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Central nervous system (CNS) disorders and diseases are expected to rise

sharply in the coming years, partly because of the world’s aging population.

Medicines for the treatment of the CNS have not been successfully made.

Inadequate knowledge about the brain, pharmacokinetic and dynamic errors in

preclinical studies, challenges with clinical trial design, complexity and variety of

human brain illnesses, and variations in species are some potential scenarios.

Neurodegenerative diseases (NDDs) are multifaceted and lack identifiable

etiological components, and the drugs developed to treat them did not

meet the requirements of those who anticipated treatments. Therefore,

there is a great demand for safe and effective natural therapeutic adjuvants.

For the treatment of NDDs and other memory-related problems, many herbal

and natural items have been used in the Ayurvedic medical system. Anxiety,

depression, Parkinson’s, and Alzheimer’s diseases (AD), as well as a plethora of

other neuropsychiatric disorders, may benefit from the use of plant and food-

derived chemicals that have antidepressant or antiepileptic properties. We have

summarized the present level of knowledge about natural products based on

topological evidence, bioinformatics analysis, and translational research in this

review.We have also highlighted some clinical research or investigation that will

help us select natural products for the treatment of neurological conditions. In

the present review, we have explored the potential efficacy of

phytoconstituents against neurological diseases. Various evidence-based

studies and extensive recent investigations have been included, which will

help pharmacologists reduce the progression of neuronal disease.
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1 Introduction

Information is sent across the body via a specialized network of neurons. Neurons use

chemical and electrical signals to support the coordination of all fundamental aspects of

life. When a neuron releases an electrical or chemical signal, it travels down its axon (a

specialized projection) to the neighboring cell. These signals can be retained by root-like
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dendrites. There are around 86 billion neurons in the human

brain. Hence, a growing fetus generates approximately

250,000 neurons each minute (Fields et al., 2020; Heiney

et al., 2021). An enormous communication network is created

because each neuron is connected to a thousand others. Neurons

are the cells that make up the nervous system. Neurons are the

cells in the brain responsible for transmitting and receiving

signals. Despite their similarities to other types of cells,

neurons are characterized by distinct physical and functional

properties. Similar to the hundreds of kinds of animals and plants

on Earth, thousands of distinct types of neurons exist. Neurons

are not all the same in terms of structure, function, or genetics

(Duan et al., 2020a; Yang et al., 2020). Neurons are further

divided into three categories: sensory (carrying signals from the

senses to the CNS), motor (carrying signals from the CNS to

muscles), and interneurons (carrying signals from one place to

another within the CNS) (Hor et al., 2018; Wan et al., 2018;

Smolilo et al., 2019; Duan et al., 2020b). However, neurons come

in five distinct varieties. Each exhibits a unique variation on the

standard neuron shape.

Brain elements, including cognitive and motor neuron

function, can be lost rapidly due to neurodegenerative

illnesses, posing a significant problem for the elderly.

Alzheimer’s disease (AD), Parkinson’s disease (PD),

Huntington’s disease (HD), and amyotrophic lateral sclerosis

(ALS) are neurodegenerative illnesses (Angelucci et al., 2019;

Jensen et al., 2020). Despite their various clinical manifestations,

neurodegenerative symptoms share common traits and

mechanisms. Regional cytosolic or nuclear protein aggregation

is one of these characteristics (Xu et al., 2021). In AD,

extracellular amyloid-beta (Aβ) plaques and intracellular

hyperphosphorylated microtubule-binding tau inclusions form

(Katsumoto et al., 2019; Roda et al., 2022). Some of the

distinguishing features of these diseases are the accumulation

of polyglutamine protein aggregates in HD and other repeat

CAG-polyglutamine diseases, the intracellular storage of Aβ-
synuclein in PD, and the inclusion of TAR DNA-binding protein

(TDP)-43 transactive response in ALS, frontotemporal dementia,

and other related disorders (Arnold et al., 2013; Toyoshima and

Takahashi, 2014). Although a few genetic origins have been

found, the primary factor is a complex mixture of genetic and

environmental predisposition factors (a balance of hereditary

and “sporadic” types in every major neurodegenerative

condition). AD is a neurological condition that is the leading

cause of dementia among the elderly (Pan et al., 2021a). The

amyloid cascade hypothesis proposes that the accumulation of

amyloid peptides as fibrils in the human brain is causally related

to AD development (Ibrahim and Gabr, 2019). The binding of

amyloid-β aggregates to neuronal and non-neuronal plasma

membranes causes synaptic and neural network disruption,

which is associated with cognitive abnormalities in patients

with AD (Hampel et al., 2021). Symptoms include a

progressive loss of memory and other cognitive skills as a

result of the damage of specific forms of neurons and

synapses, which leads to neuronal death (Angelucci et al.,

2019). PD is a progressive neurological condition that leads to

mortality. It affects 3% of the worldwide population over the age

of 60 (Ball et al., 2019). There are two types of PD: familial

(inherited in an autosomal dominant or recessive way) and

sporadic (idiopathic), which is caused primarily by

gene–environment interactions (Halperin and Healey, 2011;

Verstraeten et al., 2015; Lill, 2016). Alpha-synuclein (SNCA),

glucocerebrosidase (GBA), leucine-rich repeat kinase 2 (LRRK2),

vacuolar protein sorting-associated protein 35 (VPS35), parkin

RBR E3 ubiquitin protein ligase (PARK2), and phosphatase and

tensin homolog-induced kinase 1 (PTHIK1) are the seven genes

linked to familial (PARK7) (Kruse et al., 2012; Ma et al., 2013;

Ankireddy and Kim, 2015; Kalinderi et al., 2016; Mursaleen et al.,

2017; Zhao et al., 2018). These genes, as well as particular

metabolites and PD-related biomarkers, have been utilized to

investigate prospective early detection strategies for PD. The

fundamental etiology of idiopathic PD is considered to be

gene–environment interactions. Individuals exposed to the

same environmental cause are impacted differently, resulting

in various illness manifestations (Ball et al., 2019).

2 Common targets of neurological
disorders

The various targets found in neurological conditions

(Figure 1) that further can be explored for the drug treatment

are mentioned as follows.

2.1 Amyloid and tau proteins

The tau and amyloid receptors have been tremendously

researched as AD targets (Kent et al., 2020). The main aim is

to lower amyloid levels and inhibit amyloid or tau accumulation.

Various neuro-proteins, including APOE, APP, BACE (Aβ
cleaving enzyme), PS1/2, secretase, and tau, play a key role in

the pathogenesis of AD (Chen et al., 2017). Hence, studies are

FIGURE 1
Common targets of various neurological disorders.
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based on the development of novel compounds restricting the

aforementioned process for the management of AD.

2.2 Cholinergic target

Various research findings have resulted in a facile grasp of the

cholinesterase role inside the brain, along with the

implementation of cholinesterase inhibitors in the treatment

of AD (Stanciu et al., 2020). The further process of the newer

generation of acetyl and butyryl cholinesterase inhibitors is being

deliberated and scrutinized clinically for AD, resulting in the

discovery of antioxidants, hormonal delivery, hypolipidemic

compounds, anti-inflammatory drugs, and vaccinations

(Santos et al., 2018).

The current study analyzes the common pharmacological

targets and biological prospects for current and futuristic natural

drugs. Multi-targeted techniques in oxidative stress and

neuroinflammatory pathways, along with other target

approaches and the extensive role of different

phytoconstituents in neurodegenerative diseases (NDDs), are

highlighted (Martins et al., 2020).

2.3 α-Synuclein protein

A 140-residue protein, presynaptic in the brain and called α-
syn, is essential for the movement and synaptic vesicle fusion and

controls dopamine (DA) release at presynaptic terminals. In the

typical human brain and cerebral spinal fluid (CSF) fluid, α-syn
has a physiological concentration of 1 μM and 70 pM,

respectively (Domenighetti et al., 2022). When it binds to

lipid vesicles, it transforms from its natural state of an

unfolded monomer to α-helical conformations (secondary

structure). This results in the misfolding and accumulation of

α-syn upon destabilization in neurons. The monomeric protein

α-syn is inherently disordered and exists in several

conformational states. It is important for several vital

metabolic pathways and increasing misfolding-related

illnesses, most notably neurodegenerative disorders (Fields

et al., 2019).

2.4 Chaperone proteins

Pharmacological chaperoning is emerging as a viable

therapeutic strategy for the management of several disorders

linked to single gene mutations. Small molecules known as

chaperones attach to proteins, stabilize them against

proteolytic breakdown, or guard them against heat

denaturation. Additionally, they function similarly to

molecular chaperones in aiding or hindering certain

protein–protein complexes (Gouda et al., 2022). Several

animal models of neurodegeneration have shown that distinct

chaperone proteins are neuroprotective. Targeting the

cytoplasmic chaperone Hsp90 and, by extension, enhancing

the cellular response to stress may constitute a feasible

therapeutic strategy for NDDs, although this hypothesis has to

be proven and new drugs have to be developed (Lindberg et al.,

2015).

2.5 Abelson (c-Abl) proteins

Cellular and oxidative stresses activate the protein Abelson

(c-Abl), a member of the tyrosine kinase family. It is made up of

the SH3, SH2, and catalytic domains. The function of c-Abl

depends on where it is located within the cell. c-Abl promotes

cellular adhesion with a survival mechanism inside the

cytoplasm, but it also induces cell death inside the

mitochondria and nucleus (Lindberg et al., 2015). Recent

studies revealed that c-Abl is activated in response to amyloid

beta fibrils and oxidative stress in AD and PD, as well as in animal

models and neuronal cultures (Haron et al., 2021).

2.6 Mitochondrial region

It has been discovered that mitochondrial dysfunction is a

universal trait of all neurological diseases. It is a major

contributor to the onset and advancement of NDDs.

Mitochondria play a pivotal role in health and disease by

participating in various cellular processes, including

maintaining a healthy intracellular Ca2+ balance, producing

reactive oxygen species (ROS), initiating the intrinsic

apoptotic pathway, and synthesizing heme and steroids.

Mitochondria also play an important role in neural activity

and plasticity and the formation and differentiation of brain

cells (Werner and Olanow, 2022). Unusually formed and

differentiated neurons emerge from defects in these pathways.

Altered signaling of the apoptotic pathway has been linked to

neurodegenerative disorders, such as HD, PD, ALS, epilepsy,

schizophrenia, multiple sclerosis, neuropathic pain, and AD

(Ikawa et al., 2021). Although the relationship between

mitochondrial dysfunction and neurodegenerative disease

onset and development is still not clearly understood,

researchers are exploring treatments that control

mitochondrial functioning to reduce neuronal damage and

mutant protein aggregation (Jamwal et al., 2021).

