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Abstract 

Traditional Chinese medicine (TCM) plays an important role in the global traditional health systems. However, adulter-
ated and counterfeit TCM is on the rise. DNA barcoding is an effective, rapid, and accurate technique for identifying 
plant species. In this study, we collected manuscripts on DNA barcoding published in the last decade and sum-
marized the use of this technique in identifying 50 common Chinese herbs listed in the Chinese pharmacopoeia. 
Based on the dataset of the major seven DNA barcodes of plants in the NCBI database, the strengths and limitations 
of the barcodes and their derivative barcoding technology, including single-locus barcode, multi-locus barcoding, 
super-barcoding, meta-barcoding, and mini-barcoding, were illustrated. In addition, the advances in DNA barcoding, 
particularly identifying plant species for TCM using machine learning technology, are also reviewed. Finally, the selec-
tion process of an ideal DNA barcoding technique for accurate identification of a given TCM plant species was also 
outlined.
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Introduction
Traditional Chinese medicine (TCM), including Chinese 
herbal medicine, continue to receive international rec-
ognition. TCMs have been widely used in the traditional 
Chinese medical systems and diet therapy. At the same 
time, TCMs also play an important role in the global tra-
ditional health system, not only as food additives, but 
also as some of the bioactive medical ingredients, such 
as artemisinin and paclitaxel, etc., which have made a 
splash in the traditional herbal drug market [1, 2]. In the 
past decade, the global market for herbal products has 
expanded, and there has been an increase in the export 
and import of traditional medicinal products worldwide 
[3]. Especially, following the outbreak of coronavirus 

disease 2019 (COVID-19) in 2019, the National Health 
Commission of the People’s Republic of China recom-
mended a combination of traditional Chinese, such as the 
Huoxiang Zhengqi capsule [4], Lianhua Qingwen capsule 
[5], among others, and Western medicine for treating the 
disease. According to the National Bureau of Statistics of 
China, the turnover of the Chinese herbal medicine mar-
ket in 2019 reached 165.3 billion yuan for the domestic 
market and $6.175 billion for the international side. The 
increased demand for natural products has created the 
need to ascertain the authenticity of TCMs’ species.

The authentication of Chinese herbal medicine spe-
cies began 5000 years ago. For conventional authentica-
tion, ancient people generally relied on the flowering and 
fruiting period of Chinese herbal medicine, as this period 
is easier and more convenient to authenticate. However, 
this method faces numerous problems: first, the conven-
tional authentication is limited in species identification 
without relating to the quality of TCM. Secondly, the 

Open Access

Chinese Medicine

*Correspondence:  gaoxxia91@163.com

2 School of Pharmacy, Guangdong Pharmaceutical University, 
Guangzhou 510006, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13020-022-00655-y&domain=pdf


Page 2 of 17Zhu et al. Chinese Medicine          (2022) 17:112 

required features are only visible during specific periods 
and need to be authenticated by experts with extensive 
personal experience. Currently, understanding plant and 
animal genetics has facilitated the invention of species 
authentication technologies. DNA barcoding has become 
an extremely widely used technology in molecular 
marker-based species authentication technologies, given 
its standardization, minimization, and scalability. DNA 
barcoding is now widely used for the rapid identification 
of TCM species.

In this study, we aim to: ① discuss the dynamics and 
application prospects of DNA barcoding and its deriva-
tive technologies; ② address the issue of accessing the 
optimal barcodes to authenticate common Chinese 
herbal species; ③ outline processes for selecting the 
appropriate technologies for identifying given traditional 
Chinese herbal species.

Prevalent adulteration in current Chinese herbs 
industry
The TCM industry has rapidly expanded over the past 
years. Accordingly, the competition resulting from the 
growing demand for TCM is a key factor of concern. The 
trend of the TCM industry is shown in Fig. 1. Along with 
the growing TCM market, there has been an increase in 
poor quality/fake herbal products, as shown in Table  1. 
Han et al. investigated 1260 valid samples of 295 medici-
nal species from 7 TCM markets in China and found that 
about 4.2% were found to be adulterated [6]. The preva-
lent problem deteriorated in 2018. Another research 

investigating 400 seeds for TCM products found that 
7.5% of the samples were incorrectly labeled [7].

The emergence of fake and poor-quality TCM has been 
attributed to the profit-seeking businessmen who gained 
improper benefits from cheaper and more profitable 
adulterants with similar shapes or vernacular names that 
may lead to confusion in species identification, or during 
the manufacturing process [8–10]. In view of the above, 
either accidental or intentional, the emergence and 
increase in the number of fake TCMs on the market are 
alarming. This problem has an unpredictable impact on 
the subsequent clinical use and efficacy of Chinese herbal 
medicine and hinders the progress in the development of 
precision medicine. Therefore, there is an urgent need for 
rapid and simple inspection procedures for validating the 
authenticity of Chinese herbal materials.

One of the solutions: origins and development 
of DNA barcoding
The identification of TCM has four major development 
stages, including sensory evaluation, microscopic identi-
fication, physical, and chemical identification (e.g. high-
performance liquid chromatography (HPLC) [11]) and 
DNA-based molecular identification. The former three 
stages have some limitations in distinguish authentic 
from fake medicinal materials accurately. The efficacy of 
the authenticity of TCMs is affected by numerous factors 
such as the harvesting time, the complexity of the mate-
rials, and uncertain bioactive substances. To address this 
issue, researchers have gradually turned their attention to 

Fig. 1 The trends of TCM products trade volume (US million $) in the last 10 years (Data source comes from China Chamber of Commerce for 
Import & Export of Medicines & Health Products, http:// en. cccmh pie. org. cn/)

http://en.cccmhpie.org.cn/
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DNA-based molecular identification of medicinal herbs. 
DNA barcoding can be used for quality control of Chi-
nese herbal medicine by validating the identity of the cor-
responding species.

