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1. INTRODUCTION 

Major depressive disorder (MDD) is a common mental 
disorder that affects more than 163 million people worldwide 
[1]. Unlike transitory emotional changes induced by unfortu-
nate events or challenges, MDD can severely affect the daily 
life of individuals and even threaten their lives. Patients with 
MDD may have severe symptoms, such as notable, long-
term sadness and despair, cognitive issues, loss of interest in 
activities, reductions in speech and activity, and sleep dis-
turbances [2, 3]. Studies have shown that people who experi-
ence serious stressful events, such as divorce, unemploy-
ment, severe physical disease, and the death of family mem-
bers are more likely to develop MDD [4-7]. However, envi-
ronmental factors are not the only factors that lead to MDD, 
and genetic, psychological, and biological factors also play 
important roles in the development of this disease. Recently, 
researchers demonstrated that the activation of the cortico-
tropin-releasing hormone (CRH)/hypothalamic-pituitary-
adrenocortical (HPA) axis, overactivation of the sympathetic 
nervous system, aberrant secretion of monoaminergic neuro-
transmitters, hypersecretion of inflammatory cytokines, inhi-
bition of neurotrophic factors, and epigenetic changes are 
associated with the development of MDD [8-13]. Specifical-
ly, the relationship between epigenetics and MDD has at-
tracted scientists’ attention in recent years. 
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Epigenetics might be one of the bridges that connect envi-
ronmental and genetic factors. Stressful events might lead to 
changes in epigenetic modifications, leading to gene expres-
sion alterations. The concept of epigenetics, which is the abil-
ity to alter gene expression without altering the DNA se-
quence, was first proposed by Waddington [14]. Epigenetics 
includes RNA (mRNA and non-coding RNA) editing, ge-
nomic imprinting, gene silencing, and X-chromosome inacti-
vation [15]. Epigenetic modifications have been found to be 
important in nervous system diseases, such as Parkinson’s 
disease, Huntington disease, Alzheimer’s disease and MDD 
[15-17]. Epigenetic modifications include DNA methylation, 
histone modification and non-coding RNA regulation and can 
influence the transcription of RNAs, thus inducing phenotypic 
changes without changing DNA sequences [18-21]. Among 
these different types of epigenetic modifications, post-
translational modifications of histones can influence chromo-
some conformation, which then changes gene expression. 

Currently, antidepressants used in the clinic can be divid-
ed into the following seven groups: selective serotonin 
reuptake inhibitors (SSRIs), serotonin modulators (5-HT2 
blockers), serotonin-norepinephrine reuptake inhibitors 
(SNRIs), norepinephrine-dopamine reuptake inhibitors 
(NDRIs), heterocyclics, monoamine oxidase inhibitors 
(MAOIs) and melatonergic antidepressants [22]. These med-
ications work mainly by inhibiting serotonin and norepineph-
rine activities. However, patients taking the aforementioned 
antidepressants frequently have serious side effects, and ap-
proximately 40% of MDD patients are not sensitive to these 
medications [23]. The development of highly effective and 
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 Abstract: Major depressive disorder (MDD) is a disease associated with many factors; specifically, 

environmental, genetic, psychological, and biological factors play critical roles. Recent studies have 

demonstrated that histone modification may occur in the human brain in response to severely stress-

ful events, resulting in transcriptional changes and the development of MDD. In this review, we dis-

cuss five different histone modifications, histone methylation, histone acetylation, histone phos-

phorylation, histone crotonylation and histone β-hydroxybutyrylation, and their relationships with 

MDD. The utility of histone deacetylase (HDAC) inhibitors (HDACis) for MDD treatment is also 

discussed. As a large number of MDD patients in China have been treated with traditional Chineses 

medicine (TCM), we also discuss some TCM therapies, such as Xiaoyaosan (XYS), and their effects 

on histone modification. In summary, targeting histone modification may be a new strategy for elu-

cidating the mechanism of MDD and a new direction for MDD treatment. 
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less toxic antidepressants is necessary. Researchers have 
developed new antidepressants with targets such as the glu-
tamate/gamma-aminobutyric acid systems, the HPA axis 
pathway, opioid receptors, brain-derived neurotrophic factor 
(BDNF), and glial-derived neurotrophic factor (GDNF) [23-
25]. Moreover, antidepressants that target histone modifica-
tions have also attracted the attention of researchers. Histone 
deacetylase (HDAC) inhibitors have been found to be useful 
for MDD treatment. 

In this review, we focus on histone modification and de-
scribe how it affects gene transcription and thus influences 
the development and treatment of MDD. Furthermore, anti-
depressants that target histone modifications, especially 
HDAC inhibitors, are alsodescribed . We also present his-
tone modification studies performed on mice, rats and hu-
mans. 

2. HISTONE MODIFICATION 

Histones and DNA in combination form chromatin. The 
basic structure of chromatin is the nucleosome, which is 
formed by two copies of histone 2A (H2A), two copies of 
histone 2B (H2B), two copies of histone 3 (H3) and two cop-
ies of histone 4 (H4) wrapped by a 147-bp piece of DNA 
[26]. Between nucleosomes, there is an approximately 50-bp 
DNA segment (linker DNA) that binds with histone H1 [15]. 
The linker DNA segment and linker histone H1 tightly con-
nect nucleosomes together to form chromatin [27]. Further-
more, the alkaline N-terminal tails of histones protrude from 
the nucleosome and connect with neighboring nucleosomes 
to form chromatin of different conformations [26].  