2.7 Oxidative stress

Oxidative stress is still considered the primary treatment

target in NDDs. It is important to investigate the several

mechanisms that might considerably restore damage caused
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by ROS and thus slow or stop the progression of NDDs. The

enzyme nicotinamide adenine dinucleotide phosphate oxidase is

essential for oxidative stress and is a potential therapeutic target

for the treatment of NDDs (Murphy and Hartley, 2018).

2.8 NMDA receptors

Neurodegenerative disorders, such as AD and PD, have

attracted much attention regarding N-methyl-D-aspartate

(NMDA) receptors and their functions in these conditions.

Overactivation of NMDA receptors (NMDARs) mediates

various elements of synaptic dysfunction in numerous central

nervous system (CNS) disorders, prompting a great deal of focus

on the development of drugs that can inhibit NMDAR activity

(Marí and Colell, 2021; Rahman et al., 2022).

2.9 MAO enzyme

As an enzyme, monoamine oxidase (MAO) deaminates

monoamines and other proteins. Nervous system diseases,

such as AD, PD, ALS, HD, and depression-like disorders, are

associated with the large formation of ROS caused by MAO

hyperactivation. Although synthetic MAO inhibitors are

currently used in clinical practice, they are linked to

adverse events such as hepatotoxicity, cheese response, and

hypertensive crisis. This has prompted the search for natural

MAO inhibitors with a much more excellent safety profile

(Gonzalez et al., 2015). The most prevalent neurodegenerative

disorders are AD and PD. Based on current research into PD,

type B MAO inhibitors, such as selegiline and rasagiline, show

highly promising results as neuroprotective medicines. In

cellular and animal models, neuronal cells are protected

against death by these inhibitors. Stabilizing mitochondria,

blocking the death signaling cascade, and activating the pro-

survival anti-apoptotic Bcl-2 protein family and neurotrophic

factors are all responsible for the neuroprotective actions

(Naoi and Maruyama, 2010).

2.10 Neurofibrillary tangles

In neurofibrillary tangles, tau, a microtubule-associated

protein, has become hyperphosphorylated. An imbalance

between the activity of protein kinases and phosphatases

acting on tau may occur even before neurofibrillary tangles

form because phosphorylated tau proteins accumulate in

neurons even before tangles form. To date, no in vivo

development of neurofibrillary tangles has been observed in

experimental models, and the molecular linkage between

neurofibrillary tangle and senile plaque formation is poorly

known (Mannan et al., 2022).

2.11 Angiotensin receptors

The rennin angiotensin system is made up of several different

parts, including angiotensinogen, the (pro)renin receptor (PRR),

angiotensin-converting enzyme 1 (ACE1), ACE2, angiotensin I

(ATI), angiotensin II (ATII), ATII receptor 1 (AT11R), ATII

receptor 2 (AT22R), and the Mas receptor (MasR). The rennin

angiotensin system plays a crucial role in systemic and cellular

pathways to maintain normal blood pressure, fluid balance, and

cellular homeostasis. An ACE1/ATII/AT11R axis regulates

oxidative stress and neuroinflammation pathways, whereas an

ATII/AT22R and/or ACE2/Ang(1–7)/MasR axis enhances

neuroprotection pathways. ATII is the primary effector of the

RAS, and it exerts its impact by binding to AT11R and AT22R

through two competitive arms (Srinivasan et al., 2022a).

2.12 COX enzyme

Several research studies have revealed the association

between different pro-inflammatory cytokines and PD, and

their findings suggest that immunological responses may

explain a portion of PD etiology. Evidence supports the

hypothesis that cyclooxygenase-2 (COX-2) is over-expressed

in mouse models with PD. However, the same research

showed that blocking COX-2 reduced the risk of PD by

inhibiting the production of potentially harmful DA-quinones

(Chinraj and Raman, 2022). Another research revealed that the

neuronal cells of PD are severely damaged due to an invasion of T

lymphocytes (Brochard et al., 2009).

Memory is a cognitive process in the brain that encodes,

stores, and recalls information that has been received. Memory

is crucial for learning and communicating with the

surroundings (Fuloria et al., 2022). Subjective memory

impairment is a frequent finding in adults, although the

underlying condition is not detected in most of these

patients. Memory impairment (MI) has various etiologies in

the absence of physical or psychological disease, including

being stressed, feeling ill, feeling melancholy, being exposed

to air and noise pollution, adverse effects of certain medicines

and substance addiction, and lifestyle factors, such as tobacco

use, heavy alcohol consumption, poor physical exercise, and

high-fat diet. Memory problems, often known as MI, are

important markers for detecting syndromes and their

underlying causes. AD, PD, HD, Korsakoff’s syndrome, and

Creutzfeldt–Jakob disease are only a few examples (Sarris et al.,

2014; Zlotnik and Vansintjan, 2019; Gao et al., 2022). With

amnesia and dementia, MI mostly impairs declarative memory;

however, this is not necessarily the case with dementia, defined

as a decrease in two or more domains of cognition. In other

words, dementia not only damages declarative memory but also

affects other aspects of memory. Dementia has direct and

secondary effects on memory (Vidyanti et al., 2022). Primary
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memory impairment can involve a deficit in declarative

memory, which is one of the cognitive regions affected by

AD. Memory capacity is harmed in a secondary case when

there are cognitive abnormalities that might limit memory

performance, such as attentional deficit (Callahan et al.,

2022; Guo et al., 2022). There is currently no proven

medication that can completely prevent MI from occurring.

In contrast, memory enhancement treatments are critical for

preserving a patient’s cognitive function to counteract MI risk

factors (Gold and Budson, 2008; Wichansawakun et al., 2022).

3 Traditional holistic approach for the
management of neurological
disorders

Traditional medicines could be an alternative option to

cure various neurodegenerative disorders because allopathic

treatments are limited and have severe adverse effects.

Indian ayurvedic medicine offers several plant-derived

compounds that may be useful in future research,

especially on neurological disorders. The ayurvedic

system provides a holistic approach to managing different

polyherbal formulations that act as antioxidants and reduce

amyloid deposits and neuroprotective, anti-inflammatory,

and immunomodulating compounds that alter

neuroendocrine-immune activities, enhance memory,

activate neurofunctions, and enhance the quality of life. A

balanced lifestyle, good eating habits, socio-psychological

support, Rasayanas, and psychotherapies as defined in

Ayurveda have been recognized as effective approaches to

prevent and treat AD and other neurodegenerative disorders

(Rastogi, 2010; Ravikumar and Aittokallio, 2018; Sharma

et al., 2018; Rastogi, 2019; Sharma et al., 2022).

Natural products, secondary metabolites, and bioactive

molecules derived from plants, animals, and microorganisms

are key sources of bioactive molecules that have been turned

into disease remedies in many circumstances (Zucchella et al.,

2018; Miranda et al., 2019; Ratcliffe et al., 2020). On land and

at sea, nature has bestowed surplus resources (natural

products) on humans. Natural products play an important

role in disease prevention and health promotion for people

and animals (Cragg and Newman, 2002; Mantovani et al.,

2008; Cragg et al., 2009; Villa and Gerwick, 2010). These

natural compounds have been shown to have various

biological qualities, including antioxidant, anti-

inflammatory, and anti-apoptotic capabilities (Villoslada

et al., 2008). Natural products used in numerous preclinical

models of neurodegenerative conditions have been further

confirmed by in vitro and in vivo investigations.

Phytoconstituents, such as polyphenolic antioxidants, are

present in herbs, fruits, nuts, and vegetables, as well as

marine and freshwater flora (Aboulwafa et al., 2019;

Rehman et al., 2019). These phytoconstituents may help

prevent neurodegeneration and improve brain memory and

cognitive abilities. They are also thought to play a key role in

preventing and treating neurodegenerative illnesses, including

AD, epilepsy, and PD (Ratcliffe et al., 2020; Sharifi-Rad et al.,

2020; Mendonça-Junior et al., 2021). The plants that show and

prove their therapeutic action against neurological diseases

are discussed in Table 1.

Neuroinformatics is the study of the neurological system via

the development of databases and tools that aims to design and

manage web-accessible databases of experimental and

computational data and novel software tools that are

necessary for understanding the nervous system in diseased

and healthy states (Pu and Li, 2018; Usman et al., 2022). Brain

imaging using positron emission tomography (Kaswan et al.,

2021; Ruiz-Olazar et al., 2021), functional magnetic resonance

imaging (Stefanovski et al., 2021; Li et al., 2022),

electroencephalography (Wojcik et al., 2018; Shirbandi et al.,

2021), magnetoencephalography (Gorina-Careta et al., 2021),

and other methods; several electrophysiological recording

methods; and clinical neurological data are examples of

neuroinformatics (Sharma et al., 2019). In an interesting

study, 679 flavonoid-based compounds and their 481 relative

targets were screened, and their bioinformatic analysis

exhibited multiple pharmacological pathways, especially for

neuronal diseases. Flavone-based targets were remarkably

augmented in mitogen-activated protein kinase (MAPK)

signaling and neurotrophin signaling pathways, suggesting

that natural flavone compounds possess biological effects on

neuronal diseases (Qiu et al., 2018; Ravikumar and Aittokallio,

2018). Based on the pattern of substitution of phenyl rings and

oxidation and saturation of pyran rings, different modified

flavonoid-based compounds can be synthesized, thus

exhibiting potent physico-chemical properties and biological

activities acceptable for the effective management of

neurological-related diseases (Figure 2) (Ayaz et al., 2019).

The concept of medications interacting with many

targets has long been seen as undesirable, as it is

inevitably related to negative side effects but theoretically

can be safer compared to a single-hit target molecule

(Hampel et al., 2021). Target-driven approaches often

find a poor association between in vitro medication

effects and in vivo effectiveness, thus finding a pivotal

research scope. While understanding the underlying

pathomechanisms of neurological and psychiatric

disorders, searching for new biomarkers, and developing

innovative therapies, translational research is one of the

most important yet difficult fields for pharmacologists (Wan

et al., 2018; Angelucci et al., 2019). Significant progress has

been achieved in our understanding of the polygenic,

complex, and heterogeneous disease pathways due to the

advancement of disease models in vivo and in vitro (Xu et al.,

2021). Diseases that can be studied through translational
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research include neurodegenerative disorders, such as AD,

PD, multiple sclerosis, HD, and ALS, and psychiatric

disorders, such as major depressive disorder, bipolar

disorder, substance abuse disorder, post-traumatic stress

disorder, anxiety disorder, schizophrenia, somatic

symptom disorder, autism spectrum disorder, and

hyperactive ataxia (Kaswan et al., 2021). There are

clinician guides for using neuroscience to guide case

framework, understand psychotherapeutic techniques, aid

in treatment personalization and outcome prediction, and

develop novel mechanistically targeted treatments for

disorders (Shirbandi et al., 2021). We extensively added

recent and updated key findings and additionally showed

the applicability of natural products to improve their

appropriate usage in neurological disorders, followed by

the incorporation of various clinical studies and patents on

phytoconstituents for neuronal diseases. This study focused

on assessing various research studies related to the

prevention and treatment of NDDs and provided evidence

for the efficacy of natural products. It also sparked interest in

the development of novel medications for neurological

disorders derived from plant sources.

