Michael
reaction. Various studies have elaborated on curcumin’s biological and pharmaceutical
properties [94,98–100].
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5.1. Biological and Pharmaceutical Properties of Curcumin

Curcumin is one of turmeric’s most active therapeutic agents due to its biological and
pharmaceutical properties [95]. It can directly or indirectly bind to and deactivate various
metals, proteins, receptors, growth factors, enzymes, and transcription factors. Direct
targets include cell survival proteins, carrier proteins, protein kinases and reductases, metal
ions, proteasomes, inflammatory molecules, and DNA methyltransferase 1. In contrast,
indirect targets encompass proteins for cell survival, transcription factors, mediators of
inflammation, enzymes, receptors growth factors, adhesion molecules, and cell cycle
proteins [92].

The antimicrobial property of curcumin is renowned and influenced by its interaction
with the FtsZ protein. The FtsZ protein is responsible for an essential stage of cell division
in most prokaryotic species [94,101]. Reports conclude that curcumin’s hydroxyl and
methoxy groups are directly linked to antimicrobial activity. The oxygen molecules of these
functional groups linked to curcumin’s phenolic rings catalyze the FtsZ GTPase protein,
inducing premature cell death. Huang et al. demonstrated the antibacterial properties of
curcumin-encapsulated silver-polymeric NPs against S. aureus and P. aeruginosa [102].

Similarly, curcumin-capped micelles enhanced the miltefosine and alkylphospho-
choline erufosine antibacterial properties against S. aureus [103]. The antiviral effects of
curcumin micelles on hepatitis C virus (HCV) attachment were also demonstrated, where
HCV cells treated with the nanocomplex had a lower viral load [104]. Similar results were
observed in cells infected with the respiratory syncytial virus (RSV) when treated with
curcumin-capped silver NPs [105].

Curcumin is a classical phenolic antioxidant which traps free radicals such as reactive
nitrogen and oxygen species by enhancing the production of free radical scavenging
enzymes [106–111]. Rajasekar (2015) demonstrated the antioxidant properties of curcumin
nanocrystals in Wistar rats [108]. Nanocurcumin structures were observed to counteract
the toxic side effects of aluminum phosphide by enhancing the stabilization of oxidative
stress and scavenging free radicals [13].

http://www.chemspider.com/Chemical-Structure.1906.html
http://www.chemspider.com/Chemical-Structure.1906.html
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Curcumin is a pleiotropic bioactive component which interacts with many inflam-
matory targets, including interleukins (IL) 1, 2, 5, 6, 8, and 12, macrophage inflammatory
proteins (MIP), TNF-α (tumor necrosis factor-α), and the monocyte chemoattractant pro-
tein (MCP) [93,109,112,113]. The bioactive component hinders essential inflammatory
response mediators, proinflammatory leukotrienes, and prostaglandin synthesis by down-
regulating the activity of lipoxygenase (LOX), cyclooxygenase-2 (COX-2), nitric oxide
synthase (iNOS), and phospholipase A2 (PLA2) [101,110]. Thus, curcumin is effective
in reducing post-surgical inflammation. The inflammatory response of curcumin can be
attributed to its association with the arachidonic acid pathway for eicosanoid biosynthesis
through the downregulation of COX-2 and LOX [95]. This produces many lipids, includ-
ing prostaglandins, leukotrienes, prostacyclins, and thromboxanes. Nahar et al. (2015)
demonstrated the ability of curcumin-capped lipid NPs to hinder the activation of NF-κB
in murine macrophages through the downregulation of lipopolysaccharide-induced proin-
flammatory mediators, including IL-6, NO, and PGE2 [104,114]. Similarly, the obstruction
of NF-κβ activation by curcumin-loaded PLGA NPs downregulated iNOS and COX-2
expression [103,115].

5.2. The Anticancer Properties of Curcumin

The anticancer properties of curcumin in humans have gained significant interest in
the past few decades. Kuttan et al. (1987) initially reported the anticancer properties of
curcumin in clinical trials on patients with external cancer lesions. The study revealed
that curcumin effectively relieved the symptoms of pain and itching while decreasing the
lesion size [113]. Curcumin has anticancer activities that alter various cell growth cycle
stages [114]. It acts as a blocking agent, hindering the initial stages of cancer by suppressing
the proliferation of malignant cells during carcinogenesis. The bioactive component acts
on transcription factors, oncogenes, and signaling proteins, which facilitate cancer cells’
growth and metastasis at different carcinogenesis stages [105] (Figure 8). Curcumin can also
suppress matrix metalloproteinases’ activity, thus averting cancer metastasis. This results
from curcumin suppressing the Bcl-xL, nuclear factor-kappa (NF-κB), BCL-2, cyclin D1,
and c-MYC genes involved in tumor proliferation, growth, and apoptosis [115]. Further-
more, curcumin downregulates mitogen and epidermal growth factor receptor-activated
protein kinases in lung and pancreatic cancer cells. It also displayed anti-amyloid activity,
which reduced β-secretase and acetylcholinesterase activity as well as amyloid-β-protein
aggregation and inflammation [116].