The concept of applying DNA barcodes to identify spe-
cies was first proposed by Hebert et al. in 2003 [12]. The 
technique was successfully used in animals and fungi 
by using the 5ʹ end of the cytochrome oxidase I (COI) 
from the mitochondrial gene. COI barcode is a haploid, 
uniparentally-inherited, single-locus gene with high dis-
criminatory power. The gene does not frequently dis-
play drastic length variation, strong secondary structure, 
micro-inversions, or frequent mononucleotide repeats 
in animals [13]. Combined with well-developed primer 
sets, the COI barcode method is easy to perform and 

accurately identifies animal species. However, the COI 
barcode is unsuitable for plant identification because 
mitochondrial genes in plants are slowly evolving with 
very low substitution rates [14].

Researchers have turned their attention to chloroplast 
and nuclear genomes to find more powerful barcodes in 
plant species. In the last two decades, major standard sin-
gle-locus candidate barcodes have been proposed: ITS, 
ITS2, matK, rbcL, psbA-trnH, and trnL–trnF, which dis-
criminate plants species with high accuracy. However, it 
was found that a single barcode was not enough to iden-
tify all plants, which necessitated the use of multi-locus 
DNA barcodes. The Consortium for the Barcoding of 
Life (CBOL) Plant Working Group proposed a combina-
tion of matK and rbcL locus to enhance the accuracy of 

Table 1 Experiment evidence-based existing substitutes or adulterants for Traditional Chinese medical herbs

S.no Latin name of Traditional Chinese medical herbs Chinese name Substitutes or adulterants References

1 Lonicerae japonicae Flos Jinyinhua Eucommiae Folium or Lonicerae Flos [100]

2 Angelica sinensis Danggui Angelica amurensis [126]

3 Pulsatilla chinensis Baitouweng Potentilla chinensis [127]

4 Ficus hirta Wuzhimaotao Gelsemium elegans [128]

5 Veronica officinalis L Popona Veronica chamaedrys L [11]

6 Cynanchi Atrati Radix et Rhizoma Cangshu Ampelopsis japonica [38]

7 Cynanchi Atrati Radix et Rhizoma Baiwei Cynanchum mongolicum or Cynanchum inamoenum

8 Artemisia annua L Huanghuahao other species of Artemisia(e.g. Artemisia argyi) [78]

9 H. rhamnoides ssp. Sinensis Shaji Nitraria tangutorum/Sorbus pohuashanensis /Berberis 
vulgaris

[107]

10 Zanthoxylum armatum Zhuyehuajiao Zanthoxylum schinifolium [129]

11 Panax notoginseng Sanqi Panax vietnamensis var. fuscidicus [20]

12 Hyoscyami Semen (seeds of Hyoscyamus niger L.) Tianxianzi seeds from Hygrophila salicifolia (Vahl) Nees [130]

13 Cuscuta australis R. Br. and C. chinensis Lam Tusizi Cuscuta japonica Choisy [7]

14 Atractylodis Rhizoma Cangzhu Atractylodes koreana (Nakai) Kitamura [62]

15 Notopterygii Rhizoma et Radix Qianghuo Sanguisorbae Radix (Diyu, Sanguisorba officinalis L.)

16 Tripterygum wilfordii Leigongteng Celastrus angulatus [131]

17 Arisaematis rhizoma Tiannanxing Pinellia pedatisecta [34]

18 Tinospora crispa Lübaoteng Tinospora baenzigeri [61]

19 Rhizoma Paridis Chonglou Polygonum paleaceum Wall [132]

20 Dipsacus asper Chuan-xuduan Dipsacus japonicus [37]

21 Akebiae Caulis Mutong Aristolochiae manshuriensis Caulis/Clematis armandi [62]

22 Clematidis Armandii Caulis Chuan-mutong Akebiae Caulis

23 Alisma orientale Zexie Alisma plantago-aquatica

24 Bupleuri Radix Chaihu Bupleurum marginatum

25 Orthosiphon stamineus Maoxucao Clinacanthus nutans [60]

26 Aquilaria (Thymelaeaceae) Chenxiang Memecylon sp. (Melastomataceae) and Strychnos sp. 
(Loganiaceae)

[133]

27 Berberis aristata Xiaobo Berberis asiatica [134]

28 Ocimum sanctum Shengluole Vitex negundo [135]

29 Bacopa monnieri Jiamachixian Centella asiatica

30 Inulae Flos Xuanfuhua Inula linariifolia [136]

31 Sophorae Flos Huaihua Robinia pseudoacacia
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species discrimination [14, 15]. Chen et al. then proposed 
the ITS2 + psbA-trnH for the DNA barcoding system for 
identifying botanical medicinal herbs [16].

The invention of next-generation sequencing (NGS) 
technology and the emergence of the third-generation 
sequencing technology have further enhanced the devel-
opment of the DNA barcode-derived technologies in 
identifying Chinese herbal medicine species. The current 
DNA barcode derivative techniques include super-bar-
coding, meta-barcoding, and mini-barcoding. For exam-
ple, (i) mini-barcoding can identify species from highly 
degraded DNA [17, 18]; (ii) meta-barcoding is useful for 
species richness analysis in a sample containing a mixture 
of species [19, 20]; (iii) super-barcoding based on plant 
chloroplast genome is used for species relatedness [21, 
22]. The advance in sequencing technology facilitated the 
improvement of DNA barcoding from detecting a single 
herb in Chinese medicine to simultaneously detecting 
several herbs in a Chinese herbal medicine cocktail [23], 
influencing the selection and utilization of DNA barcod-
ing. These three DNA barcoding-based technologies have 
broadened the applications and enhanced the practicality 
of DNA barcoding. Data mining and analysis tools have 
strengthened the application of DNA barcoding-based 
technologies, which could effectively identify biological 
systems in Chinese herbal medicines [24].