All histone modifications occur posttranslationally, 
which include methylation, acetylation, phosphorylation, 
crotonylation, β-hydroxybutyrylation, deamination, β-N-
acetylglucosamine ADP ribosylation, ubiquitination and 
SUMOylation, [28]. Different histone modifications can 
change the conformation of chromatin to euchromatin (ac-
tive) or heterochromatin (inactive), which then alters gene 
transcription, DNA repair, DNA replication, DNA recombi-
nation and alternative splicing [29-32]. Recent studies have 
demonstrated that histone modifications can be used to pre-
dict gene transcription levels; histone acetylation is always 
accompanied by transcriptional activation, while histone 
methylation may be associated with different transcriptional 
functions [33]. In addition to histone methylation and histone 
acetylation, histone phosphorylation, histone crotonylation 
and histone β-hydroxybutyrylation have also been found to 
regulate the development of MDD. In the following section, 
we introduce the five histone modifications and their rela-
tionships with MDD. 

3. HISTONE MODIFICATION IN MDD 

Epidemiological analysis has shown that although there 
are no significant differences in histone modification be-
tween identical twins at the time of birth, differences in his-
tone modifications develop with age, leading to differences 
in the risk for developing MDD [34-36]. This finding sug-
gests that the development environment might alter epigenet-
ic characteristics and thus enhance susceptibility to MDD. In 
the section below, we focus on how histone modification 
alters gene transcription and influences MDD progression 

and discuss whether histone modification could be a bi-
omarker for MDD diagnosis and treatment. Since scientists 
have discovered that histone methylation, histone acetyla-
tion, histone phosphorylation, histone crotonylation and his-
tone β-hydroxybutyrylation may play important roles in gene 
transcription in MDD, we will discuss these five modifica-
tions separately. 

3.1. Histone Methylation 

Histone methylation is one of the most important histone 
modifications and is important for signal transmission [37]. 
First discovered in 1964, histone methylation involves the 
addition of a methyl group (-CH3) to lysine or arginine resi-
dues [38]. Histone methylation is a dynamic process by 
which a methyl group can be added or removed by specific 
enzymes. Other proteins can recognize and bind methylated 
residues to alter phenotypes. Different numbers of methyl 
groups can be added to the ε-amino group of lysine for 
monomethylation (me), dimethylation (me2) or trimethyla-
tion (me3); arginine can be symmetrically methylated 
(me2s), asymmetrically methylated (me2a), and monometh-
ylated (me1) [39]. Methylation can occur at different posi-
tions and different forms of methylation may be associated 
with different functions, such as transcriptional activation or 
transcriptional repression. Histone methylation is catalysed 
by histone methyltransferases (HMTs), which can add a me-
thyl group donated by S-adenosylmethionine to its target 
residues [38, 40].  

Histone modification of gene regulatory regions may 
play a role in MDD (Table 1). One of the most characteristic 
histone modifications is histone 3 lysine 4 trimethylation 
(H3K4me3). Enhancement of H3K4me3 at the promoter 
region of synapsin 1, which results in overexpression of syn-
apsin 1a (SYN1a) and synapsin 1b (SYN1b), was found in 
the brain tissues of 18 MDD patients who died from suicide, 
[41]. Studies of mice exposed to chronic unpredictable mild 
stress (CUMS) have demonstrated that in different epigenetic 
states, the GDNF gene regulates susceptibility and adapta-
tion to chronic stress. A reduction in the levels of H3K4me3 
at the GDNF promoter led to a reduction in GDNF levels in 
CUMS-exposed mice. This shows that histone modification 
plays a vital role in the control of behavioural responses to 
chronic stress [25]. Although H3K4me3 activates gene tran-
scription, other forms of histone methylation, such as 
H3K9me2 and H3K27me3, inhibit gene transcription. En-
hancement of H3K9me2 at the promoter region of calmodu-
lin-dependent protein kinase II α (CaMKIIα) resulted in the 
inhibition of CaMKIIα in MDD patients and mice exposed to 
antidepressants compared to that in untreated MDD patients 
and control mice [42]. RAS-related C3 botulinum toxin sub-
strate 1 (RAC1), a Rho GTPase-related gene known to regu-
late the synaptic structure, was also shown to be inhibited by 
the induction of H3K27me3 in the nucleus accumbens (NAc) 
of mice exposed to chronic social defeat stress compared to 
that of control mice [43]. Interestingly, enhanced H3K4me3 
at the promoter region of SYN1 and reduced H3K4me3 at 
the promoter region of GDNF were found in MDD patients 
and animal models [25, 41]. Even in the same disease, the 
levels of H3K4me3 were disparate at the promoter regions of 
different genes. Discovering how HMTs and histone deme-
thylase recognize promoter regions of different genes and 
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determining disparate levels of H3K4me3 in their promoter 
regions may yield interesting results.  

HMTs were also found to be important in MDD (Table 
2). Increased expression and activity of the HMT Setdb1 in 
forebrain neurons is associated with antidepressant-like phe-
notypes, including reduced mania, a reduced sense of help-
lessness in learning, and reduced depression-like behavior in 
mice in tail suspension and forced swimming tests [44]. Sim-
ilar to Setdb1 expression and activity, HMT G9a expression 
and activity were also found to be reduced in a social defeat 
stress mouse model [45]. Analysis of protein arginine me-
thyltransferase 1 (PRMT1)

 
knockout mice and PRMT1

wt/wt 

mice revealed that deletion of PRMT1 resulted in inhibition 
of depressive-like behaviour and induction of BDNF, and 
postsynaptic density protein 95 (PSD95) expression [46]. 
Expression of JMJD3, a histone lysine demethylase, was also 
found to be upregulated in the prefrontal cortex and hippo-
campus of CUMS-induced rats, which resulted in a reduction 
in pan-H3K27me3 [47]. However, the level of H3K27me3 at 
the promoter region of RAC1 was increased. This result 
showed that the level of H3K27me3 might be different in 
different genes, similar to that observed for H3K4me3. Re-
search on H3K27me3 levels at the promoter regions of spe-
cific genes was more precise. Elucidating the underlying 
mechanism of histone methylation may lead to new methods 
for treating depression. 