Curcumin is a potential anticancer agent against several cancers, including thyroid,
prostate, lung, liver, myeloma, pancreatic, melanoma, colorectal, breast, and cervical cancer.
Curcumin NPs showed anticancer properties in skin, lung, and liver cancer cells [117].
PLGA-curcumin NPs enhanced apoptosis and lysosomal activity and deregulated nuclear
β-catenin and androgen receptor (AR) activity in prostate cancer cells [118]. An in vitro
study reported the ability of curcumin to inhibit the metastasis of the papillary thyroid
tumor cells by regulating the expression pattern of E-cadherins and metalloproteinase-9
to enhance mesenchymal-epithelial transition [94]. An increase in HIF-1α, nuclear p65,
and NF-κB expression was also noted, which altered the carcinogenic activity in breast
cancer cells [119,120]. In vitro studies revealed enhanced the cytotoxicity and anti-invasive,
anti-migratory, and apoptosis properties induced by curcumin-loaded NPs in metastatic
pancreatic cancer [121]. The ability of curcumin nano-formulations to overcome the limita-
tions of conventual treatment in colorectal cancer has been described in the literature [19].
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6. Nanocurcumin Synthesis

Curcumin controls various signaling molecules based on the cell and target back-
ground, thus allowing it to act on multiple targets in cellular pathways [122]. However,
the bioactive component has low bioavailability due to its limited solubility in water and
its crystalline form [105]. To circumvent these constraints, researchers have attempted
to increase curcumin’s biological and pharmacological potency by reducing its size [108].
This led to the discovery of nanocurcumin, which enhances the biological activity of cur-
cumin, increasing its bioavailability, solubility, long-time circulation, and retention in the
body [123].

The chemical and physical properties are essential in altering curcumin into its
nanoform. The hydrophobicity, particle size, surface area, and charge are important
physicochemical properties that make nanocurcumin a more effective anticancer agent
than its native form [124]. The size of nanocurcumin being 1–100 nm is considered an ideal
choice to use as a therapeutic agent because it has a larger surface area for better contact
with the solvent. This enhances its solubility properties. Nanocurcumin structures can
enter organs that are inaccessible to native curcumin [125]. Furthermore, nanocurcumin
may have a higher intracellular absorption capacity, allowing the bioactive component to
target foreign entities [126]. Zou et al. (2015) noted the high systemic bioavailability in
the plasma and tissues of nanostructured curcumin compared with free curcumin [127].
Moreover, nanocurcumin increases the in vivo bioavailability and distribution, increasing
the biological half-life 60-fold compared with treatment with native curcumin [93]. The
loading and entrapment efficiency of nanodrugs depend highly on the preparation method
and type of carrier system used to produce nanodrugs [128].

Nanocurcumin has been synthesized in various ways, including spray drying, emul-
sion polymerization, microemulsion, antisolvent precipitation, ultra-sonication, ionic gela-
tion, single emulsion, solvent evaporation, wet milling, solid dispersion, thin film hydra-
tion, the Fessi method, and the coacervation technique (Figure 9). Each technique has its
advantages and disadvantages, which have reviewed by many researchers [94,129,130].
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The antisolvent precipitation and ionic gelation methods are regarded as the most
efficient of the curcumin nano-formulation techniques [93].

These different techniques determine the shape and size of the curcumin NPs. Muk-
erjee and Vishwanatha (2009) reported the synthesis of 30–50-nm nanosphere curcumin
structures using the polymerization emulsion technique [131]. Other studies reported the
synthesis of crystal structured curcumin (150–200 nm) by the single emulsion–solvent evap-
oration method [132], small clusters (50 nm) using the inclusion complexation method [133],
nanospheres (132 nm) using the redox-free radical polymerization technique [134], and
nanocrystal curcumin NPs (30–40 nm) using the nanoprecipitation method [135]. Hence,
it is evident that each technique can produce nanocurcumin of a defined size or shape.
Based on these studies, researchers looking to synthesize curcumin NPs for biomedical
applications would need to examine the size limitations of the target tissue or organ and the
optimal shape of the NP for cellular uptake before opting for a particular synthesis method.