4 Phytoconstituents in different
neurological disorders

4.1 Alzheimer’s disease

AD and dementia are diseases of the elderly society and have

become one of the major concerns in health management because of

the unattainability ofmedicinal treatment in this area (Liu et al., 2022).

Pathophysiologically, AD is an accelerating neuro-degenerative

disease, resulting in the change of behavioral patterns and

cognitive defects, and is the recurring source of dementia in

approximately 80% of the diseased population, expected to

increase three times by 2050 (Zhang et al., 2021a). Various target

receptors are responsible for this condition, including the scarcity of

important neurotransmitter acetylcholine (ACh), accumulation of β-
amyloid proteins, largely phosphorylated tau plaques, and variation in

glutamate pathways, neuro-inflammation, and different pathways,

which participate in the pathological mechanism of the particular

diseased condition (Thomford et al., 2018). In fact, the following are

the natural phytoconstituent-based drugs that have been accepted

clinically in AD, such as cholinesterase inhibitors (tacrine,

galantamine, donepezil, and rivastigmine) and glutamatergic

TABLE 1 Different types of plants along with their biological effects.

Plant name/
species

Family Source Ingredient with
biologically significant
activity

Action References

Ginkgo biloba Ginkgoaceae Leaves Quercetin, kaempferol, and isorhamnetin Boosts circulation to the brain Mashayekh et al.
(2021)

Panax ginseng C.A.
Meyer

Araliaceae Root and
aerial parts

Aglycones, protopanaxadiol, and
protopanaxatriol

Neurons survive longer by increasing their
supply of survival compounds known as
neurotrophic factors

Miranda et al.
(2019)

Scutellaria
baicalensis Georgi

Lamiaceae Root and
aerial parts

Baicalein, baicalin, and wogonin Protect neurons from oxidative damage Yoon et al.
(2017)

Curcuma longa Zingiberaceae Rhizome Curcumin Inhibition of cytokine production and
microglia activation

Yu et al. (2018)

Vitis vinifera Vitaceae Fruits and
seeds

Resveratrol, quercetin, and catechin Neuroprotective effects Tabeshpour et al.
(2018)

Salvia officinalis L. Lamiaceae Leaves and
flowers

1,8-Cineole, camphor, borneol, caryophyllene,
and linalool

Anticholinesterase activity Kennedy et al.
(2006)

Coffea Rubiaceae Seeds Caffeine Acts on adenosine receptors López-Cruz et al.
(2018)

Camellia sinensis
Kuntze

Theaceae Leaves Epigallocatechin, epigallocatechin-3-gallate,
myricetin, quercetin, kaempferol, and
epicatechin

Antioxidants, protects from oxidative stress,
reduces amyloid proteins

Bazyar et al.
(2021)

Bacopa monniera Plantaginaceae Whole plant Herpestine, d-mannitol, hersaponin, and
monnierin

Enhancing neuronal synthesis, kinase
activity, restoring synaptic activity, and nerve
impulse transmission

Mathur et al.
(2016)

Centella asiatica Apiaceae Leaves Asiaticoside, brahmoside, brahminoside, asiatic
acid, madecassic acid, brahmic acid, isobrahmic
acid, and betulic acid

Antioxidant action, acetylcholine esterase
inhibitor activity

Hafiz et al. (2020)

Picrorhiza
scrophulariiflora

Plantaginaceae Roots Glycosides, terpenoids, phenylethanoids,
glycosides, and phenolic glycosides

Neuritogenic activity Kumar et al.
(2015)
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system modulators (memantine). However, they have shown lesser

symptomatic effect and hepatotoxicity with tacrine (Joshi et al., 2022).

The important pathological attributes observed in the brains

of patients with AD are as follows (Husain et al., 2021):

1) Neuritic plaques containing polymorphous deposits of Aβ, a
peptide constructed through the deterioration of Aβ
initiators;

2) Neuro-fibrillary tangles, along with the dense irregular

bundles inside cytoplasm based in the neuronal system

consisting of the modified form of the microtubular-

assisted proteins.

The present pharmacological treatment depicts lesser

symptomatic positive outcomes. Due to the multi-factorial

causes, the advancement of novel molecules is aimed at multi-

targeting therapy such as cholinesterase inhibition, anti-

amyloid effects, β-secretase and MAO blockage, nitric oxide

delivering ability and interactivity with cannabinoid, and

NMDA or histamine receptors, contributing to an effective

approach in AD. Interestingly, the clinically approved

treatment for AD is based on natural phytoconstituents,

and its recent developments are described in the following

(Jankowska-Kieltyka et al., 2021).

By considering the “single-molecule multiple-target

regimen” for the discovery of newer drugs in AD, natural

molecules have found dominant interest. Regardless of the

less-acknowledged success of synthetic compounds in AD,

pharmacokinetics and pharmacodynamics (safety issues) are

their crucial restricting steps (Stanciu et al., 2020). Contrarily,

natural molecules extracted from herbal, nutritional, or

marine origins have shown effectiveness in research studies

based on a multi-targeting approach (Ciccone et al., 2021).

Among many phytoconstituents, curcumin mitigates

cognitive impairment symptoms by modulating

inflammatory mechanisms in the brain, decreases free

radical burden and metal ion chelation, and blocks Aβ
aggregation. Furthermore, has proved to be a favorable

candidate for AD and PD. Various flavonoids such as

apigenin, luteolin, catechins, gossypetin, and myricetin

have also been shown to inhibit Aβ accumulation in AD

(Wang et al., 2018). Apigenin can modulate matrix

metalloproteinases (MMP)-2 and 9, thus playing a

neurodegenerative and neuroinflammatory role, especially

in AD. Structure–activity relationship (SAR) research data

on flavonoids observed that a catechol ring contributes to an

important pharmacophoric moiety in multi-pharmacological

activity, including AD. Other products, including alkaloids

(huperzine A) and resveratrol, have different biological

effects and can interact simultaneously with more than one

target of this neurological disorder, showing better

effectiveness (Patil et al., 2020; Fantacuzzi et al., 2022).

FIGURE 2
Chemical structures of different phytoconstituents in neurological disorders.
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4.1.1 Berberine
Berberine is a natural compound in which quaternary

ammonium salt of isoquinoline alkaloids extracted from

different plant species such as Berberis aquifolium, B. vulgaris,

B. aristata, Hydrastis canadensis, and Tinospora cordifolia (Neag

et al., 2018). Several pharmacological actions of this compound

are mentioned in the literature, such as antioxidant,

cholinesterase inhibition, MAO inhibition, and

hypocholesterolemic effect, along with fewer gastrointestinal

side effects (Akbar et al., 2021). In a recent study, berberine

(260 mg/kg, oral) has been reported to reduce Aβ42 aggregation
and tau hyperphosphorylation through remarkably mitigating

endoplasmic reticulum (ER) stress (Wu et al., 2021). Similarly,

Liang et al. and group discovered the effect of berberine in 3xTg

AD (triple-transgenic AD) mice and observed that protein kinase

RNA-like ER kinase/eukaryotic translation initiation factor 2α
signal pathway was diminished, further declining Aβ growth and

thus improving neuronal functions by mitigating ER and

oxidative stress (Liang et al., 2021). In another study,

berberine was found to lower MI effects as assessed in a

triple-transgenic (3xTg) AD mouse model-based assay.

Berberine (100 mg/kg, oral) could simultaneously target

autophagic clearance and hyperphosphorylation of tau by

regulating the Akt-glycogen synthase pathway (Chen et al.,

2020).

4.1.2 Resveratrol
Resveratrol is a polyphenolic compound categorized as

stilbenes extracted from plants after exposure to stress, injury,

infection (fungal), or UV radiation (Perrone et al., 2017). This

phytoconstituent has been reported to have antitumor, anti-

inflammatory, cardiovascular, hypoglycemic, and neuro-

protective effects with no adverse effects (Zhang et al., 2021b).

Resveratrol is readily absorbed in the gastrointestinal lumen,

simultaneously exhibiting lesser bioavailability because of its fast

metabolism and elimination. Resveratrol plays a significant role

in boosting non-amyloidogenic cleavage of the amyloid

precursor protein, resulting in advancing the clearance of Aβ
peptides and decreasing the degradation of neurons (Sergides

et al., 2016). Resveratrol (15, 45, and 135 mg/kg) has been

reported to block the cholinesterase effect in AD-based animal

assays (Jia et al., 2017). A combination study of melatonin

(80 mg/kg) with resveratrol (40 mg/kg) showed that melatonin

augmented memory deficit effects in novel object recognition

task (NORT) and passive avoidance task (PAT) assays of AD-

based mouse models. In contrast, resveratrol enhanced only PAT

response in respective animal studies (Jabir et al., 2018).

Mehringer et al. explored phosphorylated resveratrol

(Figure 3) for their AD-based neuronal properties and

observed that these analogs could diminish the accumulation

of proteins along with the fibrillation of Aβ42 and insulin based

on in vitro studies. The in vivo drosophila fly model also showed

prominent effects with decreased Aβ42 accumulation and

enhanced neuroprotective locomotor action (Labban et al.,

2021; Mehringer et al., 2022).

4.1.3 Curcumin
Curcumin is the most pivotal turmeric-based curcuminoid

and is a popular yellow-colored Indian spice obtained from the

rhizome part of Curcuma longa and corresponds to the ginger

family (Hewlings and Kalman, 2017). Preclinical research has

suggested curcumin to prevent or treat many disorders, such as

colorectal cancer, cystic fibrosis, and inflammatory and

neurological diseases (Jyotirmayee and Mahalik, 2022). Based

FIGURE 3
Mechanistic study of phosphorylated resveratrol in AD.
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on phase I clinical data, an oral curcumin dosage of 8,000 mg/day

has not resulted in any major adverse effects besides mild nausea

and diarrhea. However, excessive usage of this natural compound

can harm the gut microbiome, thus obstructing the normal

physiological and immunological processes (Gupta et al.,

2013). The oral bioavailability of curcumin is relatively low,

and many of its metabolites have been detected in plasma

after oral intake (Lopresti, 2018). Many recent reviews have

assessed the extraordinary role of curcumin in developing tau-

focused therapeutics in AD, mainly due to the failure of most of

the Aβ-based AD drugs in clinical trials (Sivanantharajah and

Mudher, 2022). Current advances have revealed that the phenolic

hydroxyl group of curcumin can contribute to the anti-

amyloidogenic effect. Phenyl-substituted methoxy groups can

show suppression of Aβ42 and APP (amyloid precursor protein),

and hydrophobic interactions have also played an amplifying

role. Furthermore, the elongation of phenyl rings can have

decreased effect in patients with AD (Chainoglou and

Hadjipavlou-Litina, 2020). Another systemic analysis carried

out the correlation of the 74 target genes of curcumin with

AD and experimented through Gene Ontology (GO) mechanism

enrichment analysis and Kyoto Encyclopaedia of Genes and

Genomes (KEGG). Five important genes were identified using

the network pharmacological approach: RARA, APP, PRARG,

STAT3, and MAPK1. Computational studies were also carried

out to observe that curcumin has a prospective to attach with big

active sites of PPARγ, observing better binding scores compared

to other protein targets (Vijh et al., 2022). Another molecular

docking study showed the molecular modeling studies of

curcumin displaying a remarkable binding affinity toward

mTOR, TrkB, LXR-β, TLR-2, ER-β, GluN2B, β-secretase, and
GSK-3β, which are the critical modifiers of molecular and cellular

pathways related to AD (Hannan et al., 2020). Recently, Utomo

et al. verified curcumin-based compounds 1 and 2 (Figure 4) in

Alzheimer’s Drosophila model and observed disassembled Aβ
fibrils. The study further showed very low toxicity at 1 µM

concentration in N2a cells (neuroblastoma) and prominently

recovered its locomotor activity in AD model flies (Utomo et al.,

2022).