3.2. Histone Acetylation 

Similar to histone methylation, histone acetylation is a 
common form of histone modification. Since histone acetyla-

tion was first discovered by Allfrey et al., in 1964, it has 

been found to play important roles in several human diseases 
[15, 48]. In contrast to histone methylation, histone acetyla-

tion may enhance gene transcription. Histone acetylation 

occurs at lysine residues and can be regulated by histone 
acetyl-transferases (HATs) and HDACs. HATs weaken the 

interaction between DNA and histones and expose gene 

promoter regions, which results in the promotion of gene 
transcription and expression, while HDACs strengthen these 

interactions and protect gene promoter regions leading to the 

inhibition of gene transcription and expression (Fig. 1) [49, 
50]. Normally, histone acetylation and histone deacetylation 

are under dynamic equilibrium, and diseases can develop if 

this equilibrium is disrupted. 

As shown in Table 1, Tsankova et al., first discovered 
that MDD induced by chronic social defeat stress in mice 
may be related to histone acetylation and that the antidepres-
sant imipramine can effectively induce histone acetylation, 
thus curing MDD [51, 52]. Moreover, inhibition of BDNF, a 
factor with antidepressant effects, was observed in the hip-
pocampus of MDD mice, and overexpression of BDNF was 
found to be accompanied by an increase in H3 acetylation at 
the P3 and P4 regions of the BDNF promoter following imi-
pramine treatment [51, 52]. Similarly, Fuchikami et al., 
found that the expression of BDNF was inhibited in the hip-
pocampus when mice was exposed to a single immobiliza-
tion stress test and that H3 acetylation was inhibited at the 
P1, P4 and P6 regions of the BDNF promoter in mice ex-
posed to single immobilization stress test compared to that in 
control mice [53]. Similar to histone methylation, RAC1 

expression was also found to be decreased, correlating with 
the reduction in H3 acetylation of the RAC1 promoter region 
after exposure to chronic social defeat stress [43]. These re-
sults showed that histone methylation and histone acetylation 
might synergistically control gene expression. H3 acetylation 
of the promoter region of GDNF is also reduced in CUMS-
induced mice, resulting in inhibition of GDNF expression 
[25]. In addition to alterations in mouse models, changes in 
the NAc of MDD patients have also been explored. For in-
stance, Robison et al., discovered that H3 acetylation at the 
CaMKⅡA promoter region reduced in patients taking anti-
depressant drugs compared with patients not taking antide-
pressants [42].  

In addition to pan-acetylation of H3, specific forms of 

histone acetylation have also been detected. Kenworthy et 
al., and Montagud-Romero et al., discovered that the levels 

of H3K9ac, H3K14ac, H4K5ac, H4K8ac, H4K12ac and 

H4K16ac reduced in the mouse dorsal raphe (DR) nucleus 
and hippocampus after exposure to social defeat stress [54, 

55]. Furthermore, the acetylation levels of H4K12 and 

H3K14 were also found to be increased 15 or 21 days after 
exposure to social defeat stress [55, 56]. These discoveries 

demonstrate that histone acetylation can be inhibited once a 

mouse is exposed to stress and that histone acetylation is 
slowly enhanced during recovery, which further shows the 

important role of histone acetylation in MDD. The above 

research showed that MDD is highly associated with a reduc-
tion in histone acetylation, and analyzing histone acetylation 

could be a meaningful direction for the study of MDD and 

for developing MDD treatment strategies. 

Currently, HDACs are the main focus of research on the 
regulation of histone acetylation in MDD (Table 2). Human 
HDACs can be divided into the following four classes: class 
Ⅰ HDACs, which include HDAC1, 2, 3, 8; class Ⅱ HDACs, 
which include HDAC 4, 5, 6, 7, 9, 10; class Ⅲ HDACs, 
which include sirtuins (SIRTs); and class Ⅳ HDAC, i.e., 
HDAC11 (Fig. 1) [57, 58]. Class Ⅰ HDACs and class Ⅱ 
HDACs have been demonstrated to be the most important 
HDACs in regulating MDD. Convington et al., demonstrated 
that HDAC2 expression in the mouse NAc can be repressed 
on both day 1 and day 15 after social defeat in mice to allow 
recovery from stress, and that HDAC2 expression is also 
inhibited in postmortem NAc samples from individuals who 
had been treated with antidepressants [56, 59]. By measuring 
the levels of 11 HDACs in the mouse striatum (STR), 
Uchida et al., found that HDAC2 expression can be induced 
in a CUMS-induced depression model and that depressive 
behavior developed less often in mice injected with an 
HDAC2 inhibitor than in control mice [25]. On the other 
hand, HDAC5 seems to have the opposite function in MDD. 
Renthal et al., showed that HDAC5 function was decreased 
in the NAc in a chronic social defeat stress mouse model, 
while HDAC5 function was increased after imipramine 
treatment [60]. In addition, HDAC5 knockout mice were 
also found to be hypersensitive to the development of de-
pressive behavior after chronic social defeat stress [60]. 
There is still no evidence showing why these two HDACs 
have distinct functions. We speculate that since HDAC2 and 
HDAC5 belong to different classes of HDAC, their functions 
and target genes might also be different. By controlling 
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Fig. (1). Regulation of histone acetylation by HATs, HDACs and HDACis in MDD. A). Histone acetylation in dynamic equilibrium is con-

trolled by HATs and HDACs. HATs can transfer an acetyl group from acetyl-CoA to a histone, which weakens the interaction between the 

histone and DNA, exposes the gene promoter region, and ultimately induces the transcription of related genes. On the other hand, HDACs can 

remove acetyl groups from histone, thus strengthening the interaction between the histone and DNA and inhibiting the transcription of related 

genes. B). Target selectivity of HDACis in MDD. HDACs can be divided into 4 different classes, and Class Ⅰ and Class II HDACs are the 

most important HDACs in regulating MDD. HDACis (TSA, SAHA, VPA, MS-275, sodium butyrate) selectively inhibited HDACs, thus 

maintaining histone acetylation and activation of gene transcription. (A higher resolution/colour version of this figure is available in the elec-
tronic copy of the article). 
 