Nanocurcumin particles are not tissue-specific and act on healthy tissues surrounding
the TME and cancer cells. Therefore, future studies must develop nano-delivery systems
targeted at specific tissues [93]. Overall, the therapeutic effect of nanocurcumin remains at
the concept level. Several questions and challenges prevail before nanocurcumin can be
recommended as a promising candidate for therapeutic applications [136].

7. Curcumin-Capped NPs in Cancer Therapy

Curcumin can effectively reduce metal salts and cap the metal NPs. Curcumin-capped
metal NPs have exhibited potent cytotoxicity in cancer cells [13]. Encapsulating therapeutic
agents within NPs can enhance their pharmacokinetics and provide targeted delivery and
controlled release [17]. Curcumin-capped NPs have a relatively larger surface area to inter-
act with the solvent than naked curcumin. This property improves their aqueous solubility,
leading to better bioavailability of the bound or encapsulated therapeutic. This enhances
the therapeutic’s response to a specific molecular target and improves its pharmacological
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activity [137] by promoting controlled drug release [138]. Although nanocurcumin has a
higher water solubility than curcumin-capped NPs, reducing and capping metal NPs with
curcumin prevents their aggregation, making them highly stable in a solution [139–143].
This good stability and the ability of curcumin-capped NPs to be easily dissolved in an
aqueous solution enhances their cellular internalization [8].

To date, solid lipid, polymeric, magnetic, and gold-based NPs have all been employed
to enhance curcumin’s therapeutic application (Table 2).

Table 2. Curcumin-conjugated nanoparticles and their anticancer activities.

Curcumin-Conjugate Morphology
Cancer Model Anticancer Activity Ref

Nanoparticle (Source) Shape Size (nm)

Solid lipid
(Stearic acid and

lecithin)
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The antioxidant property of curcumin facilitates the reduction of metal salts by trans-
ferring electrons from curcumin to metal ions. The functional carbonyl and hydroxyl
groups of the free curcumin further stabilize the NPs [126–129]. Solid lipid NPs are col-
loidal particles of natural or synthetic lipids. They are stable, easily scalable, and display
enhanced biocompatibility, further improving solubility [140]. Solid lipid NPs conjugated
with curcumin enhanced the therapeutic agent’s solubility, cellular uptake, dispersibility,
and stability [111]. Wang et al. (2013) demonstrated that curcumin had increased inhibi-
tion (from 19.5% to 69.3%) and enhanced apoptosis in lung cancer cells both in vitro and
in vivo [140].

The biocompatibility and compact size of polymeric NPs enable them to circulate
within the blood system for an extended period. Chaurasia et al. (2016) observed the ability
of a Eudragit R E100 cationic copolymer to enhance the uptake, binding, and cytotoxicity
of curcumin-conjugated polymeric NPs in colon-26 cells [142].
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The chemical properties of magnetic NPs, formed from a metallic oxide core, are easily
manipulated regarding shape and size. Furthermore, these low-cost magnetic NPs display
unique physical properties, promoting their biocompatibility in the human body [38].
PEGylated magnetic NPs conjugated with curcumin displayed enhanced biocompatible
and antitumor responses [147]. The sustainable delivery of curcumin-loaded, thiolated,
starch-capped iron-oxide NPs to lymphocyte cells, inducing cytotoxicity in several cancer
cell lines, was demonstrated. Curcumin-capped Fe3O4-magnetic NPs illustrated enhanced
uptake and targeted drug delivery to tumor cells [148].

Gold is a valuable metal, prized for its economic value and aesthetic appeal. Gold
NPs serve as potential therapeutic gene delivery vehicles due to their favorable properties
and ease of manufacturing [149]. Furthermore, due to their tunable stability, resilience,
biodegradability, low cytotoxicity, biocompatibility, therapeutic gene protection from sys-
temic degradation, and synthetic surface amenability, gold NPs have been used in various
biomedical applications [46,150,151]. Targeted delivery of therapeutic agents and enhanced
apoptosis in colon tumor cells was demonstrated using curcumin-reduced and capped
chitosan-gold NPs [152]. Curcumin-capped gold NPs also effectively induced apoptosis in
prostate and renal cancer cells [127,153]. Furthermore, green synthesized curcumin-capped
gold NPs were found to improve antiproliferative and apoptotic activities in breast (MCF-7)
and colon (HCT-116) cancer cells [126]. Gold NPs capped with curcumin and folic acid
were observed to decrease tumor proliferation in breast cancer cells of Balb/c mice by
51% [154].