4.2 Parkinson’s disease

The brain motor system is most primarily affected by PD,

which causes inflammation and depletion of dopaminergic

neurons inside the substantia nigra. A series of factors,

including mitochondrial dysfunction, oxidative stress, protein

misfolding during synthesis, excitotoxicity caused by different

biochemical pathways (such as the glutamate pathway), lysosome

impairment, chaperone-mediated autophagy, and the

development of Lewy bodies as a result of protein misfolding,

contribute to the onset of the disease (Amro et al., 2018).

Associated protein (neurofilament) and protein targeting, such

as ubiquitinated α-synuclein, are the components of cellular

bodies. According to Braak’s staging, Lewy bodies are often

located in the olfactory area and the lower part of the brain

stem. However, as the illness advances, Lewy bodies also appear

in the midbrain (substantia nigra) and forebrain, as well as the

neocortex in an advanced stage. The most prevalent classes of

phytochemicals with known antiparkinsonian actions include

terpenes and numerous subtypes of polyphenols. Alkaloids,

carbohydrates, acids (amino and fatty acids), and amides are a

few more phytochemical groups containing representatives that

have beneficial effects on PD (Lill and Klein, 2017; Zoey et al.,

2021). Proinflammatory cytokines, such as prostaglandin E2,

interleukin-6 and 1β, and nuclear factor of kappa cells, are

reduced in expression, as nuclear and cellular inflammatory

signaling, and phytochemicals suppress apoptosis (by reducing

either caspases orα-synuclein aggregation), lower dopaminergic

neuronal damage, and alleviate DA exhaustion. In order to

increase the effectiveness and lower the biological side effects

of PD, herbal compounds might be thought of as prospective

pharmaceutical medications or as adjuvant therapy, along with

traditional therapeutic procedures (Aliakbari et al., 2018).

FIGURE 4
Mechanistic study of curcumin in AD.
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The striatum has two primary output pathways. 1) The

indirect route, which is carried out by inhibiting D2 DA

receptors by DA in which the striatum sends GABA-mediated

signals toward the neuronal cells in the lateral GP (GPe) and the

GPe then sends signals to the STN, which sends glutamate-based

excitatory signals to segment (internal) of GP (GPi), as well as SN

pars reticulata (SNr). Rigidity and bradykinesia are clinical

manifestations of the thalamocortical-spinal route suppressed

by GPi and SNr. 2) Simultaneously, the unobstructed path is

regulated by DA’s excitatory impact-bearing striatal receptors,

and the lack of this neurotransmitter lessens the striatum’s ability

to inhibit GPi and SNr (Merzougui et al., 2021).

Although the precise etiology and PD process are still

unclear, there has been great progress in understanding the

illness’s fundamental mechanisms. This was accomplished by

research on genetics, experimental forms of PD, pathological and

pharmacological abnormalities of PD, and novel findings on the

structural characteristics and physiology of basal ganglia. In this

study, we cover the pathophysiology of PD and the natural use of

several herbal medicines, as well as their modes of action

(Jankovic and Sherer, 2014).

Numerous studies on the use of various herbal remedies and

natural items in the treatment of PD have been conducted over

the past few years and have been explained below (Ion et al.,

2021).

4.2.1 Curcuma longa
In India, Curcuma longa is frequently used as a

medication for various health issues. It has been

established that this plant has anti-inflammatory,

antioxidant, chemotherapeutic, anti-proliferative, wound-

healing, and antiparasitic properties. Curcumin, the

plant’s active polyphenolic component, is assumed to be

responsible for these properties (Nebrisi, 2021). Using

fibroblasts from patients with PD, who have

LRRK2 mutation, as well as healthy controls, curcumin is

an effective treatment to address mitochondrial dysfunction

in the condition. While post-curcumin treatment showed

little impact, pre-curcumin treatment enhanced maximum

and ATP-associated respiration. These findings are

significant for the therapeutic use of curcumin because

they suggest that it would be the most advantageous pre-

treatment to toxin exposure. PD fibroblasts with the

LRRK2 mutation and healthy control fibroblasts may

benefit from pre-treatment with curcumin to prevent

mitochondrial damage (Abrahams et al., 2021). Nerve

regeneration and anti-apoptotic effects are considerably

aided by phosphatidylinositol-3-kinase (PI3k)/protein

kinase B (Akt) signaling mechanism and abrineurin

pathway. According to recent studies, curcumin regulates

the above-mentioned signaling pathways in

neurodegenerative disease, positively affecting

neuroprotection (Jin et al., 2022).

4.2.2 Resveratrol
Resveratrol, a natural polyphenol, is present in different plant

species of grapes and berries. In PD etiology, altered PGC-1

activity and transcriptional dysregulation of its target genes were

demonstrated by a recent study, suggesting that PGC-1 may

represent a new target for therapeutic intervention. Resveratrol

has been reported to increase mitochondrial action by activating

multiple metabolic sensors, which in turn activates PGC-α. In
addition, the resveratrol administration led to an uptick in the

complex I and citrate synthase activity, a reduction in lactate

content, an increase in baseline oxygen consumption, and the

synthesis of mitochondrial ATP (Katila et al., 2022). These

changes supported the transition from glycolytic to oxidative

metabolism. Additionally, resveratrol administration increased

macro-autophagic flux by activating a mechanism unrelated to

LC3. The findings on PD fibroblasts from patients with early

onset implied that resveratrol may have potential clinical use in

some PD patients. In a different study, Su et al. investigated

transgenic and chemically generated mouse PD models,

including those caused by MPTP, rotenone, 6-OHDA,

paraquat, and maneb (Su et al., 2021). Resveratrol’s

neuroprotective effects were mostly focused on reducing

oxidative stress and inflammation and improving

mitochondrial dysfunction and motor function. Resveratrol

also inhibits the production of the enlargement of

mitochondria along with the compaction of chromatin and

prevents the enlargement of mitochondria and condensation

of chromatin (George et al., 2019).

4.2.3 Quercetin
Quercetin, a flavonol-type flavonoid, is present in several

fruits and vegetables and is identified as a complementary

treatment for PD. The neuroprotective action of quercetin is

directly linked with its antioxidant activity, besides stimulating

cellular defense against oxidative stress. Additional associated

pathways are activating sirtuins (SIRT1) and stimulating

autophagy, besides the induction of Nrf2-ARE and

paraoxonase 2 (PON2) (Grewal et al., 2021). In another

investigation by Josiah et al., the animal studies observed the

promising efficacy of quercetin on NF-κB and IκKB gene

expressions compared to the rotenone group only. Different

research data have exhibited the potential of quercetin for PD

by relieving oxidative stress, observing dopaminergic breakdown,

and altering neuroinflammation, along with apoptosis (Josiah

et al., 2022).

4.2.4 Walnut
The water extract of walnut (Juglandis semen) has exhibited

pivotal neuroprotective action in various research studies. This

extract was found to deplete ROS and NO (nitric oxide) growth,

further blocking the loss of DA, thus showing exceptional

recovery in patients with PD (Esselun et al., 2022). In another

investigation by Yang et al., the walnut-derived polypeptide
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(TW-7) observed antioxidant action simultaneously initiating

autophagy. They further investigated that TW-7 restricted the

mitochondrial apoptosis through downregulation of the

cytoplasmic cytochrome C, caspase-9, and cleaved-caspase-

3 expression (Yang et al., 2022).

4.2.5 Olive leaves extract
Derivatives are isolated from olive leaves, including phenolic

compounds, such as hydroxytyrosol, and flavonoids, such as

luteolin, apigenin, and apigenin-7-O-glucoside, and their wide

range of pharmacological activities, including several properties,

such as neuroprotective, antioxidative, antibacterial, antiviral,

anti-obese, and anti-inflammatory. The phenolic compounds

isolated from olive lowered the syndrome (metabolic)

associated with PD (Hadrich et al., 2022).

4.2.6 Myricitrin
Myricitrin, a naturally originated phenolic compound with

antioxidant and anti-inflammatory properties, is also known as

myricetin-3-O-rhamnoside. Myricitrin’s therapeutic potential

was examined in a mouse brain model by Banerjee et al. In

the mouse brain, myricitrin reduced MAO activity and increased

DA levels. In the PDmouse model, myricitrin could lessen motor

incoordination and elevate the DA levels in the striatum

(Banerjee et al., 2022).

4.2.7 Baicalein
Baicalein is an active constituent in which Scutellaria

baicalensis is its natural source. The alcohol extract of

Scutellaria baicalensis has been reported to decrease nitric

oxide (NO) and COX-2 levels (Jeong et al., 2011). This

compound also restricts the accumulation of ROS, ATP

degradation, apoptosis, and mitochondrial disruption based on

rotenone-generated neuronal toxicity (PC12 cells) (Li et al.,

2012). Zhao et al. showed that baicalein-treated mice

exhibited lower depression-based symptoms after a monthly

treatment, and its repeated usage induced α-synuclein
dissociation, neuroinflammation blockage, and regulating the

homeostasis of neurotransmitters (Zhao et al., 2021). In

another study, Song et al. investigated that baicalein can also

inhibit the MAO enzyme, and its blocking action on oxidative

stress is governed by ERK inhibition in PD (Song et al., 2021; Xu

et al., 2022).