different targeted genes, HDAC2 and HDAC5 synergistical-
ly regulate the development and progression of MDD. More-
over, HDAC1 was found to play important roles in redox 
homeostasis, nitric oxide regulation and inflammatory/anti-
inflammatory pathways [61] as we know that the interplay 
and coordination of redox homeostasis and nitric oxide regu-
lation might exhibit neuroprotection function in neuro-
relation disease, including MDD [62-64]. Heat Shock Protein 
90, a substrate of HDAC6, was also discovered to have a 
neuroprotection function [65]. Targeting HDACs and redox 
homeostasis might be promising therapeutics in MDD treat-
ment. 

Interestingly, HDAC expression was also detected in pe-
ripheral leukocytes, although the pattern of expression was 
observed to be different. Hobara et al. measured the expres-
sion of 11 HDACs in the peripheral white blood cells of 20 
MDD patients and discovered that HDAC2 and HDAC5 
were overexpressed in these patients compared to healthy 
people, but that there were no significant differences in the 
expression of the other 9 HDACs [66]. Furthermore, HDAC 
expression was measured in 39 MDD patients in remission, 

and it was found that the expressions of HDAC2 and 
HDAC5 were at normal levels and were not significantly 
different from those in the healthy groups [66]. Iga et al. also 
obtained similar results: HDAC5 expression was significant-
ly higher in drug-free MDD patients than in healthy controls, 
but the expression level of HDAC5 returned to normal after 
8 weeks of paroxetine treatment [67]. The results reported by 
Hobara et al. and Iga et al. suggest that the expression levels 
of HDAC2 and HDAC5 may be potential biomarkers for 
MDD and for evaluating the efficacy of MDD therapies [66, 
67]. The trend of the change in HDAC5 expression was dif-
ferent in peripheral leukocytes and the NAc. These results 
suggest that the expression of HDAC5 might be different in 
different locations in the body. 

Apart from Class I HDACs and class II HDACs, SIRTs 
(class III HDACs) were also discovered to regulate MDD 
and neurodegenerative disorders [68, 69]. Two genome-wide 
association studies (GWAS) analyzing 9000 Chinese women 
with MDD and 4855 Chinese Han population showed that 
single-nucleotide polymorphism (SNP) rs12415800 (SIRT1) 
was correlated with risk of MDD and with SIRT1 inhibition 
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Table 1.  Different histone modification types and their associations with MDD. 

Histone Modifica-

tion Types 
Modification 

Position 
Transcription  

Function 
Alteration in MDD Affected Genes 

in MDD 
References 

Histone methylation H3K4me3 Transcription activation 
Enhanced at promoter region of SYN1 in MDD 

patients. 

Overexpression 

of SYN1a and 

SYN1b 

[41] 

- - - 
Reduced at promoter region of GDNF in CUMS-

exposed mice. 

Inhibition of 

GDNF 
[25] 

- H3K9me2 
Transcription repres-

sion 

Reduced at promoter region of CaMKIIα in MDD 

patients not taking antidepressants. 

Overexpression 

of CaMKIIα  
[42] 

- H3K27me3 
Transcription repres-

sion 

Enhanced at promoter region of RAC1 in NAc of 

social defeat-stressed mice. 

Inhibition of 

RAC1 
[43] 

Histone acetylation 
Pan H3 

Acetylation 
Transcription activation Reduced at BDNF promoter region in MDD mice. 

Inhibition of 

BDNF 
[51-53] 

- - - 
Reduced at RAC1 promoter region in social de-

feat-induced mice. 

Inhibition of 

RAC1 
[43] 

- - - 
Reduced at GDNF promoter region in CUMS-

induced mice. 

Inhibition of 

GDNF 
[25] 

- - - 
Enhanced at CaMKIIα promoter region in MDD 

patients not taking antidepressants. 

Overexpression 

of CaMKIIα  
[42] 

- 

H3K9ac, 

H3K14ac, 

H4K5ac, 

H4K8ac, 

H4K12ac, 

H4K16ac 

Transcription activation 
Reduced in DR nucleus and hippocampus in social 

defeat-induced mice. 
/ [54-56] 

Histone phosphory-

lation 
H3S10p Transcription activation 

Enhanced in ILCx and PrLCx of forced swim-

ming-induced rats. 

Promoted 

H3K14ac, inhib-

ited H3K9ac and 

H3K9 methyla-

tion 

[82-85, 91] 

- H3S28p Transcription activation  

Promoted 

H3K27ac, inhib-

ited H3K27 

methylation 

[86] 

Histone crotonyla-

tion 
Pan Kcr 

Transcription repres-

sion 
Reduced in PFC of social defeat-induced mice. 

Overexpression 

of CDYL 
[107] 

Histone β-

hydroxybutyrylation 
H3K9bhb Transcription activation Reduced in spatial restraint-induced MDD mice. 