Although DNA barcoding technology’s accuracy is 
increasing daily, this technique faces numerous chal-
lenges, such as inadequate standard reference librar-
ies, low success rate of PCR amplification and PCR bias. 
Despite these problems, the application of DNA barcod-
ing is rising due to its easy operation, high identification 

success rate and repeatability. For the quality control 
technology of TCM materials, especially in plant species 
of TCM, single technology identification of TCM mate-
rials and Chinese patent medicines (CPMs) has certain 
one-sidedness and, thus, combining several technologies 
is required [23]. Therefore, we recommend combining 
several identification methods to achieve comprehensive 
and accurate identification of TCM with DNA barcoding.

Standard single‑locus DNA barcoding
DNA barcoding technology has been used in TCM iden-
tification. The number of publications and sequences of 
different barcodes are rapidly increasing. According to 
the CBOL Plant Working Group and the number of pub-
lications on DNA barcoding between 2010 and 2020, 
ITS and ITS2, rbcL, matK, trnL–trnF, psbA-trnH, ycf1, 
and rpoC1 are the seven major plant barcodes that have 
attracted the most attention [25]. Based on the number of 
DNA barcode sequences in the NCBI database collected 
(Fig. 2), we found that: (i) ITS and ITS2 are the predomi-
nant barcodes. Since 2010, the number of ITS and ITS2 
barcodes have been booming. ITS2 region can not only 
discriminate plant taxa from different plant families but 
can also distinguish closely related taxa at the genus 
and species levels [16, 26]. Accordingly, ITS and ITS2 
sequences should be utilized more in the future; (ii) rbcL 
(179,816 items), matK (174,431 items), and trnL–trnF 
(159,360 items) are the second most dominant barcodes, 
possibly because they can be used as multi-locus DNA 
barcodes. The number of publications on trnL–trnF has 
increased to 10,000 in 2021; (iii) reasons assumed for the 
slow growth of rpoC1 (15,387 items) and ycf1 (16,344 

Fig. 2 The growth of sequences number of major DNA barcoding of plants in NCBI Genbank
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items) might be attributed to the long gene sequences 
(5709  bp for the ycf1 gene of Nicotiana tabacum) and 
lower discriminatory power [27–29]. Several genes, 
including atpF-atpH, ndhF-rpl32, and psbK–psbI, are 
potential barcoding candidates. These targets are not so 
popular in recent publications (less than 1%), probably 
because of their relatively low discrimination ability, poor 
universality in different taxa, or unsatisfactory amplifi-
cation rates [28, 29]. Generally, the sequence number of 
standard single-locus DNA barcodes is still increasing.

ITS and ITS2
The internal transcribed spacer (ITS) region of the 
nuclear ribosomal cistron is the most usually sequenced 
locus for systematic molecular investigations of TCM at 
the lower-taxa levels, including the genera, species, and 
subspecies [30]. ITS offers the advantages of generality, 
simplification, high copy number, interspecific variability, 
and intraspecific uniformity [31]. ITS has been used as 
a universal barcode for distinguishing more than 21,722 
plant species and is recommended for validating the 
authenticity of Chinese herbal medicine [32]. However, 
certain limitations hinder its application for Chinese 
herbal medicine barcoding: incomplete concerted evolu-
tion as well as difficulties of amplification and sequenc-
ing [29]. ITS2, a non-coding nuclear DNA between 
5.8S rRNA and 25S rRNA genes, can distinguish closely 
related taxa at the family, genus, and species levels [26, 
33].

ITS2 has strengths in variability, sequence quality and 
high inter-specific and intra-specific divergence power 
[16, 26, 34]. ITS2 can identify 92.7% of species correctly 
in more than 6600 samples obtained from 4800 species 
in 753 genera [16, 26], such as Cynanchum auricula-
tum [35], Acanthopanacis [36], Dipsacales [37], Xueteng 
[38]. Besides, the secondary structures of ITS2 provided 
additional information that enhances the species’ dis-
crimination [39–42]. ITS2 could be used as an alternative 
mini-barcoding when a full-length ITS is not available 
and can correctly identify R. rosea. [43], and U. lanosa 
[42], among many other species. Currently, effective 
experimental methods have been developed to avoid fun-
gal contaminants. The Hidden Markov Model (HMM) 
fungus model proposed by the Florida State University 
can remove fungal contaminating sequences, enhancing 
the reliability of the data. Meanwhile, the risk of fungal 
contamination can be effectively reduced by cleaning 
the surface of herb roots and scraping off the cortex dur-
ing sampling. ITS2 could be used to identify herbs in a 
broader range of plant taxa [26, 44–49], including her-
barium specimens with degraded DNA [50]. Accordingly, 
it is suitable for authentication of traditional Chinese 
herbal medicine powder.

Although ITS2 has many strengths, it is not ideal for 
identifying ferns [51, 52]. A major concern is the exist-
ence of multiple copies in ITS2 with high levels of 
within-species and even within-individual sequence dif-
ferentiation [53]. Furthermore, heterogeneity is an issue 
for ITS2 due to concerted evolution, which may lead to 
inaccurate or misleading results [54, 55].

matK
The high sequence variation and sequencing efficiency 
rates, evolution, PCR amplification, suitable sequence 
length, accurate discrimination of angiosperms [53, 56, 
57], and the intra and inter-specific divergence distinc-
tion in the barcoding gap [58] indicate matK is a useful 
DNA barcode for plants. This barcode has been used for 
nearly 5 years to accurately identify Paeonia suffruticosa 
[59], Veronica officinalis [11], etc. Despite this, there is a 
need to develop universal primers for the identification of 
plant species.

rbcL
As one of the best potential barcode candidates, rbcL can 
discriminate plants at the family and genus level [60]. 
The remarkable advantages of rbcL are high primer ver-
satility, easy amplification and alignment, and high dis-
crimination power [25]. Recent studies used this barcode 
to identify plants in Tinospora [61], Aceraceae [62], and 
Artemisia [30] genera, among others.