4.2.8 Glycyrrhizin
The primary active component of licorice roots and rhizomes

(Glycyrrhiza glabra L.) is glycyrrhizin, which is typically used to treat

inflammatory illnesses or even as a tonifying herbal remedy. Ren

et al. reported inhibition of the degeneration of DA neurons,

reduction of the count of apoptotic cells in the zebrafish brain,

prevention of the loss of their vasculature as well as disordered

vasculature, and suppression of the locomotor impairment to exert

an anti-PD effect on MPTP-induced PD in zebrafish (Ren et al.,

2022).

4.2.9 Chicoric acid
A polyphenolic acid called chicoric acid (CA), which is

derived from the purple coneflower (Echinacea purpurea) and

chicory, has been promoted as a nutraceutical to fight

infections, inflammation, and obesity. Wang et al. showed

that oral pretreatments of CA significantly prevented the

motor dysregulation and death of nigrostriatal

dopaminergic neurons exacerbated by 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP), including the inhibition

of glial hyperactivation and the increase in striatal

neurotrophins. It may be inferred that CA showed

neuroprotective effects on mice with MPTP-induced PD.

These benefits may have been caused by altering the gut

microbiota and reducing inflammation along the brain–gut

axis (Wang et al., 2021).

4.3 Amyotrophic lateral sclerosis

There are broadly two types of ALS: sporadic and familial

types. The family variety (5%–10%) has a genetic component

but is genetically inherited, whereas the irregular type, which

is prevalent (90%–95%), is not inherited. Various

neurological conditions, including ALS, are characterized

by the degeneration of both motor neurons (upper and

lower). Intraneuronal protein aggregates, including protein

TAR DNA-binding, superoxide dismutase, and fused in

sarcoma, may interrupt normal protein homeostasis and

cause ALS and cellular stress (Chandran et al., 2022).

These proteins have been thoroughly discovered in ALS

animal models and pathological examinations of

individuals. Muscle twitching, cramping, soreness, and

weakness are static analyses of ALS. Patients eventually

develop dysphagia (difficulty swallowing), dysarthria

(difficulty speaking), and dyspnea (difficulty breathing) in

the advanced stage of the disease. Diet and environmental

toxins have also been researched for their links to ALS. For

ALS treatment, multidisciplinary methods are reported to be

beneficial (Kim and Taylor, 2017; Anakor et al., 2022).

4.3.1 Mecasin
Mecasin, traditional medicine that originated in India,

has been shown to have various biological effects in vivo and

in vitro. It also possesses anti-inflammatory properties based

on previous investigations and has been discovered for ALS

by Kim et al. Mecasin was found to lessen symptom

development without causing significant side effects, and

the long-term effects of the drug are currently being studied

in a phase IIb clinically (Kim et al., 2022).
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4.3.2 Morin
It is possible to isolate the yellow chemical component

known as morin from the leaves of Psidium guajava, Maclura

pomifera, and Maclura tinctoria. Srinivasan et al. studied the

effectiveness of flavonoids against amyloids, such as morin,

myricetin, and epigallocatechin gallate. Additionally, it was

determined that morin has a significant therapeutic potential

for developing extremely effective inhibitors for reducing deadly

and incurable ALS (Srinivasan et al., 2022b).

4.3.3 4-Hydroxyisoleucine
The insulin sensitivity of rodents is improved by the bioactive

amino acid (4-hydroxyisoleucine, HI) extracted from Trigonella

foenum-graecum. This study focused on brain IGF1/GLP-

1 activation, and a study evaluating adult Wistar rats with

ALS-like signs found that 4-HI had neuroprotective properties

that had been treated with methyl mercury (MeHg+).

Additionally, evidence points to the neuroprotective

advantages of 4-HI in minimizing MeHg+-induced behavioral

changes, chemical alteration in neurons, and histological

impairments in ALS in rats exposed to methylmercury

(Shandilya et al., 2022).

4.4 Huntington’s disease

The neurological abnormality known as HD is inherited

in an autosomal dominant manner and is monogenic.

Patients and their families find the illness state

traumatizing due to its inheritance pattern (autosomal

dominant), progressive nature, and mix of physical,

cognitive, and behavioral deficits (Lum et al., 2021). HD is

a pathological condition caused by an enlarged CAG

trinucleotide repeat in the gene (HTT5) on the

chromosome (Yang et al., 2020), which codes for aberrant

huntingtin, a potentially pathogenic protein with several

functions. The enlarged CAG repeat seen in the mutant

protein’s unique polyglutamine pattern is recognized to be

hazardous and causes the death or malfunction of neuronal

cells (Träger et al., 2015). The striatum neurons are

vulnerable to this mutant protein, although HD has been

shown to affect the whole brain and body. Exon 1 of the

mutant huntingtin protein directly affects transport

(axonal), homeostasis (protein), and mitochondrial

functioning. The mutant protein’s propensity to aggregate

also directly affects these processes. Abnormal huntingtin

protein causes neuronal death through several methods. The

alternative theory links HD’s neuronal damage to

neurotrophic factor losses, glutamate excitotoxicity, and

toxic consequences of repetitive associated non-ATG

translation mechanisms (Kay et al., 2015).

Memory loss and motor loss of coordination caused by 3-

nitropropionic (3-NP) acid were greatly reduced by natural

precursors. Reduced lipid peroxidation, enhanced

endogenous antioxidants enzymatically, decreased activity

(acetylcholinesterase), and increased mitochondrial

generation have significantly reduced biochemical changes.

Interestingly, 3-NP-induced damage to the striatum was

lessened after therapy with certain natural ingredients, as

seen by histology. Overall, antioxidant and anti-

inflammatory characteristics, maintenance of

mitochondrial function, suppression of apoptosis, and

activation of autophagy in natural products provided

varied levels of neuroprotection throughout preclinical

trials of HD (Lum et al., 2021).

4.4.1 Embelin
Embelin’s ability to fortify neurons against 3-NP-induced

exploratory HD in rats was examined by Dhadde et al. in which

vehicle/embelin was pretreated in adult Wistar rats (doses of

10 and 20 mg/kg p.o.) for a week. Furthermore, embelin

significantly reversed behavioral changes, improved

antioxidant status, and repaired striatal neuronal damage

brought on by 3-nitropropionic acid (Kundap et al., 2017). In

an interesting study, embelin and levodopa were analyzed for PD

and HD animal studies, which were shown to mitigate oxidative

and neuroinflammatory stress. Tyrosine hydroxylase and

Nurr1 protein levels were significantly recovered. In silico

computational studies between embelin and α-syn fibrils were

also demonstrated, which validated the strong affinity of embelin

approaching α-syn with the help of hydrogen bonding with

Lys45(D) and His50(D) residues of α-syn (Figure 5)

(Ramachandra et al., 2022).

4.4.2 Curcumin
In India, Curcuma longa is frequently used as a medication

for several health issues. It has been established that this plant

has several properties and is a potential candidate for

antioxidant, anti-inflammatory, wound healing, chemical,

therapeutic, anti-proliferative, and antiparasitic properties

(Mohammadi et al., 2022). Curcumin, the plant’s active

polyphenolic component, is assumed to be responsible for

these properties. Curcumin’s effectiveness was examined by

Aditi et al. in a Drosophila model of HD. The injection of

curcumin was observed to increase locomotor performance

and enhance lifespan in HD flies with advanced illness stages

and reduce high reactive oxygen species levels in adult adipose

tissue of sick flies (Aditi et al., 2022). The effectiveness of

melatonin and curcumin in avoiding the motor deficit and

disordered eclosion behavior in the Drosophila model of HD

was examined by Khyati et al. It can also be deduced that

melatonin (100 μg) and curcumin dramatically enhanced the

abilities of HD flies to move around and behave in an

enclosing manner, restoring the 24 h rhythm of mRNA

expression of period and timeless to normal (control) levels

(KhyatiMalik et al., 2021).
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4.4.3 Lactuca sativa
Malik et al. produced extracts (ethanolic) of the leaves of three

different Lactuca sativa (LS) cultivars and assimilated them using

HPLC according to their quercetin concentration. The extract with

the highest activity level was progressively separated in increasing

polarity employing organic solvents (hexane, ethyl acetate, and

n-butanol) and an aqueous solvent. It was further concluded that

improved behavioral and biochemical indicators demonstrated the

greatest reduction of 3-NP-inducedHD-like symptoms (Malik et al.,

2022).

4.4.4 Baicalein
The neuropharmacological efficiency of baicalein against

QA-induced hypertension was assessed in recent research. In

the striatum of HD-induced rats, naturally found baicalein,

technically known as 5,6,7 trihydroxy flavone, including

Scutellaria baicalensis and Oroxylum indicum (edible

plants), has a stronger neuroprotective effect when

administered intraperitoneally in doses of 10 and

30 mg/kg. Further analysis reveals that the neuroprotective

effectiveness of baicalein exhibits the advancement of

psychological and cognitive alterations spurred on by QA

(Purushothaman and Sumathi, 2022).

4.4.5 Ugni molinae berries
Arancibia et al. discovered that extracts (phenolic rich)

from murtilla berries of the 19-1 genotype significantly

decreased peptide (polyglutamine) accumulation amounts,

corresponding with the regulation in the expression patterns

of proteins, which are related to autophagy and thus

promising in HD therapy. Berries were extracted by

exhaustive maceration with increasing polarity solvents

(Pérez-Arancibia et al., 2021).

4.5 Epilepsy

Epilepsy is a neurological disease identified with attacks of

altered brain responses, resulting in convulsions and seizures,

and has affected around 50 million people worldwide (Pearson-

Smith et al., 2017). A series of pharmacological events include

cognitive impedance and oxidative stress, further contributing to

epilepsy-linked recurrent seizures (Mao et al., 2019). In addition,

Mao et al. explored the pharmacological mechanism at the

molecular level via different redox-related neurological cell

death modalities in onset seizures. The group also analyzed

ferroptosis, a newly discovered lipid ROS-dependent

regulatory cell death, which is likely to be a critical

mechanism for unfolding epileptic phenotype (Rho and

Boison, 2022).

Epilepsy has been classified broadly into four main

components (Goldenberg, 2010):

1) Seizure: partial, generalized, and unknown onset;

2) Epilepsies: partial, generalized, combined generalized, and

partial unknown;

3) Epilepsy syndrome: juvenile myoclonic epilepsy and

Lennox–Gastaut syndrome;

4) Etiology: structural, genetic, metabolic, infectious, immune,

unknown.

Epileptic seizures also arise due to the imbalance in the

excitation/inhibition response of decreased GABA receptors

and the rise in glutamatergic transmission (Karim et al.,

2021). Thus, phytoconstituents maintaining this balance [in

between the GABA (brain neurotransmitter) and glutamate

and blocking of glutamate receptors] will have an efficacious

antiepileptic response compared to allopathic antiepileptic drugs

FIGURE 5
Mechanistic study of embelin in PD and Huntington’s disease.
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showing major side effects among which impairment (cognitive)

is undesirable (Kaur et al., 2021). Natural products have exhibited

experimentally encouraging results in animal models based on

epilepsy. An interesting study discovered the modifications of

GABA, GABAA, and GABAB targets in the cerebral cortex of

epileptic rats, along with the pharmacological application of

Bacopa monnieri. This plant variety and bacoside-A reversed

epilepsy-associated symptoms exhibiting the diminishing role of

GABA receptors in epilepsy recurrence (Mathew et al., 2012).