Inhibition of 

BDNF 
[112-115] 

 
[70, 71]. Research on a Japanese population showed similar 
results that SNP rs1245800, rs4746720 (SIRT1) and 
rs10997875 (SIRT1) were discovered to be associated with 
suicide and MDD [72, 73]. Not only SIRT1, SNPs in SIRT2 
were  also found to be related to the risk of postpartum de-
pressive symptoms [74]. Studies have shown that MDD is a 
disease relevant to inflammation and redox homeostasis. 
And SIRTs were discovered to involve in the regulation of 
inflammation, redox homeostasis, and cell senescence [75]. 
Thus, SIRTs might be potential therapeutic targets in MDD 
treatments. SIRT1 activator resveratrol has been found to 
alleviate depressive-like behaviors in LPS (lipopolysaccha-

ride)-induced mice [76]. Another SIRT1 activator, SRT2104 
was also discovered to exhibit neuroprotective ability in 
CUMS-treated mice [77]. Interestingly, SIRT2 seems to have 
an opposite function in MDD compared to SIRT1. SIRT2 
inhibitor 33i showed antidepressant function in CUMS mice 
[78]. Analyzing the function of different SIRTs and their 
relationship with MDD might help develop new therapies. 

Histone methylation and histone acetylation are the two 
most common histone modifications in MDD. However, in 
recent years, histone phosphorylation, histone crotonylation 
and histone β-hydroxybutyrylation have also been found to 
be associated with MDD. 
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3.3. Histone Phosphorylation 

Histone phosphorylation is another type of histone modifi-
cation. Most histone phosphorylation takes place on serine and 
threonine residues, although tyrosine residues can also be 
phosphorylated [79]. Similar to histone acetylation, histone 
phosphorylation is under dynamic equilibrium and regulated 
by protein kinases (PKs) and protein phosphatases (PPs) [80]. 
PKs can transfer a phosphate group from ATP to an amino 
acid residue of histone and thus change the conformation of 
chromatin, while PPs can remove a phosphate group from 
histones [81]. Moreover, interactions between histone phos-
phorylation and histone acetylation and between histone phos-
phorylation and histone methylation have been found in cells. 
For example, phosphorylation of H3S10 was demonstrated to 
promote the acetylation of H3K14 but inhibit both the acetyla-
tion and methylation of H3K9, resulting in the activation of 
gene transcription [82-85]. In addition, H3S28p was found to 
promote H3K27 acetylation and inhibit H3K27 methylation, 
resulting in enhanced gene expression [86]. 

Histone phosphorylation has been found to play im-
portant roles in the human nervous system. Crosio et al. dis-
covered that treatments targeting dopamine, acetylcholine or 
glutamate enhance H3S10 phosphorylation in the mouse 
hippocampus [87]. H3S10p expression was also found to be 
upregulated in the hippocampus in mice subjected to fear 
conditioning or drug addiction models [88, 89]. H3S10 
phosphorylation at the c-fos promoter region was also found 
to be induced in rats exposed to novelty stress [90]. To date, 
there have been very few studies on the function of histone 
phosphorylation in MDD. Morello et al. first demonstrated 
that rats subjected to forced swimming tests showed a signif-
icant increase in H3 phosphorylation in the infralimbic 
(ILCx) and prelimbic (PrLCx) areas of the prefrontal cortex 
compared to mice not subjected to stress (Table 1) [91]. 
However, no other researchers have focused on the relation-
ship between histone phosphorylation and MDD. Since his-
tone phosphorylation plays an important role in the human 
nervous system, the mechanism by which histone phos-
phorylation influences MDD might also be a valuable new 
future research direction. 

3.4. Histone Crotonylation 

Histone crotonylation is another uncommon histone mod-
ification that was first identified by Tan et al., who identified 
67 novel histone marks by analyzing mass spectrometry 
(MS) data using PTMap software (which can locate post-
translational modification sites) and found 28 histone marks 
that are likely to be crotonylated [92, 93]. Histone crotonyla-
tion is similar to histone acetylation as this modification al-
ways occurs on lysine residues and is dynamically controlled 
by crotonyltransferases and decrotonylases [94]. Crotonyl-
transferases transfer a crotonyl group from crotonyl-CoA to 
an amino acid residue of histone, and decrotonylases remove 
the crotonyl group. HATs also regulate histone crotonyla-
tion, while class Ⅰ HDACs (HDAC1, 2, 3, 8) act as de-
crotonylases [95-100]. Moreover, the concentration of cro-
tonyl-CoA was found to be one of the restrictive factors of 
histone crotonylation [99, 100]. 

In human somatic and mouse male germ cell chromo-
somes, histone crotonylation was found to occur at the pro-
moter regions or enhancer regions of active genes, resulting 

in the regulation of gene transcription [93, 99]. In addition, 
the crotonylation of histones was found to play critical roles 
in the regulation of processes such as acute kidney injury, 
spermatogenesis, telomere maintenance, HIV latency, and 
cancer development [101-106]. Liu et al. demonstrated that 
MDD induced by chronic social defeat stress is correlated 
with inhibition of histone crotonylation accompanied by in-
duction of chromodomain Y-like protein (CDYL) expression 
(Table 1) [107]. This is the first and only study demonstrat-
ing the relationship between MDD and histone crotonylation. 
More studies analyzing histone crotonylation regulation of 
other MDD-related gene expression levels and the relation-
ship between histone crotonylation and other histone modifi-
cations in the regulation of gene transcription are necessary. 

3.5. Histone β-hydroxybutyrylation 

Histone β-hydroxybutyrylation is a newly discovered his-
tone modification described by Xie et al. in 2016 [108]. His-
tone β-hydroxybutyrylation was found to be dynamically 
influenced by the cellular level of β-hydroxybutyryrate, but 
the mechanism by which a β-hydroxybutyryl group is trans-
ferred from β-hydroxybutyrate to a histone is still unknown 
[108, 109]. Moreover, RNAseq and Kyoto Encyclopedia of 
Genes and Genomes analysis (KEGG) revealed that β-
hydroxybutyrylation of H3K9 is highly correlated with en-
hancement of gene expression [108]. 