8. Clinical Trials Involving Curcumin

Numerous clinical trials have explained curcumin’s pharmacokinetic profile, safety,
and effectiveness in different diseases. Clinical trials showed positive results where cur-
cumin arrested or even eliminated cancer cell growth [6,137,139]. A search for clinical trials
using curcumin or curcumin-reduced and capped NPs revealed that no curcumin-capped
NPs are currently being screened. Most trials involved the delivery of curcumin alone
or in combination with another therapeutic. Only one study utilized albumin NPs in
combination with curcumin for pancreatic cancer therapy. The pilot phase I trial study
demonstrated the ability of the nanotherapeutic agent to slow down cancer growth by
halting tumor cell division. Table 3 provides a summary of the clinical trials involving
curcumin [155]. Trials that have been withdrawn or terminated are not reflected.

Table 3. Selected completed or ongoing clinical trials from 2004 to date utilizing curcumin in cancer
therapy (adapted from [155]).

Cancer Study Title Therapeutic Start and End Dates

Breast

“Window Trial” on Curcumin for Invasive Breast Cancer
Primary Tumors * Curcumin January 2020–

December 2022
Curcumin in Reducing Joint Pain in Breast Cancer Survivors

with Aromatase inhibitor-induced Joint Disease
** Curcumin

Nanoemulsion
March 2019–

July 2022
# Curcumin for the Prevention of Radiation-induced Dermatitis

in Breast Cancer Patients * Curcumin c3 January 2008–April 2011

# Pilot Study of Curcumin for Women with Obesity and High
Risk for Breast Cancer * Curcumin June 2013–

September 2016
# Phase II Study of Curcumin vs Placebo for

Chemotherapy-Treated Breast Cancer Patients
Undergoing Radiotherapy

* Curcumin May 2015–
July 2018

# Prophylactic Topical Agents in Reducing Radiation-Induced
Dermatitis in patients With Non-inflammatory Breast Cancer * Curcumin October 2015–September

2016
# Curcumin in Combination with Chemotherapy in Advanced

Breast Cancer
** Curcumin,

Paclitaxel
March 2017–

June 2019
# Disposition of Dietary Polyphenols and Methylxanthines in

Mammary Tissues from Breast Cancer Patients
** Curcumin
Polyphenol

June 2017–
December 2019
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Table 3. Cont.

Cancer Study Title Therapeutic Start and End Dates

Colon

Study Investigating the Ability of Plant Exosomes to Deliver
Curcumin to Normal and Colon Cancer Tissue * Curcumin January 2011–

December 2022

# Curcumin Biomarkers * Curcumin c3 November 2010–January
2013

# Combining Curcumin with FOLFOX Chemotherapy in
Patients with inoperable Colorectal Cancer

** Curcumin
Chemotherapy February 2012–May 2017

# Effect of Curcumin on Dose Limiting Toxicity and
Pharmacokinetics of Irinotecan in Patients with Solid Tumors

** Curcumin,
Irinotecan

June 2013–
October 2016

# Avastin/FOLFIRI in Combination with Curcumin in
Colorectal Cancer Patients with Unresectable Metastasis

** Curcumin
Avastin/FOLFIRI August 2015–2019

Cervical

Curcumin in Advanced Cervical Cancer * Curcumin December 2021–2023
# Trial on Safety and Pharmacokinetics of

Intravaginal Curcumin * Curcumin January 2010–2012

# Study of Pembrolizumab, Radiation and Immune Modulatory
Cocktail in Cervical/Uterine Cancer

** Curcumin,
Pembrolizumab

Radiation, Vitamin D
Aspirin, Lansoprazole

Cyclophosphamide

July 2017–
June 2021

Prostate

Adjuvant Curcumin to Assess Recurrence-Free Survival in
Patients Who Have Had a Radical Prostatectomy * Curcumin May 2014–

June 2023
Trial of Curcumin to Prevent Progression of Low-risk Prostate

Cancer Under Active Surveillance * Curcumin March 2016–
November 2026

Curcumin and Piperine in Patients on Surveillance for
Monoclonal Gammopathy, Smoldering Myeloma or