4.5.1 Cannabidiol
Cannabidiol (a phytocannabinoid) is a natural constituent in

the Cannabis sativa, also known as cannabis or hemp,

comprising 80 different forms. One of the cannabidiol forms

was approved as an anti-seizure drug in the United States in 2018

(Ryan, 2020). Cannabidiol has been proved via recent studies to

exhibit anti-epileptic and anticonvulsant activities in acute

animal models of seizures. However, their detailed

pharmacological pathways remain under investigation

(Devinsky et al., 2014). Gray et al. proposed three different

pharmacological targets for cannabidiol, including transient

receptor potential vanilloid-1, G protein-coupled receptor-55,

and equilibrated nucleoside transporter 1, as this

phytoconstituent has an attraction for more than one target

resulting in neurological excitation applicable in epilepsy (Gray

and Whalley, 2020). Concomitantly, cannabidiol was

investigated along with other anticonvulsant drugs for its

safety, pharmacokinetics, and drug–drug interaction with the

help of double-blinded placebo-controlled trials in the recurrent

epilepsies in pediatric patients, not just in the epileptic

encephalopathy. Cannabidiol administration was observed to

be safe and well-tolerated, and new levothyroxine–cannabidiol

interaction was reported (Raucci et al., 2020; Cáceres Guido et al.,

2021). The structural modification of cannabidiol

phytoconstituent majorly comprises its alkyl side chain and

the incorporation of phenolic hydroxyl groups on the

propenylcyclohexene moiety. The SAR-based studies on

cannabidiol, especially on neurodegenerative disorders, are

well-reviewed by various groups. Thus, this phytoconstituent

has shown great potential in neuropharmacological action

(Morales et al., 2017; Prandi et al., 2018; Yousaf et al., 2022).

4.5.2 Apigenin
Apigenin is a flavonoid with several anti-inflammatory,

antioxidant, and neurological effects (Salehi et al., 2019).

Apigenin and its derivatives are obtained from several plants,

such as fruits, vegetables, nuts, citrus, tea, chamomile, thyme,

celery, and celeriac, in their glycosidic form (Ginwala et al., 2019).

Shao et al. discovered that apigenin could alleviate

myeloperoxidase-related oxidative stress and block the

ferroptosis of neurological cells. The study developed a

multifunctional brain-imaging fluorescence tool and explicated

the role of HClO (endogenous hypochlorite) generation by

myeloperoxidase in the physiology of epileptic seizures, thus

inventing new antiepileptic agents for the prevention and

treatment of epilepsy (Shao et al., 2020). The cognitive deficit,

a common symptom in epilepsy, was treated with apigenin.

Hashemi et al. concluded the biological role of this

phytoconstituent in restoring memory deficiency (apigenin

significantly increased the number of living neurons in the

hilus), thus showing potent anticonvulsant and

neuroprotective action (Hashemi et al., 2019).

4.6 Depression

Depression is a neurological condition that affects people of all

ages worldwide. It is distinguished by emotional, behavioral, health,

cognitive capabilities, and behavioral and sleep patterns (Wang et al.,

2007). The family andmedical history of the patient, early childhood

traumas, brain anatomy, and drug consumption are all key

contributing variables. Depression is the main cause of disability

and a substantial contribution to illness, according to a new World

Health Organization report. Multiple complicated biological

processes are involved in the pathophysiology of depression

(Duman and Voleti, 2012; Zhang et al., 2019). MAPK and cyclic

adenosine phosphate signaling are globally accepted to be connected

with depression progression, which has sparked much interest in

antidepressant research (Pandey et al., 2013; Ekor, 2014). The

traditional medical system, which is based on natural ingredients

from numerous sources, provides a framework for several

commercial depression treatments (Pan et al., 2021b; Álvarez

et al., 2022). Metabolic extracts and metabolites derived from

many medicinal plants have been shown to have antidepressant

effects. In addition to leaves, flowers, and fruits (powdered or

unripe), the metabolic extracts are generated from many plant

components, such as stem bark, bulb (powdered), the whole

plant (seed), petal (stigma), and rhizome (hypocotyl) (Singh

et al., 2003; Fakhri et al., 2021; Ranjbar et al., 2022). Collectively,

some researchers carried out antidepressant action or

neuroprotective benefits by several methods that target the

neurological signaling pathways or molecules responsible for

depressive illnesses (Lu et al., 2022; Zarneshan et al., 2022).

Natural compounds produced from various parts of the plants

with a common mode of action are addressed in Table 2. This

mechanism includes MAO (MAO-A and MAO-B) inhibitory

activity and interactions with dopaminergic (D2), serotonergic,

GABA (gamma-aminobutyric acid), adrenergic (α1), and

noradrenergic receptor system interactions (Ekor, 2014).

4.7 Anxiety

Anxiety disorders are common, incapacitating, frequently

chronic, and very co-morbid conditions (Saha et al., 2022). Plant-

based medications may provide an extra safe and useful option in
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addition to traditional pharmacotherapies and psychological

therapy, which are the front-line techniques. The term

“anxiolytics” refers to phytotherapeutic treatments that may

be helpful for anxiety disorders. These treatments typically

have effects on the GABA system (Sarris, 2007; Sarris and

Kavanagh, 2009), either affecting ionic channel transmission

through voltage-gated blocking, altering membrane

architecture (Greenfield, 2022), or, less frequently, binding to

benzodiazepine receptor sites (such as GABA-a) (Awad et al.,

2007), inhibiting GABA transaminase or glutamic acid

decarboxylase (Rastogi et al., 2016). Preclinical research in this

field has been widely explored, especially by nations such as

China, India, Brazil, the United States, Spain, and Germany. Over

the past several decades, clinical studies have been undertaken on

various plant-based medications for different anxiety and mood

disorders. Preclinical research is essential because it frequently

expands on existing knowledge of the traditional uses of plant

medicines and informs possible human applications. Table 3

TABLE 2 Different types of plants used for depression.

Botanical name Family Plant part References

Asparagus racemosus Asparagaceae Roots Dhingra and Kumar (2007), Singh et al. (2009)

Bacopa monnieri Plantaginaceae Whole plant Sairam et al. (2002), Girish et al. (2012), Singh et al. (2014), Speers et al. (2021), Zaazaa et al. (2022)

Benincasa hispida Cucurbitaceae Fruit and seeds Dhingra and Joshi (2012), Rapaka et al. (2021)

Phyllanthus emblica Phyllanthaceae Fruit Dhingra et al. (2012), Muzaffar et al. (2022)

Glycyrrhiza glabra Fabaceae Roots Dhingra and Sharma (2006), Martins and Brijesh (2018), Singla et al. (2021)

Tinospora cordifolia Menispermaceae Stem Dhingra and Goyal, (2008)

Rhazya stricta Decne. Apocynaceae Leaf Ali et al. (1998a), Ali et al. (1998b)

Nardostachys jatamansi Caprifoliaceae Roots and rhizomes Karkada et al. (2012), Patil et al. (2012), Li et al. (2021)

Valeriana jatamansi Valerianaceae Roots and rhizomes Subhan et al. (2010), Sah et al. (2011a), Sah et al. (2011b)

Ptychopetalum olacoides Olacaceae Roots Siqueira et al. (2004); Piato et al. (2009)

Schisandra chinensis Schisandraceae Seed Viana et al. (2005)

Siphocamphylus
verticillatus

Campanulaceae Stem and leaf Rodrigues et al. (2002)

Akebia trifoliata Lardizabalaceae Fruit Zhou et al. (2010), Jin et al. (2012)

Boophone disticha Amaryllidaceae Bulb Spector et al. (2006), Lima et al. (2008), Gadaga et al. (2011)

Allium cepa Amaryllidaceae Bulb Sakakibara et al. (2008)

Paeonia lactiflora Paeoniaceae Roots Mao et al. (2008a), Mao et al. (2008b), Qiu et al. (2013)

Anemarrhena
asphodeloides

Asparagaceae Leaf Ren et al. (2006)

Piper longum Piperaceae Fruit Lee et al. (2005), Lee et al. (2008)

Polygala tenuifolia Polygalaceae Roots Cheng et al. (2006), Hu et al. (2010), Kimura and Sumiyoshi (2011)

Glycyrrhiza uralensis Fabaceae Roots Wang et al. (2008), Zhao et al. (2008), Fan et al. (2012)

Trigonella foenum-graecum Fabaceae Seed Gaur et al. (2012), Mahanti et al. (2022)

Gynochthodes officinalis Rubiaceae Roots Cui et al. (1995), Zhang et al. (2002)

Nelumbo nucifera Gaertn. Nelumbonaceae Seed Tungmunnithum et al. (2022)

Zingiber officinale Roscoe Zingiberaceae Rhizome Singh et al. (2012), Sibi and Meera (2013)

Curcuma longa Zingiberaceae Rhizome Takemoto et al. (2022), Yu et al. (2022)

Cullen corylifolium Fabaceae Seeds Xu et al. (2008), Yi et al. (2008)

Rhodiola rosea Crassulaceae Roots Van Diermen et al. (2009), Mannucci et al. (2012)

Aniba riparia Lauraceae Seed Lopes et al. (2018), McCarthy et al. (2022)

Canavalia brasiliensis Fabaceae Stem Araújo et al. (2018), Abreu et al. (2022)

Schinus molle Anacardiaceae Leaf Khan et al. (2018), Zhou et al. (2020)

Lobelia inflata Campanulaceae Leaf Subarnas et al. (1992), Subarnas et al. (1993)

Apocynum venetum Apocynaceae Leaf Butterweck et al. (2001), Zheng et al. (2013)

Salvia rosmarinus Lamiaceae Stem and leaf Machado et al. (2012), Machado et al. (2013), Singla et al. (2017), Bonokwane et al. (2022)

Crocus sativus Iridaceae Petal and stigma Hosseinzadeh et al. (2003), Ettehadi et al. (2013), Abu-Izneid et al. (2022)

Perilla frutescens Lamiaceae Leaf Nakazawa et al. (2003), Ito et al. (2008), Yi et al. (2013)
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discusses medicinal plants used in clinical trials for anxiolytic

effects.