β-Hydroxybutyrate, a ketone body, has already been 
demonstrated to be important in nerves- and nerve-related 
diseases. β-Hydroxybutyrylation was found to protect neu-
rons from toxicity and prevent dopaminergic neurodegenera-
tion in Alzheimer's and Parkinson's disease [110, 111]. Re-
cent studies also showed that β-hydroxybutyrate might exert 
an antidepressant effect in MDD resulting from chronic un-
predictable stress [112-114]. Chen et al. first linked the anti-
depressant effect of β-hydroxybutyrate to histone modifica-
tion [115]. They found that β-hydroxybutyrylation of H3K9 
reduced in mice with MDD induced by spatial restraint stress 
and that injection of β-hydroxybutyrate could  increase the 
levels of β-hydroxybutyrate and H3K9 β-
hydroxybutyrylation without changing H3K9 acetylation 
levels (Table 1) [115]. Furthermore, BDNF expression was 
found to be upregulated after β-hydroxybutyrate injection, 
suggesting that H3K9 β-hydroxybutyrylation might also be 
an important regulator of BDNF expression [115]. Since β-
hydroxybutyrate does not exert its antidepressant effect by 
altering the histone acetylation level, we believe that histone 
β-hydroxybutyrylation is a promising direction for under-
standing the mechanisms of MDD. Research on the mecha-
nism by which β-hydroxybutyryl groups are transferred to 
histones might provide a better understanding of histone β-
hydroxybutyryl modifications. 

4. TARGETING HISTONE MODIFICATION FOR 
MDD THERAPY 

4.1. HDAC Inhibitors 

Although there are several histone modifications in-
volved in MDD, the main histone modification that has been 
targeted for MDD therapy is histone acetylation, specifically, 
the use of HDAC inhibitors (HDACis). HDACis can be di-
vided into the following four groups on the basis of their 
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Table 2.  Histone modification enzymes and their functions in MDD. 

Enzymes Types Function Catalytic 

Site 
Association with MDD References 

Setdb1 Histone methylatransferase 
Adding methyl to targeted 

residuces 
H3K9 Reduced mice depression-like behaviors. [44] 

G9a Histone methylatransferase 
Adding methyl to targeted 

residuces 
H3K9 Reduced in social defeat stress MDD model. [45] 

PRMT1 
Protein arginine methyl-

transferase 1 
Adding methyl to arginine H4R3 

PRMT1−/− mice inhibited LPS-induced depres-

sive-like behavior. 
[46] 

JMJD3 Histone lysine demethylase 
Removing methyl from 

lysine 
H3K27 

Overexpressed in prefrontal cortex and hippo-

campus of CUMS-induced rats. 
[47] 

HDAC2 
Histone deacetylases  

(Class I) 

Removing acetyl from 

targeted residuces 
/ 

Enhanced in MDD patients not taking antide-

pressants and CUMS-induced mice. 

Enhanced in MDD patient peripheral leukocytes. 

[59, 60, 66] 

HDAC5 
Histone deacetylases  

(Class II) 

Removing acetyl from 

targeted residuces 
/ 

Reduced in NAc of social defeat-induced mice.  

Enhanced in MDD patient peripheral leukocytes. 
[60, 66, 67] 

 

Table 3.  Overview of HDACis used to treat MDD in animal models. 

HDACi Classification 
Targeted 

HDAC 

Targeted 

Genes 
References 

Trichostatin (TSA) Hydroxamates Class I, II BDNF [118, 128] 

Vorinostat (SAHA) Hydroxamates Class  I, II, IV GDNF, CORT, BDNF [25, 119, 120] 

Valproic Acid / 

Valproate (VPA) 
Aliphatic acid Class I, II 

BDNF, GSK-3β, β-catenin, 

CORT, MC4R 
[121-123] 

MS-275 Benzomide Class I 
CREB, BDNF, CORT, RAC1, 

GJA5, etc. 
[43, 89, 124, 128] 

Sodium butyrate Aliphatic acid Class I, II BDNF, TTR, HTR2A [126-128] 

 
chemical structures: hydroxamates, cyclic peptides, aliphatic 
acids and benzomides [116, 117]. The abilities of different 
HDACis to exert an antidepressant effect and target HDACs 
and the genes that encode them have been investigated in 
MDD animal models (Table 3).  

Weaver et al. discovered that the HDACi trichostatin A 
(TSA) could reverse the hippocampal transcriptome changes 
induced by maternal care in early life in rats [118]. Another 
HDACi, vorinostat (also known as suberoylanilide hydrox-
amic acid, SAHA), which was the first HDACi to be ap-
proved for clinical use by the U.S. FDA, was discovered to 
reverse the induction of MDD-related behavior and GDNF 
expression by CUMS exposure in mice [25]. Moreover, Kv 
et al. and Meylan et al. found that SAHA could affect corti-
costerone (CORT) and BDNF levels in an MDD mouse 
model [119, 120]. Valproic acid (VPA), an HDACi widely 
used to treat epilepsy and bipolar disorder, was also discov-
ered to have antidepressant properties. VPA was found to 
affect BDNF, glycogen synthase kinase 3β (GSK-3β), β-
catenin, CORT, and melanocortin-4 receptor (MC4R) ex-
pression in MDD animal models [121-123]. MS-275, a se-

lective HDACi that target class Ⅰ HDACs, was found to in-
fluence the expression of proteins including cAMP-response 
element-binding protein (CREB), BDNF, CORT, RAC1, and 
gap junction protein α 5 (GJA5) in mice subjected to chronic 
social defeat stress [43, 56, 124]. Furthermore, in mice sub-
jected to chronic restraint stress, sodium butyrate was shown 
to cause significant remission of MDD-related behaviors 
[125, 126]. Sodium butyrate was found to exert an antide-
pressant effect by regulating BDNF, transthyretin (TTR) and 
serotonin 2A receptor (HTR2A) expression [126, 127]. Ad-
ditionally, the HDACis TSA, sodium butyrate and MS-275 
were shown to increase acetylation at the BDNF promoter 
region, thus increasing BDNF transcription in mice with 
MDD induced by maternal separation in infancy [128]. In 
addition, the combination of the antidepressant agent fluoxe-
tine and HDACis was found to obviously decrease MDD-
related behaviors, suggesting that HDACis may be used with 
common antidepressant drugs in the future [125, 128]. 