Prostate Cancer

** Curcumin,
Piperine December 2021–May 2023

# Comparison of Duration of Treatment Interruption with or
Without Curcumin During the off-Treatment Periods in Patients

with Prostate Cancer Undergoing Intermittent Androgen
Deprivation Therapy

* Curcumin August 2007–2015

# Radiosensitizing and Radioprotective Effects of Curcumin in
Prostate Cancer * Curcumin March 2011–

October 2019
# Multicentre International Study for the Prevention with

Ialuril®of Radio-induced Cystitis (MISTIC)
** Curcumin

Radiotherapy
April 2017–
May 2019

# Correlative Analysis of the Genomics of Vitamin D and
Omega-3 Fatty Acid Intake in Prostate Cancer

** Curcumin
Vitamin D, Omega-3

September
2017–December 2019

Lung

Phase II Trial to Modulate Intermediate Endpoint Biomarkers in
Former and Current Smokers ** Curcumin, Lovaza June 2019–

October 2023

The Thoracic Peri-Operative Integrative Surgical Care
Evaluation Trial-Stage II

** Curcumin,
Vitamin D3

Coriolus Versicolor
Provitalix

Green Tea Extract

April 2022–
May 2025

Head
and

Neck

# Curcumin Biomarker Trial in Head and Neck Cancer * Curcumin c3 June 2010–
January 2016

# Curcumin Bioavailability in Glioblastoma Patients * Curcumin October 2012–May 2013
# The Effect of Curcumin on Treatment of Cancer

Anorexia-Cachexia Syndrome in Patients with Stage III-IV of
Head and Neck Cancer

* Curcumin February 2020–March 2021

Leukaemia Safety and Efficacy of Curcumin in Children with Acute
Lymphoblastic Leukemia * Curcumin August 2021–September

2022

Oral # Oral Curcumin for Radiation Dermatitis * Curcumin February 2011–January
2015
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Table 3. Cont.

Cancer Study Title Therapeutic Start and End Dates

Pancreatic

Gemcitabine Hydrochloride, Paclitaxel Albumin- Stabilized
Nanoparticle Formulation, Metformin Hydrochloride, and a
Standardized Dietary Supplement in Treating Patients with

Pancreatic Cancer That Cannot Be Removed by Surgery

** Curcumin
Gemcitabine

Albumin
Metformin

January 2016–
December 2022

# Gemcitabine With Curcumin for Pancreatic Cancer ** Curcumin,
Gemcitabine

July 2004–
September 2010

# Trial of Curcumin in Advanced Pancreatic Cancer * Curcumin November 2004–April
2014

* Single therapy. ** Dual therapy. # Completed trials.

9. Conclusions and Future Perspectives

Green synthesized NPs have revolutionized nanotechnology. The NPs work synergis-
tically with the conjugated plant extract, enhancing anticancer activity and biocompatibility.
Using green nanotechnology to treat cancer provides the exciting prospect of inducing
apoptosis while causing minimal damage to healthy cells surrounding the TME. Due to the
toxicity challenges associated with chemical synthesis, the possibility of novel green syn-
thesis methods emerging to overcome this problem is imminent. More research is needed
to fully understand the various mechanisms involved in reducing organic and inorganic
salts to produce NPs by the various green synthesis techniques. Green nanotechnology
still has many unknowns to unravel and much to accomplish. Plants especially contain
bioactive molecules that can act as reducing agents in NP synthesis. One such compound
is curcumin.

Curcumin, due to its range of biomedical properties, including anticancer activity, has
attracted the attention of researchers. Curcumin’s limited solubility in water, crystalline
form, and low bioavailability have led to the formulation of nanocurcumin. Nanocurcumin
enhances the cellular uptake, antitumor properties, tissue specificity, and pharmacokinetics
of the conjugated therapeutic agent. The synthesis of inorganic and metal NPs by curcumin
reduction especially has yet to be taken advantage of. This reduction process leads to the
curcumin capping of the NPs, imparting synergistic activity with the therapeutic cargo.
Optimizing synthesis protocols for the further application of curcumin capped-NPs is
necessary to ensure these NPs are inexpensive, non-toxic, and can be formulated on a large
scale for commercial use. Great potential lies in the curcumin reduction of metal salts to
produce metal NPs such as gold and silver, which are commonly chemically synthesized,
and improve their potential as delivery vehicles in cancer therapy. Comparative studies of
chemical versus green synthesis need to be undertaken before definitive conclusions can be
made. The crucial properties such as stability, toxicity, size, and shape must be optimized.
The challenges of controlling the size and shape using curcumin or other green synthesis
methods must be overcome.

Most of the research to date has been carried out in preclinical models at the proof-
of-concept stage. Overall, there is still a significant dearth of knowledge about the full
impact of curcumin and its capped NPs and their long-term risks in humans. Hence, before
introducing curcumin-synthesized nano-formulations to the pharmaceutical sector, more
in vitro and in vivo studies are required before clinical trials can be undertaken.
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