4.8 Spinal cord injury

Mechanisms such as multiple cellular and molecular are

activated by acute spinal cord injury (SCI). Su et al. inquired

how effectively the Jisuikang (JSK), a traditional drug, works

as a treatment in a rat model with established SCI. High-

performance liquid chromatography in conjunction with

photodiode array detection, electrospray ionization-mass

spectrometry, and phytochemical fingerprinting of JSK

was used. Additionally, JSK seems to target several

pathways (biochemical and cellular) to promote functional

recovery and enhance the results of SCI (Su et al., 2013; Islam

et al., 2022). To evaluate the therapeutic effects of ethanolic

extract of Mucuna pruriens (MP) in treating SCI, Chandran

et al. used the widely researched standardized Multicenter

Animal Spinal Cord Injury Study animal model of the

contusive spinal cord. Additionally, MP, at equivalent

dosages, was found to be very beneficial in reducing

inflammation and/or oxidative stress in various disease

circumstances (Rastogi, 2014).

TABLE 3 Various plant species used for anxiety.

Botanical name Family Active constituents Neurochemical
pathways

References

Achillea millefolium Asteraceae Flavonoids, sesquiterpene lactones,
and dicaffeoylquinic acids

— Nemeth and Bernath (2008), Baretta et al. (2012)

Aloysia polystachya Verbenaceae Thujone carvone GABA Mora et al. (2005), Hellion-Ibarrola et al. (2006)

Abies pindrow Pinaceae Terpenoids, flavonoids, and
glycosides

— Assad et al. (2021)

Albizia julibrissin Fabaceae Flavonoids and triterpenoid
saponins

Serotonin, 5-HT1A Kim et al. (2004), Jung et al. (2005)

Bacopa monnieri
(Brahmi)

Plantaginaceae Bacoside A ACh, DA, NA, 5-HT Stough et al. (2001), Calabrese et al. (2008), Charles et al.
(2011), Pase et al. (2012)

Cannabis sativa/indica
(marijuana)

Cannabaceae Cannabidiol Cannabinoid Campos and Guimarães (2008), Resstel et al. (2009),
Bergamaschi et al. (2011)

Citrus aurantium
(bitter orange)

Rutaceae Volatile oils and flavonoids GABA Akhlaghi et al. (2011), Saiyudthong and Marsden (2011)

Galphimia glauca Malpighiaceae Nor-seco-triterpene (galphimine B) 5-HT Herrera-Ruiz et al. (2006a), Herrera-Ruiz et al. (2006b),
Herrera-Arellano et al. (2007), Jiménez-Ferrer et al.
(2011), Herrera-Arellano et al. (2012)

Apocynum venetum Apocynaceae Flavonoids GABA and 5-HT Grundmann et al. (2007), Xie et al. (2007)

Crocus sativus Iridaceae Safranal, crocin, and picrocrocin 5-HT, NE, DA, GLU, and
GABA

Hosseinzadeh and Sadeghnia (2007), Schmidt et al.
(2007), Pitsikas et al. (2008), Hosseinzadeh and Noraei
(2009), Ghadrdoost et al. (2011)

Eschscholzia
californica

Papaveraceae Benzophenanthridine alkaloids GABA Rolland et al. (1991), Rolland et al. (2001), Klvana et al.
(2006)

Euphorbia hirta Euphorbiaceae Alkaloids and phenolics GABA Lanhers et al. (1990), Anuradha et al. (2008)

Justicia spp. Acanthaceae Elenoside GABA Navarro et al. (2004), Venâncio et al. (2011)

Leea indica Vitaceae Triterpenoid glycosides,
hydrocarbons, and ursolic acid

Srinivasan et al. (2008), Raihan et al. (2011)

Panax ginseng Araliaceae Triterpenoid saponins (ginsenosides Monoamines, HPA-axis, and
BDNF

Dang et al. (2009), Jiang et al. (2021)

Ginkgo biloba Ginkgoaceae Ginkgolides Dopamine, noradrenaline
(norepinephrine)

Kuribara et al. (2003), Woelk et al. (2007), Fehske et al.
(2009), Yoshitake et al. (2010)

Passiflora incarnata
(passion flower)

Passifloraceae Amino acids, chrysin, b-carboline
alkaloids, and flavonoids

GABA Akhondzadeh et al. (2001), Movafegh et al. (2008),
Aslanargun et al. (2012)

Withania somnifera
(ashwagandha)

Solanaceae Glycowithanolides GABA Andrade et al. (2000)

Valeriana
spp. (valerian)

Caprifoliaceae Valerenic acid and valepotriates Adenosine and GABA Andreatini and Leite (1994), Andreatini et al. (2002),
Benke et al. (2009), Nunes and Sousa (2011), Javan
Gholiloo et al. (2019)

Turnera diffusa Turneraceae Flavonoids (apigenin) and essential
oils

GABA Kumar and Sharma (2005), Kumar et al. (2008)
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5 Role of natural products as
biomarkers in neuronal diseases

Using biomarkers of neurodegeneration and neuronal

dysfunction can enhance the precision of diagnosis, the

ability to track disease progression, prognosis, and the

efficacy of therapeutic interventions. Neurological

biomarkers are present in the CSF but rarely or at

undetectable levels in the blood. Different proteins

presented in the CSF, such as neurofilament proteins, tau,

and tar DNA-binding protein (TDP-43), have been

considerably applied markers to monitor the CNS activity

(Viswambharan et al., 2017).

Natural substances have rarely been used as biomarkers in

neurodegenerative disorders. However, many biomarkers have

been utilized to disclose the molecular pathways of plant extracts

for the therapy of NDDs. For example, plasma Aβ40 levels were
used to detect the effect of curcumin on AD (Hardy and Selkoe,

2002; Baum et al., 2008). Aβ40 belongs to the βAPP gene, the first

AD susceptibility gene found, which encodes a glycosylated

transmembrane protein of 770 amino acids in its longest

isoform. The amyloid cascade theory postulates that an

increase in the production of the proteins would result from a

mutation in the βAPP gene, with more of the protein eventually

broken down to produce the poisonous β-amyloid peptides (Aβ)
(Huang et al., 2014). Aβ was also used in a Huperzia serrata

(Chinese herb) study in the treatment of AD. Cholinesterase

inhibitor isolated fromHuperzia serrata was reported to decrease

levels of soluble and insoluble β-amyloid and amyloid plaques in

AD mice (Ghodsi et al., 2022a; Mitra et al., 2022).

In the case of PD, α-synuclein aggregation has been used as a

biomarker in various in vivo studies. Basically, α-synuclein gene

is most commonly expressed on elongated arm of chromosome 4

and is a characteristic of PD and also leads to faster progression of

the disease. They occur in most forms, including the rare early-

onset familial form of PD. A study reported that curcumin

extract prevented α-synuclein aggregation and fibrillation in

animal models of PD (Bakhtiari et al., 2017).

6 Role of bioinformatic studies of
plant metabolites in neuronal
diseases

Several plants have been used in medicine for neuronal

diseases since historical times, and some natural extracts have

been developed to commercial medical products. The

conventional method of the discovery of plant-based

pharmaceuticals is frequently time-consuming and costly. The

fast development of high-throughput technology has made it

difficult for these labor-intensive methods to stay

up. Bioinformatics is vital in the era of high-volume, high-

throughput data creation in biosciences. In the realm of drug

design and discovery, this has typically been the case. However,

the potential use of bioinformatics techniques that can harness

plant-based knowledge has received little attention so far.

Bioinformatics research has benefited medicinal plant

research. In medicinal plant research, the application of

bioinformatics techniques leads to faster and potentially more

cost-effective discoveries of plant-based treatments.

Most bioinformatic studies of plant metabolites in

neuronal diseases have focused on flavonoids. Flavonoids

are a family of phenolic substances. This group of phenolic

substances has been reported to affect neuroprotection in AD

(Mohebali et al., 2018; Sharma et al., 2021). Different side

chains may considerably impact the biological activities of

flavonoid subclasses, according to systematic correlations

between fragments of the chemical structure and

biological effects. Flavonoids might considerably enhance

the pathways of HD and AD compared to other natural plant

products. In addition, systemic examination of targets for

various flavonoid subclasses revealed that targets such as

MAPT, APEX1, and ALDH1A1, which are strongly

associated with the nervous system, were considerably

enriched in nearly all flavonoid subclasses. In this

situation, the flavonoid multimodal therapeutic potential

suggests their value in nervous system medication

discovery (Qiu et al., 2018).

7 Limitations

Therapeutic efficacy in human patients remains

uncertain and limited, although natural products or plant

extracts with antioxidant activity have shown excellent

efficacy in in vitro and in vivo animal models. This might

be attributed in part to the fact that most clinical studies

focus on single compounds. In contrast, plant extracts

containing a range of secondary metabolites are more

commonly investigated in studies preceding clinical trials.

The combination of several active components in extracts

can have additive or synergistic effects, resulting in enhanced

antioxidant or disease-modifying activities. In addition,

clinical trials examine a wide range of subjects with

various environmental and genetic origins, as well as

various illness symptoms and, in some cases, disease

stages. It can be interesting to look at specific people or

small groups who show substantial improvement rather than

the overall importance of the entire participant population to

see why some respond to the treatment and others do not.

Furthermore, most clinical studies on natural antioxidants

(i.e., natural products or plant extracts) have focused on

behavioral or cognitive improvements in patients. In

contrast, relatively few trials have properly examined

molecular signs of sickness or oxidative stress (Pohl and

Kong Thoo Lin, 2018).
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8 Patent overview

Varied medicinal plant species have been explored in neuronal

disorders in the conventional system of natural medicines, and

interestingly, unknown species are yet to be scientifically explored.

The emphasis on research in the field of herbal compounds in

neurological disorders expanded after phytoconstituents were used

as a basis for the human treatment of several neurological disorders

(Table 4). Ravid et al. formulated a combination of Uncaria

rhynchophylla herb and an antidepressant or anxiolytic drug

therapy for treating or preventing anxiety, stress, depression, and/

or symptoms. The combinations, therefore, elicit fast on-set responses

in patients (Ravid, 2022). Ichim et al. formulated a nutraceutical of

green tea extract and/or Nigella sativa, pterostilbene, and/or

sulforaphane to overcome treatment resistance of the currently

used antidepressants (Thomas et al., 2022). Thamaraikanet et al.

prepared a phytochemical extract containing indole alkaloids.

Camalexin in aldehyde dehydrogenases mediated benomyl-induced

PD. The formulation provides a suitable multi-targetedmolecule with

antioxidant, neuroprotective, and minimal side-effect properties that

can be used as an anti-PD drug (Manasa et al., 2022). Sudhakara

Sastry et al. formulated a therapeutically effective nano-polyherbal

composition comprising herbal extracts, such as Allium sativum,

Bacopa monniera, Citrus lemon, Citrus sinensis, Curcuma longa,

Cyperus rotundus, Lycopersicon esculentum L., Mucuna pruriens,

Nardostachys jatamansi, Nigella sativa, Prunus dulcis, Psidium

guajava, Sesame indicum, Vicia faba, Vitis vinifera, Withania

somnifera, and Zingiber officinale using the phytonanoceutics

method, thereby enhancing high bio-efficacy fortified in quality.