Although HDACis have been shown to have antidepres-
sive characteristics in animal models, there are still some 
limitations to be resolved before wide application in the clin-
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ic. In addition to acting on histones, HDAC can also sup-
press the acetylation of other proteins, such as α-tubulin, 
hypoxia-inducible factor-1α (HIF-1α), signal transducer and 
activator of transcription 3 (Stat3), and β-catenin [129-132]. 
Accordingly, the application of HDACis for MDD treatment 
might result in severe side effects. For example, an FDA-
approved HDACi named Farydak used to treat multiple mye-
loma was found to exhibit side effects such as serious gastro-
intestinal toxicity, thrombocytopenia, myelosuppression, 
fatal cardiac ischaemic events, arrhythmias, electrocardio-
gram (ECG) changes, localized and systemic infections, and 
hepatic dysfunction [133]. There is a dire need to discover 
new HDACis that can selectively target the promoter regions 
of MDD-related genes and exhibit low toxicity . Moreover, 
investigating dual inhibitors that target both HDAC- and 
MDD-related factors (e.g., serotonin and monoamine oxi-
dase) might be a new direction to cure MDD. 

Furthermore, studies have shown that only SAHA, VPA 
and sodium butyrate can cross the blood-brain barrier (BBB), 
while some of the other HDACis have difficulty in penetrat-
ing the BBB [134]. To cure MDD, researchers had to in-
crease the drug concentration administered; this might also 
lead to enhancement of the side effects, thus discovering 
HDACis that can easily penetrate the BBB is urgent. Cou-
pling HDACis with BBB substrates might be a new direction 
to explore new HDACis for treating MDD. Hiranaka et al. 
discovered that exploiting new drugs that consist of a hybrid 
of an HDACi and substrate of pyrilamine-sensitive proton-
coupled organic cation antiporter (PYSOCA) could increase 
the permeability of BBB [135]. In addition to BBB sub-
strates, HDACis have been hybridized with other antidepres-
sants that can penetrate the BBB, which is another way to 
facilitate delivery into the brain. In addition, encapsulating 
HDACis into nanoparticles might be another way to 
transport HDACis into the brain. Li et al. injected coating 
miRNAs using nanoparticles via the mouse tail vein and 
successfully cured mice with traumatic brain injury [136]. 
Similarly, packaging of HDACis into nanoparticles might 
also help them pass through the BBB, which then helps cure 
MDD.  

4.2. Common Antidepressants and Histone Modification 

Apart from HDACis, common antidepressants used in 
the clinic were also found to regulate histone modification 
during MDD treatment. Ookubo et al., analyzed 11 antide-
pressants and discovered that most of them could enhance 
H3 acetylation levels in different brain areas [137]. Quetiap-
ine restored H3K9me3 levels in the prefrontal cortex (PFC), 
which then helped relieve MDD-related behavior in socially 
isolated mice [138]. Lithium was also discovered to reduce 
HDAC1, 3, 4, 5, 7, 8, 10 expressions [137, 139]. H3 histone 
acetylation was also found to be enhanced at the promoter 
region of BDNF in the hippocampus of MDD rats treated 
with olanzapine, accompanied by inhibition of HDAC5 
[140]. 

Fluoxetine, an SSRI, was discovered to decrease pan H3 
acetylation levels and increase H3K9me2 levels at the pro-
moter region of CaMKIIα in mice with social defeat stress 
[141]. Pan H3 acetylation was also increased at the HDAC4 
promoter region in the hippocampus of fluoxetine treated 
rats, which resulted in HDAC4 enrichment and decreased H4 

acetylation at the mammalian target of rapamycin (mTOR) 
promoter and G Protein Subunit Alpha I1 (Gnai1) promoter 
region [142]. Moreover, HDAC2 expression was also de-
creased in the spinal dorsal horn in fluoxetine treated female 
mice, accompanied by increased H3 acetylation levels [143]. 
Venlafaxine, an SNRI, was also found to inhibit HDAC5 
expression and increase H3K9ac levels in a chronic unpre-
dicted stress (CUS) rat model [144]. Heterocyclic antide-
pressants could also regulate histone modification. Amitrip-
tyline could significantly increase H3K4me3 and H3K9ac 
levels at the promoter region of activating transcription fac-
tor 3 (Atf3) and H3K4me3 levels at the promoter region of 
heme oxygenase 1 (Hmox1) in mouse neuronal cells [145]. 
Imipramine was also found to promote H3K9ac, H3K14ac 
and H3K4me2 levels at the BDNF promoter region in the 
hippocampus of mice with social defeat stress [52]. HDAC 
activity was also inhibited in the NAc of imipramine-treated 
rats [146]. 

Most of the antidepressants discussed above could inhibit 
HDAC and induce histone acetylation in MDD treatment. 
Some antidepressants, such as lurasidone, exhibit opposite 
functions. Lurasidone was discovered to enhance HDAC1, 2 
and 5 expressions [121]. This result suggested that the com-
bination of lurasidone with HDACis might have a better an-
tidepressant effect. Researchers have paid attention to the 
combination of common antidepressants and HDACis for the 
treatment of MDD. Lithium and valproate cotreatment in-
duced BDNF expression and exhibited a neuroprotective 
effect in MDD [147, 148]. 