rbcL has a relatively low interspecific identification 
power and is generally used for genetic variation tests. As 
a separate candidate sequence, it is unsuitable due to this 
region evolves slowly, implying that its discriminatory 
power is restricted [33]. Recently, researchers have indi-
cated that poor discrimination of closely related species 
limits its utility in detecting ingredient substitutions [62], 
indicating that it should be used alongside other potential 
barcodes.

psbA‑trnH
The psbA-trnH barcode, one of the fastest evolving 
regions in the chloroplast genome, is the interval between 
both trnH (H-GUG) sequence ends and both sides of the 
psbA gene. Usually, psbA-trnH has better primer univer-
sality, a relatively high amplification success rate, and is of 
good length. Therefore, it can be used to amplify biode-
graded samples. These features are especially suitable for 
the level of species and the higher taxonomic level [63, 
64]. psbA-trnH regions can accurately discriminate mem-
bers of Dendrobium [65] and medicinal pteridophytes 
(90.2% of species could be accurately identified) [66], and 
Mentha haplocalyx [67].

Meanwhile, due to the repeated loci, pseudogenes, and 
high insertion/deletion rate, the length of psbA-trnH vary 
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significantly in different groups [28, 68]. As such, manual 
correction is required for psbA-trnH sequence analy-
sis, making it difficult to compare different genera and 
species.

trnL–trnF
The trnL–trnF region is located in the large single-copy 
region of the chloroplast genome, which consists of the 
trnL gene and the trnL–trnF intergenic spacer [69]. The 
trnL–trnF region has been considered for accurate dis-
crimination of plants at the lower taxonomic levels. 
The region has a high nucleotide conversion rate, which 
causes a relatively high genetic variation and provides 
sites with more systematic taxonomic information. The 
trnL–trnF region has been used in systematic taxonomic 
studies of the Elytrigia lolioides [70], the Apocynaceae 
[71], and Radix et Rhizoma Rhei [72], among others. 
Although mononucleotide repeats can impact sequenc-
ing reads in some taxa, this barcode is generally simple to 
sequence [29].

Other standard single‑locus DNA barcoding
Besides standard single-locus DNA barcoding mentioned 
above, many other DNA sequences, including ycf1 [73], 
rpoC1 [28], ycf5 [26], accD [28], ndhJ [28], and ndhF-
rpl32 [74] have been used for identifying Chinese herbal 
medicine. This DNA barcoding mentioned above is 
absent in some major groups of land plants. For instance, 
ycf1 is absent in Poaceae [27], whereas ndhJ is absent in 
pines [75], or it just has lower discriminatory power [25]. 
Therefore, they are not widely considered accurate plant 
standard barcodes for identifying Chinese herbal medi-
cine [76].

Multi‑locus DNA barcoding
Several studies have demonstrated the difficulties of dis-
criminating between all plants using a universal DNA 
barcode [77, 78]. Conflicting results have sometimes been 
found for related species when using certain barcodes, 
whereas a single locus barcode does not sufficiently pro-
vide the evolutionary distinctions required to distinguish 
related species. Considering the requirements for accu-
rate discrimination and satisfactory genetic information, 
multi-locus DNA barcoding is more preferable. Multi-
locus DNA barcoding is gradually being accepted for 
accurate identification of TCM.

Multi-locus DNA barcoding represents a practi-
cal solution to reach a trade-off between universality, 
sequence quality, discrimination, and cost. At first, Kress 
et al. suggested that ITS + psbA-trnH have the potential 
to discriminate against numerous plant species [33]. The 
CBOL Plant Working Group evaluated seven chloroplast 
genomic regions and proposed the 2-locus matK + rbcL 

plant barcode in an international conference since matK 
provides high resolution but less universality, whereas 
rbcL provides high universality but less species resolution 
[25]. Researchers believed combining these two barcodes 
could achieve maximum species discrimination [29]. To 
achieve higher discrimination in closely related species, 
the China Plant BOL Group proposed to add the nuclear 
ITS (internal transcribed spacer) to the matK + rbcL 
combination [79]. Chen et  al. first proposed the ITS2 
sequence as a universal barcode for medicinal plant iden-
tification and the ITS2 + psbA-trnH combination as a 
DNA barcoding system for identifying botanical medici-
nal herbs [26]. The advantages of multi-locus barcoding 
are that the results can be mutually verified and comple-
mented and can discriminate among numerous species. 
This combination demonstrated the excellent reliability 
for species authentication, and researchers have identi-
fied more than 23,262 different species for Chinese, Japa-
nese, Korean, and European herbal medicine [36, 79]. 
Among the top ten Chinese herbal medicine and decoc-
tion of processed materials exported in 2019, five were 
identified using multi-locus barcoding: Pinellia hunanen-
sis using matK + rbcL [29], Panax ginseng C.A. Meyer and 
Radix Astragali using psbA-trnH + ITS [26, 81], Zizyphus 
jujube using ITS2 + psbA-trnH [82], Angelica sinensis 
using ITS + rbcL + matK + psbA-trnH (slightly better dis-
criminatory power than ITS) [27].

Although it still failed to meet the original goal of the 
universality of DNA barcoding and the differentiation 
of closely related complex groups is still uncertain, the 
multi-locus approach of combining different barcodes 
has been successful in certain cases, including species 
discrimination [28, 29]. In general, the discrimination of 
Chinese herbal medicine species using DNA barcoding is 
still under research and development.

Super‑barcoding
In 2008 at the Botany without Borders conference, it was 
pointed out that the chloroplast genome contains about 
as much information as the short mitochondrial bar-
code sequence used in animals [83]. With the need for 
accurate identification of certain closely related species, 
scholars proposed the concept of super-barcoding (ultra-
barcoding), which means sequencing the whole plastid 
genomes as a barcode [83]. Here, the whole organelle’s 
genome or large (greater than 5 kb) contiguous portions 
of the nuclear genome are sequenced and assembled 
[21]. Compared with the nuclear genome, the chloro-
plast genome is smaller and has a higher interspecific and 
lower intraspecific divergence [53]. Therefore, sequenc-
ing the chloroplast genome is more common.