The composition provides an alternative treatment option for

subjects suffering from neurological disorders, anxiety, and/or

management of related complications without any side effects

(AmanchiBala et al., 2021). Mohanty et al. isolated an

anticonvulsant drug from Cucurbita maxima and tested it in a

convulsion-based animal assay. The pre-treatment with this

water–alcohol extract was given biweekly and later exposed to

induced electroshock seizures at optimized conditions, and it

proved to be effective for electroshock-induced convulsions in rats

(Kumar and Nagnath, 2021). Kodimule formulated a composition

containing chlorogenic acid and sunflower seed extract in AD

(Kodimule, 2021). Palkar and Prasad formulated a synergistic

mixture of celery-based extract and various pharmaceutical

excipients in brain stroke in different ratios (1:0.1 to 1:5) (Palkar

and Prasad, 2021). Vaijanath et al. formulated aWedelolactone Nasal

Formulation. This formulation is made for the nasal drug delivery

system to achieve its brain bioavailability for treating or preventing

seizures or epilepsy (Vaijnath and Suraj, 2019). Chaudhary et al.

formulated a water-soluble extract of Alpinia galanga for improving

mental alertness and sustaining attention in humans (Chaudhary

et al., 2021).

9 Clinical research

Recently, clinical trial reports manifested that mild-to-

moderate dementia patients have been cured by employing

TABLE 4 List of different patents on different phytoconstituents for neurological disorders.

Patent no. Invention Applicant Date of
publication

References

WO/2022/123572 “A combination therapy comprising uncaria for treating anxiety
and depression”

The Open University 16.06.2022 Ravid (2022)

US20220175701 “Treatment of major depressive disorder and suicidal ideations
through stimulation of hippocampal neurogenesis utilizing plant-
based approaches”

Therapeutic Solutions
International, Inc.

09.06.2022 Thomas et al. (2022)

IN202141020016 “Phytochemical extract containing indole alkaloid camalexin for
management of benomyl-induced Parkinson’s disease”

Dr. Tamilanban Thamaraikani 11.03.2022 Manasa et al. (2022)

IN201941028495 “A synergistic nanopolyherbal formulation for Parkinson’s disease” Srimaharshi Research Institute of
Vedic Technology

22.01.2021 AmanchiBala et al.
(2021)

IN202121057739 “Isolation and identification of suitable anticonvulsant drug from
Curcurbita maxima”

Dr. Pradeep Kumar Mohanty
Nagnath Ramrao Kadam

24.12.2021 Kumar and Nagnath
(2021)

US20210330627 “Method of using a chlorogenic acid composition for supporting
cognitive function”

Vidya Herbs, Inc. 28.10.2021 Kodimule (2021)

WO/2021/084559 “Synergistic nutritional compositions for treating cerebrovascular
diseases”

Celagenex Research (India)
Pvt. Ltd.

06.05.2021 Palkar and Prasad
(2021)

IN201921009898 “Development and evaluation of wedelolactone nasal formulation
for antiepileptic activity”

Sathaye Sadhana Vaijanath 18.09.2020 Vaijnath and Suraj
(2019)

US20210205400A1 “Formulation containing an extract ofAlpinia galanga, a process for
the preparation thereof, and uses thereof”

Enovate Biolife Pvt. Ltd. 16.03.2021 Chaudhary et al.
(2021)
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naturally originated therapeutics (Yiannopoulou and

Papageorgiou, 2013). Both studies including clinical trials

for test scores and randomized trial for 30 weeks placebo

study, were restricted due to resulting hepatotoxicity

(Alfirevic et al., 2007). Berberine, another phytoconstituent,

displayed symptoms including constipation, diarrhea,

bloating, and stomach pain in human subjects with type

2 diabetes (Yin et al., 2008). In a short-term study based

on resveratrol, its repeated dose revealed no major adverse

effects, but nearly 13% of the individuals had a frontal

headache as a side effect (Shaito et al., 2020). In another

phase III trial, cholinesterase inhibitors, including

galantamine, donepezil, and rivastigmine, were observed to

have a lesser memory-enhancing effect, and side effects,

including vomiting, nausea, diarrhea, sleeplessness,

muscular spasm, loss of fatigue, and loss of hunger, were

observed in severe AD subjects (https://clinicaltrials.gov/ct2/

show/NCT02035982). In recent report findings, the

investigated anti-AD drugs have been excluded based on

approximately 200 clinical trials because of inefficacy and

toxicity (Mo et al., 2018). Amyloid blockers have not been

marketed yet, although they undergo clinical testing (Huang

et al., 2020). Toxicity has been reported, Commercialization of

such drugs is constrained by concerns of toxicity, but

scientists are discovering a novel pharmacological entity

with natural existence (Cummings et al., 2021). Indeed, the

multitargeting approach by natural agents observes enhanced

safety and potentially cognitive modulating abilities, thus

contributing to remarkable efficacious compounds (Sartori

and Singewald, 2019). Many clinical observations are available

in the form of case reports or preliminary clinical trials, which

provide essential clinical leads for the initiation of any serious

clinical trial in the related area on the background of

experimental studies. Interestingly, Ghodsi et al. designed a

randomized, triple-blind, placebo-controlled study and

evaluated curcumin in 30 idiopathic PD patients and

30 placebo groups as an add-on therapy at 80 mg/kg dose

for 9 months. The movement disorder society revision of the

Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)

part-III was p = 0.04, exhibiting a significant difference in

patient groups, and nausea and vomiting with p = 0.25 and

gastroesophageal reflux with p = 0.42 were side effects (Ghodsi

et al., 2022b). Recently, Wang et al. examined a systematic and

meta-analysis overview of the accessible preclinical data and

plausible mechanisms of baicalein based on in vivo PD studies.

Twenty different studies were implied, and the data analysis

observed that baicalein can enhance neuroprotective action

such as instant motor activity (n = 5), pole (n = 2), rotarod (n =

9), apomorphine-induced rotations (n = 4), grid (n = 2), and

tremor (n = 2) tests in comparison to control. The study

reported multi-signaling pathways, including

neurotransmitter modulation, modifying enzyme activity,

relieving oxidative stress, blocking protein aggregation, and

further restricting apoptosis (Wang et al., 2020). In another

retrospective trial, the pharmacological effect of the artisanal

oil formulation of cannabidiol was investigated for epilepsy

among 108 pediatric populations. The study observed that

39% of patients showed a major decrease in seizures (more

than 50%), and 10% showed no seizures. In contrast, 44%

patients exhibited a 50% reduction compared to the 33% with

only cannabidiol in the group that was observed receiving

combination therapy with cannabidiol and clobazam. The

overall results exhibited better alertness and enhanced

verbal communication in cannabidiol patients in

comparison to the cannabidiol and clobazam patient group,

which also showed sedation as its side effect (non-statistically

significant difference) (Porcari et al., 2018).

There are few and conflicting pharmacological and clinical

studies on the effectiveness of traditional Chinese systems and

herbal mixtures in AD. Concerns with irreproducibility may

result from this incapacity to deal with uncertainty.

Consequently, due to their natural occurrence, promising drug

delivery to the brain, and lower adverse effects, the complexes of

nanoparticles and herbal plants or their constituents called nano-

phytomedicine have currently become essential in the

progression of novel neuro-therapeutics. Nanotheranostics is a

strategy attracting much interest worldwide for the management

of neurodegenerative disorders. Nanoformulations are used in

management and diagnosis at the same time. Researchers have

created a revolutionary nanotheranostic system that reflects the

utilization of nanoparticles and expands the potential

applications in this field (Bhattacharya et al., 2022). Toward

this direction, Noor et al. established curcumin-based

intracerebroventricular injection at a sub-diabetogenic dose of

streptozotocin for AD. Curcumin ameliorated the behavioral,

immunohistochemical, and most of the neurochemical

alterations induced by streptozotocin in the hippocampus and

cortex portion, thus showing prospects for brain drug delivery.

Thuraisingam et al. formulated nanoemulsions containing

Centella asiatica crude extract to penetrate the blood–brain

barrier using the low-energy emulsification method, showing

promising results against epilepsy. Junior et al. compared

nanoemulsions of curcumin with free curcumin through an

experimental model for PD. The study concluded that

curcumin-loaded nanoemulsions and free curcumin enhanced

motor impairment decreased lipoperoxidation, modified

antioxidant protection, and inhibited the formation of

complex I (Ramires Júnior et al., 2021; Noor et al., 2022;

Thuraisingam et al., 2022).

10 Conclusion

In summary, medicinal plants constitute a significant

reservoir of various bioactive ingredients. The implementation

of effective multi-targeted drugs for the treatment and prevention
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of various diseases, including neurological disorders, may result

from ethnopharmacology-focused studies that provide a

scientific basis for the effective dose and promising

toxicological effects on the local community. The key insight

is that natural products may hold enormous therapeutic potential

for varied neurological diseases as conventional treatments,

including synthetic medications, only aim to relieve symptoms

and are completely inadequate because they cannot arrest the

evolution of the diseased condition. However, the uncertainties

regarding the effectiveness and efficacy of several natural

products present a challenge. A lot still needs to be studied,

described, and discovered. The chemical modification of natural

phytoconstituents and molecular docking of those compounds

may improve the potency and efficacy of natural products. Thus,

to improve patient safety and ethical treatment, clinicians must

frequently investigate the employability of all products, such as

conventional, complementary, and alternative. Furthermore,

experts should deliberately begin to increase scientific

understanding of the efficacy and safety of natural products,

underlining the need for fundamental research to enhance

scientific understanding of the fundamental biological

mechanisms. The best sources of novel therapeutics and active

frameworks are still natural products. When synthetic and

biological chemists collaborate on these case studies, novel

structures with the potential to treat a range of human

diseases can be investigated.

11 Future prospectives

Pain associated with neurodevelopmental disorders and

neurodegenerative diseases are common, as are conditions

which includes Parkinson’s disease (PD), dementia, epilepsy,

and neuro infections caused by malnutrition. The

pharmacological properties of medicinal plants have been

effective in treating various neurological conditions.

Although many different types of plants are available

globally, only a few have been researched for neurological

problems. Therefore, there are several chances for more

exploration of botanicals and their bioactive compounds in

this field. In recent years, there has been an increase in interest

in natural alternative treatments that encourage fast recovery

and avoid side effects. The use of natural compounds in

alternative and complementary therapies may result in the

identification of novel drug lead compounds. The use of

natural compounds to treat neurodegenerative illnesses has

gradually become a growing industry. In addition to

providing a scientific foundation for the ideal dose and

potential toxicological effects on the local community,

pharmacological studies can aid in the development of even

more effective therapeutically multi-targeted natural

compounds for the treatment of various neurological disorders.
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