Super-barcoding is a promising approach for identify-
ing Chinese herbal medicine and has many advantages, 
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including ① circumventing gene deletion problems, 
locus choice, and low PCR recovery rate often encoun-
tered in the conventional barcoding [84], ② higher 
resolution, and better versatility [21], and ③ can be sup-
plemented the traditional DNA barcoding. Compared 
with traditional barcoding, super-barcoding enhances 
the identification of closely related groups, including 
accurate discrimination of subspecies. For instance, the 
super-barcoding was shown to successfully distinguish 
closely related species such as Araucaria spp. (Aruac-
ariaceae) [85] and Echinacea (Asteraceae) [86], especially 
for taxonomically complex groups, e.g., Camellia spp. 
(Theaceae) [87], Chinese herbal medicine Epimedium 
spp. (Berberidaceae) [88], Fritillaria spp. (Liliacae) [89] 
and Taxus (Taxaceae) [84]. Super-barcoding often uses 
high-throughput next-generation sequencing (gener-
ally in massively parallel sequencing) to scan the genome 
and generate a reliable sequence of high copy number 
regions. It gets more information sites and expands the 
traditional barcode regions (standard single-locus bar-
coding) to their full, many-kilobase length [21]. This 
method increases the density and phylogenetic cover-
age of the complete plastid genome sequence and is 
expected to accurately identify traditional Chinese herbal 
medicines.

The main stumbling blocks for super-barcoding are the 
cost and the requirement for high quality and quantity of 
DNA, large next-generation sequence data generated as 
well as large amounts of next-generation sequence data 
needed to deal with [21]. Besides, the variation present 
over short regions may be too low to distinguish recently 

diverged taxa because evolution is generally slow in the 
plastid genome [90].

With the increasing number of the whole chloroplast 
genomes in GenBank (Fig.  3), it is foreseeable that the 
super-barcoding application in TCM herbs will be wider 
than standard plant DNA barcoding in the coming years. 
Super-barcoding does not override the need for contin-
ued use of traditional barcode methods but rather pro-
vides necessary data to examine variation below the 
species level [21]. Continued advances in sequencing 
technology may make super-barcoding the choice for 
plant identification at the intra-species or population lev-
els in the future [32].

Meta‑barcoding
Currently, a new DNA barcoding-based method for rap-
idly and simultaneously identifying numerous taxa (i.e., 
different Chinese medical herbs) in a single environ-
mental sample (i.e., multi-ingredient traditional CPMs) 
has been developed. The emergence of DNA meta-
barcoding has been facilitated by the availability of the 
next-generation sequencing platforms and the need for 
high-throughput taxon identification. In 2012, meta-
barcoding was defined as “designate high-throughput 
multispecies (or higher-level taxon) identification using 
total but degraded DNA extracted from an environ-
mental sample (i.e., soil, water, feces, etc.)” [91]. DNA 
meta-barcoding to identify samples include ① collect-
ing mixed-species environmental DNA samples (obtain 
raw materials), ② sample processing (DNA extrac-
tion and PCR amplified sequences), ③ next-generation 

Fig. 3 The total number of complete plant chloroplast genome sequences to GenBank from 2010 to 2021
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sequencing, ④ data analysis (obtain clean data and OTUs 
from raw data), and ⑤ species identification [92].

The greatest advantage of DNA meta-barcoding is its 
ability to identify every species in a complex sample or 
processed mixtures simultaneously. Even so, the appli-
cation of DNA barcoding and conventional analytical 
methods are considerably limited [23]. The CPMs’ com-
ponents are complex, and the sample DNA is degraded 
seriously. Thanks to high accuracy, DNA meta-barcoding 
can measure the components of CPMs simultaneously 
with high coverage and, thus, override the aforemen-
tioned problems. Thus, meta-barcoding is increasingly 
used for detecting CPMs’ components. For instance, an 
Australian team identified barcodes for CPMs, including 
animal and plant medicines, in the form of tablets, cap-
sules, powders, and herbal teas [93]. The potential power 
of DNA meta-barcoding is the ability to reveal plant spe-
cies diversity within processed products. For example, it 
has successfully identified Veronica species, and detected 
substitution or admixture of other Veronica species in 
V. officinalis herbal products [11]. The main medicinal 
plants in the CPMs, including Lonicera japonica Thunb., 
Forsythia suspensa, and Angelica pubescens have been 
identified using DNA meta-barcoding [94].

However, the potential applications of DNA meta-
barcoding are limited by the PCR success rate and the 
considerable investment in building comprehensive taxo-
nomic reference libraries [95]. Also, sequencing errors in 
high-throughput sequencing are still inevitable.

DNA meta-barcoding can simultaneously detect mul-
tiple species from complex samples and facilitates spe-
cies diversity assessment in processed products, which 
is extremely important for validating the authenticity of 
products in Chinese medicinal plants [23]. Therefore, this 
method can rapidly and accurately identify TCM, includ-
ing Chinese herbal medicine. However, meta-barcoding 
should be used in combination with other appropriate 
chemical methods.

Mini‑barcoding
Due to the common DNA degradation in TCM, it is dif-
ficult to obtain the full-length sequence data using the 
traditional standard barcodes. Mini-DNA barcoding 
technology can override this limitation. Mini-barcoding 
can utilize incomplete, relatively short sequences from 
standard DNA barcodes to identify different species, 
which is useful for degraded DNA preservation. Overall, 
it improves the identification accuracy of species [96, 97]. 
One of the most common mini-barcode regions is trnL 
(UAA) intron. The P6 loop of the chloroplast trnL (UAA) 
intron can be robustly amplified with highly conserved 
primers from degraded DNA samples [95, 98]. Therefore, 
it can be used to identify the components in processed 

medicinal materials up to the species or genus level [18]. 
Other common mini-barcoding regions include the 
shorter ycf1a and ycf1b [99], short region in ITS2 [100–
102], and short region in rbcL [103].

Mini-barcoding has been successfully used to identify 
traditional Chinese herbal ingredients such as Angeli-
cae sinensis radix, Ligusticum sinense, and Notopteryg-
ium incisum, among others [102]. Currently, it has been 
applied to identify the traditional medicinal plant Rho-
diola (Crassulaceae) [43], distinguish members of the 
Apiaceae family [104], and discovery of numerous spe-
cies in Metazoa [105] and more natural herbal products 
[17]. Nonetheless, the few nucleotides often limit taxo-
nomic discrimination using mini-barcoding, resulting in 
the main limitation of mini-barcoding being the resolu-
tion [97, 106]. An acceptable resolution not only depends 
on the accurate species identification but also on whether 
reference sequence data is sufficient. To fully maximize 
the power of mini-barcoding, more reference sequences 
need to be added to the databases.

Due to the shorter molecular markers of mini-barcode, 
different physicochemical technologies can be combined 
to identify Chinese herbal samples rapidly. For example, 
sea buckthorn (Hippophae) were accurately identified in 
Chinese herbal products using a combination of mini-
barcoding and high-resolution dissolution (HRM) [107]. 
In the future, Mini-barcoding may become a comple-
mentary barcoding technique to identify traditional Chi-
nese herbal medicine [18].

Applications of the current DNA barcoding 
techniques for authenticating Chinese herbal 
medicine
We selected 50 common Chinese herbal medicines in the 
Chinese pharmacopoeia based on the published papers 
on TCM and DNA barcode identification in recent years. 
The barcode choices are shown in Table 2. We found that 
DNA barcoding has been used for large-scale identifica-
tion of Chinese herbal medicines. We also summarized 
the preferred barcodes for different families or genera 
based on published papers (Table  3). Each species has 
a specific most ideal barcode, called “specific barcode”. 
A specific barcode may include one of the single-locus 
barcodes (e.g., matK or psbA-trnH) or could be based 
on new markers never used before [52]. Tables  2 and 3 
summarize the recent developments in DNA barcoding 
for identifying Chinese herbal medicine species and the 
preferred DNA barcode for specific plants.

In recent years, with the continuous development of 
high-throughput sequencing technology and DNA bar-
code research, genomics is increasingly being applied 
to identify Chinese herbal medicine. Genome capture 
of nuclear markers has attracted researchers’ attention, 



Page 9 of 17Zhu et al. Chinese Medicine          (2022) 17:112  

Table 2 Applications of DNA barcoding and DNA sequence-based markers in the identification of Chinese herbs

Name Plant parts Chinese herbs name (Pinyin) Barcoding markers used References

Ephedra – mahuang ITS2 [80]

Salvia miltiorrhiza Root and rhizome danshen ITS2 [51]

Angelica sinensis Root danggui ITS2 and psbA-trnH [102]

Bupleurum Root chaihu ITS2 [137]

Eucommia Bark duzhong ITS2 [138]

Notoginseng Root sanqi ITS2 [139]

Szechwan lovage Rhizome chuanxiong ITS2 and psbA-trnH [140]

Schisandra Fruit wuweizi (beiwuweizi) ITS2 [141]

Atractylodes Rhizome baizhu ITS2 [142]

Astragalus mongholicus Root huangqi ITS2 [143]

Baical skullcap Root huangqin psbA-trnH [144]

Angelica dahurica Root baizhi ITS [145]

Isatis Root banlangen ITS2 [146]

Peony root, white – baishao ITS2 [59]

Peony root, red – chishao ITS2 [59]

Carthamus tinctorius L. Flower honghua ITS2 [147]

Coptis chinensis Franch Rhizome huanglian ITS2 [26]

Cape jasmine Fruit zhizi matK [120]

Codonopsis Root dangshen ITS + matK [32]

Magnolia oficinalis Bark houpo ITS2 [138]

Uncaria Stem gouteng ITS and ITS2 [42]

Platycodon Root Jiegeng ITS2 [148]

Angelica pubescens Root duhuo ITS [32]

Thomson kudzuvine Root fenge ITS2 [26]

Kudzuvine Root gegen(yege) ITS2 [26]

Gastrodia Rhizome tianma matK [120]

Evodia Fruit wuzhuyu ITS2 [47]

Fleeceflower Root heshouwu matK + rbcL + psbA-trnH + ITS2 
or psbA-trnH

[32]

Coix Seed yiyiren ITS2 [7]

Andrographis – chuanxinlian matK [120]

Lightyellow sophora Root kushen ITS2 [147]

Achyranthes bidendata Root niuxi ITS2 [26]

Anemarrhena asphodeloides Rhizome zhimu trnL-trnF [32]

Akebia Stem mutong ITS2 [42]

Aucklandia Root muxiang ITS2 [26]

Atractylodes lancea Rhizome cangzhu ITS2 [42]

Lycium barbarum L. Fruit gouqizi ITS [42]

Corydalis Rhizome yanhusuo ITS2 [26]

Typhae Pollen puhuang ITS2 [147]

Polygonum cuspidatum Rhizome and root huzhang psbA-trnH [32]

Moutan Bark mudanpi ITS2 [1]

Drynaria Rhizome gusuibu psbA-trnH [32]

Prunella vulgaris L. Rhizome and root xiakucao ITS2 [51]

Amomum Fruit sharen ITS2 [147]

Belamcanda chinensis Rhizome shegan rbcL [149]

Piper longum L. – bibo matK + ITS [149]

Sophora Flower huaihua ITS2 [33]

Piper Nigrum L. – hujiao matK + ITS [150]

Zanthoxylum bungeanum Pericarp huajiao ITS2 [150]
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and the genome skimming approach can bridge the gap 
between the standard barcode and genome sequenc-
ing [108]. Research on TCM genomics with TCM origi-
nal species has achieved tremendous success [109–111]. 
However, the huge workload posed by data processing 
and sequencing cost is significantly higher than the cost 
of common barcode sequencing. It is not necessary to 
use genomics to identify plant species of TCM.

Regarding data mining, some studies suggest that 
machine learning methods can identify species using 
DNA multi-locus barcoding or just standard single-locus 
barcoding [112, 113]. Machine learning is based on build-
ing algorithms that receive input data for calibration and 
statistical analysis of the output value within an accept-
able range. The common DNA barcode analysis meth-
ods in machine learning include BLOG (Barcoding with 
LOGic) and WEKA. Currently, eight Dalbergia tim-
ber species use SMO, a classifier, as part of the WEKA 
approach [114–116]. This approach resulted in the best 
(98–100%) discrimination, and the two-locus combina-
tion of ITS2 + psbA-trnH showed the highest success 
rate [112]. The character-based DNA barcode method 
in BLOG 2.0 was applied to classify members of the Epi-
medium genus. It was found that psbA-trnH + ITS and 
psbA-trnH + ITS + rbcL exhibited the highest identifica-
tion ability [117]. Machine learning and DNA barcoding 
technology are intertwined in two different fields. With 

the help of machine learning, the application of DNA 
barcoding technology in the identification of TCM will 
be strongly promoted in the future.

The increasing use of DNA barcoding is due to the 
emergence of more available sequence data and infor-
mation for machine learning and the regular update of 
public DNA barcode databases. Currently, DNA barcod-
ing is widely used in authenticating medicinal materials 
in TCM, inseparable from the continued development of 
public barcode databases. As one of the most common 
databases, Chen et  al. constructed a large-scale DNA 
barcode platform (http:// www. tcmba rcodi ng. cn), widely 
used to identify herbal materials for varied needs [79]. 
This database is a collection of barcode sequences for 
herbs, including Chinese, Japanese, Korean, Indian, and 
European pharmacopeia species [7, 62, 80, 118, 119]. This 
reliable system for DNA barcoding of herbal materials 
has been established based on a two-locus combination 
of ITS2 + psbA-trnH loci barcode and contains 78,847 
sequences for 23,262 species. To be specific, this plat-
form has been used in TCM enterprises for raw herbal 
material identification [32]. This greatly speeds up the 
industrial procurement of raw materials and provides a 
standardized method for industrial identification of Chi-
nese herbal medicine. That aside, a library of genuine 
Lingnan medical herbs DNA barcodes based on ITS2 has 
been constructed, containing 1276 sequences from 309 

Table 2 (continued)

Name Plant parts Chinese herbs name (Pinyin) Barcoding markers used References

Clematis armandii Stem chuanmutong ITS2 [52]

Table 3 Preferred loci for family or genera level in plants identification

Family References Family References Genus References Genus References

ITS and ITS2 Verbena officinalis [151] Caprifoliaceae [152] Begoniaceae [153] Crassulaceae [141]

Rubiaceae [154] Apiaceae [140] Paris [155] Ilex [156]

Rutaceae [157] Euphorbiaceae [49] Amomi Fructus [158] Pulsatilla [127]

Rosaceae [49] Asteraceae [46] Viburnum [159] Panax [81]

Malvaceae [160] Aristolochia [161] Astragalus [162]

Zingiberaceae [163] Gentianaceae [164]

matK Fabaceae [119] Juglandaceae [165] Gardenia [125] Ardisia [58]

Araceae [166]

psbA-trnH Polygonaceae [167] Lauraceae [168] Rhododendron [169] Aconitum [170]

Cistanche [171] Dendrobium [65]

ycf1 Cymbidium [27]

super-barcoding Asteraceae [53] Schisandra chin-
ensis

[172] Aconitum [173] Dendrobium 
officinale

[174]

Cymbidium [87]

psbK-psbI Dendrobium [175]

http://www.tcmbarcoding.cn
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species from southern China [51]. It is used to identify 
genuine Lingnan medical herbs and the authenticity of 
the constituent ingredients, improving the standard of 
the Chinese medicine market. The Chinese University 
of Hong Kong built a Medicinal Materials DNA Bar-
code Database (MMDBD, http:// www. cuhk. edu. hk/ icm/ 
mmdbd. htm), encompassing other barcodes such as rbcL 
in seed plant species [120], ITS2 + psbA-trnH [32, 43], 
and rbcL + psbA-trnH [60, 120]. All these public DNA 
barcode databases provide a platform for identifying 
TCM plant species. It is vital to update and maintain a 
public, standard DNA barcode database. Besides, good 
practice protocols are needed to ensure such databases 
provide clear information in this respect [32].

The development of new apparatuses in recent years 
has also made this technology more practical. Based on 
the need to automate the identification of TCM, digitize 
and integrate the identification of herb-based species, the 
new Chinese herbal DNA barcoding high-throughput 
gene sequencing machine (HMBI-G30) was developed 
successfully. This new apparatus can test up to 30,000 
samples in a single run with high accuracy and reliability, 
facilitating one-stop sequence processing. Meanwhile, 
high-curvature nanostructuring-based electrochemical 
herb sensor (nanoE-herb sensor) is a direct, sequencing-
free method for identifying herbal species accurately 
[121]. The use of such portable and cheap sensors facili-
tates rapid identification of other plant species in herbal 
medicines. NanoE-herb sensor has been for the ITS2 
sequence to accurately identify herbal C. sativus in a mix-
ture of counterfeit products. The continuous innovation 
of new instruments based on the DNA barcode principle 
has facilitated the identification and standardization of 
Chinese herbal medicine.

Therefore, we hold the following views regarding the 
application prospect of DNA barcoding and its derived 
technologies. From specific species to families and gen-
era, our conclusion is captured in Figs. 4 and 5. Overall, 
a common DNA barcode can be used for organisms at 
different taxonomic units (Fig.  4). Since the standard 
single-locus barcodes ycf1 and rpoC1 are ambiguous as 
described in the papers, they are generally used in com-
bination with other barcodes in the multi-locus bar-
coding approach. Given that they are not used alone, 
they are not listed in Fig. 4. It only shows the ranges of 
common applications but does not exclude the possibil-
ity that some barcodes have higher or lower accuracy 
in identifying certain species or members of a given 
genus. For the relatively new barcoding technologies, 
the super-barcoding and meta-barcoding have high 
accuracy and resolution in the identification of spe-
cies at lower taxonomic levels. Super-barcoding and 

meta-barcoding are rarely used for primary screening 
but for verification or validation of doubtful results 
generated by the conventional standard single-locus 
barcoding or multi-locus barcoding techniques. The 
mini-barcoding has gained wider recognition because 
overly degraded DNA is difficult to identify using con-
ventional single-locus barcoding or multi-locus barcod-
ing techniques. Therefore, mini-barcoding is directly 
used for identifying plant taxonomic groups and, liter-
ally, the classification range is wider.

Based on the ranges of application of DNA barcod-
ing shown in Fig.  4 and the characteristics of each 
derivative technology summarized above, we provide a 
schematic procedure for selecting the ideal DNA bar-
code for identifying Chinese herbal medicine (Fig.  5). 
In this diagram, the high processing includes but is not 
limited to injections, pills, tablets, granules, powders, 
plasters, capsules, and other dosage forms. Traditional 
DNA barcoding is preferred to identify TCM herbs. It 
is recommended to use the traditional standard simple-
locus barcoding in a single sample. If this method fails 
and accuracy is needed, then super-barcoding should 
be applied. Meta-barcoding is the technique of choice 
for the simultaneous identification of multicomponent 
samples. Overall, meta-barcoding and super-barcoding 
have become more and more common for identifying 
species in Chinese herbal medicine [22]. Research on 
mini-barcoding has broadened the application of DNA 
barcodes and has broadened the prospects for identi-
fying Chinese herbal medicine materials from highly 
degraded DNA [99]. However, it is hard to identify all 
components in Chinese medicinal materials simultane-
ously using only the mini-barcoding [17]. Despite this, 
a combination of meta-barcoding and mini-barcoding 
has become a new trend for identifying proprietary 
Chinese herbal medicine, which has greatly promoted 
analyzing the composition of CPMs.

Fig. 4 Common DNA barcoding are typically used to identify 
different ranges of taxonomic units

http://www.cuhk.edu.hk/icm/mmdbd.htm
http://www.cuhk.edu.hk/icm/mmdbd.htm
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Future perspectives in DNA barcoding 
for validating the authenticity of TCM
DNA barcoding and its derivative technologies in com-
bination with other technologies (e.g., machine learning, 
electrochemical sensors, etc.) have achieved tremendous 
results in identifying Chinese herbal species. In the present 
paper, we summarized the development of DNA barcoding, 
both single and multi-locus barcoding widely used in vali-
dating plant species in TCM. Our research mainly focused 
on the potential development and application of DNA bar-
coding derivative technologies, including super-barcoding, 
meta-barcoding, and mini-barcoding. By carefully analyz-
ing the application of the DNA barcoding derivative tech-
nologies, we developed a schematic procedure for selecting 
the ideal DNA barcoding technique for identifying given 
species in TCM. The DNA barcoding prospects and its 
derivative technologies were also suggested.

As sequencing technologies evolve, sequencing costs 
and error rates decrease, whereas the coverage and sensi-
tivity in sequencing increase. Also, the speed of sequenc-
ing increases while the quality of data increases. However, 
it must be acknowledged that, given the complexity of the 
preparation of Chinese herbal medicines, DNA barcoding 
is not a panacea for validating the authenticity of TCM. 
Looking ahead, the following issues need to be refined to 
advance the development of DNA barcoding technologies: 
① Sampling and classification: the sampling protocols 

for DNA barcoding should be standardized. For exam-
ple, the concept of Daodi medicinal materials has been 
compared to the “terroir” concept, which means that the 
specific herbs came from designated geographic regions 
where conditions including climate, soil, and technolo-
gies of cultivation in the case of plants [122, 123]. How 
can medicinal Daodi materials and non-medicinal Daodi 
counterparts be differentiated despite being sourced from 
the same species? ② With the development of NGS and 
its wide use, the DNA barcoding developments of Chinese 
medicinal materials are gravitating towards genomics, 
which will contribute to the development of herb genom-
ics [124]. Can these DNA barcode-based technologies 
potentially upgrade from authenticity validation or detec-
tion of adulteration to authentication of herbal medicines’ 
quality based on epigenomics or epigenetics information? 
If molecular information like DNA methylation or his-
tone modifications could help authenticate quality, it will 
widen the application of these DNA barcode-based tech-
nologies, which are essential for developing TCM preci-
sion medicine. In general, we advocate for the following: 
① maintaining and updating the global plant DNA bar-
code library; ② updating the standardizing protocols for 
sampling and classifying process and ③ assessing the fea-
sibility of combining genomics and biological technologies 
such as transcriptomics (specific expression subset analy-
sis) and proteomics (specific proteome) [125]).

Fig. 5 A schematic diagram about how to choose the appropriate DNA barcoding technology for the Chinese herbal medicine identification
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Recent reports and scientific studies have highlighted 
the widespread adulteration and substitution of ingredi-
ents in TCM, which threatens the safety of consumers. In 
this review, we summarized the strengths and limitations 
of each DNA barcoding technique and its derivative iden-
tification technologies as well as recent developments in 
sequencing technology, data mining, databases, and new 
tools related to DNA barcoding. The systematic process for 
selecting the appropriate barcode or derivative technolo-
gies analyzing TCM was also outlined. As a fast and effec-
tive method of identifying Chinese herbal medicines, DNA 
barcoding and its derivative technologies can be combined 
with several other methods. In the near future, these tech-
nologies will be used for quality control of TCM at the spe-
cies level, which promotes the development of precision of 
TCM and speeds up the standardization and identification 
of herbal medicine.
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