4.3. Anti-depressant Effect of Alternative Traditional 
Chinese Medicine (TCM) Therapies on Histone Modifi-

cation  

In addition to commonly used antidepressants, traditional 
alternative therapies have been widely used to treat MDD 
patients worldwide. Traditional alternative therapies are 
medical practices that are distinct from standard therapies, 
and include Ayurvedic medicine, TCM, homeopathy, and 
naturopathic therapies [149]. Traditional alternative therapies 
are essential for most of the world’s population and are more 
popular in developing countries. Currently, various tradition-
al alternative therapies, especially TCM therapies, play valu-
able roles in the treatment of psychiatric patients. TCM orig-
inated in ancient China and has been widely used in Asian 
countries for over two thousand years. The main TCM thera-
pies include Chinese herbal medicines, acupuncture, Tai Chi 
and massage. Among these therapies, Chinese herbal medi-
cines are commonly used for regulating mood and prevent-
ing mental diseases, such as depression, anxiety and insom-
nia.  

Xiaoyaosan (XYS), a classic Chinese herbal medicine 
formula used in TCM, was first recorded in Taiping Huimin 
Heji Jufang in the Song Dynasty. XYS comprises eight Chi-
nese herbs: Radix Bupleuri, Radix Paeoniae Alba, Radix 
Angelicae Sinensis, Rhizoma Atractylodis, Poria, Radix 
Glycyrrhizae, Herba Menthae, and Rhizoma Zingiberis. XYS 
has been used clinically to treat depression in China for more 
than 2000 years. It has been demonstrated that XYS can de-
crease Hamilton scale (HAMD) and self-rating depression-
scale (SDS) scores in depression patients [150, 151]. XYS 
has also been demonstrated to ameliorate depression-like 
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behaviors in CUMS-treated rats, rats subjected to chronic 
immobilization stress and mice subjected to CUMS [152, 
153]. Studies have shown that the antidepressant effect of 
XYS may be associated with histone modification. Wang et 
al. demonstrated that XYS could decrease the expression of 
H3 in the hippocampus of mice subjected to CUMS [154]. 
Pretreatment of methyl-4-phenylpyridinium (MPP

+
)-treated 

SH-SY5Y cells with extract of Paeonia lactiflora, a Chinese 
herb that is a component of XYS, impedes the changes in 
H3K9 and H3K27 of H3, thus increasing the expression of 
HDAC5 without changing HATs [155]. The active com-
pounds of XYS, namely, luteolin, quercetin, saikosaponin D 
(SSD), ferulic acid and curcumin, have been identified by 
HPLC [156-158]. Ferulic acid has been demonstrated to 
ameliorate CUMS-induced depression-like behaviors in mice 
by inhibiting SIRT6, which can deacetylate H3 at lysine 9 
and lysine 56 [159]. Li et al. found that SSD can increase the 
expression of HSP-90 and decrease the expression of 
HDAC6, which is a member of the HDAC family, in CORT-
treated PC12 cells [160, 161]. Aggarwal et al. found that 
quercetin supplementation for 4 weeks ameliorated cognitive 
impairment in ovariectomy (OVX) mice by restoring 
HAT/HDAC homeostasis through ERK activation and re-
versing alterations in the levels of neuroplasticity markers in 
the cortex and hippocampus [162]. Quercetin enhances 
p16INK4α gene expression by decreasing methylation and 
increasing histone acetylation of the p16INK4α gene [162]. 
In addition, luteolin has been reported to stimulate HDAC 
activity and inhibit HAT activity during inflammation and 
hyperglycaemia [163, 164]. Curcumin is also involved in 
histone modification in chronic obstructive pulmonary dis-
ease, heart failure and type Ⅰ diabetic nephropathy [165-167]. 
However, whether luteolin and curcumin play a role in his-
tone modification in depression remains to be studied. Over-
all, these findings suggested that the antidepressant effect of 
XYS may be related to histone modification.  

5. TARGETING HISTONE MODIFICATION IN OTH-
ER NERVOUS SYSTEM DISEASES 

Apart from MDD, histone modification could also be a 
therapeutic target in other nervous system diseases, including 
Parkinson’s disease (PD), Alzheimer’s disease (AD), Hun-
tington’s disease (HD) and spinal muscular atrophy (SMA).  

PD is a neurodegenerative disease accompanied by ab-
normal dopaminergic neurons. HDAC inhibitors TSA, SA-
HA, VPA and sodium butyrate have been found to upregu-
late the expression of the neurotrophic factors GDNF and 
BDNF in a PD rat model, which then protects dopaminergic 
neurons and increases dopamine levels [168-171]. α-
Synuclein, a neuronal protein that induces neurotoxicity in 
PD, could also be inhibited by HDACis which then alleviat-
ed PD symptoms [172]. Levodopa, a drug commonly used in 
PD, was found to reduce the acetylation of histone H4 [173]. 

AD, another neurodegenerative disease that affects thou-
sands of elderly individuals, could also be treated with 
HDACis. β-Amyloid (Aβ), a peptide that is highly correlated 
with AD, could be inhibited by VPA [174, 175]. Hyperphos-
phorylation of tau protein is also a diagnostic marker of AD. 
The HDAC inhibitors tubastatin A and ACY-1215 have been 
found to reduce tau phosphorylation in AD [176]. Donepezil, 

a commonly used anti-AD drug, was found to inhibit the 
binding between HDAC6 and the BDNF promoter in the 
cortex, which then leads to overexpression of BDNF [177]. 

Another neurodegenerative disease, HD, could also be af-
fected by histone modification. HDACis such as TSA, SA-
HA, sodium butyrate, RGFP966, and LBH589 were found to 
reduced HD symptom in an HD mouse model [178-181]. 
Survival motor neuron gene 1(SMN1), a key factor involved 
in SMA, was also found to be induced by various HDACis in 
the SMA model [182-187]. 

Currently, most drugs that target histone modifications of 
nervous system diseases are HDACis. This might be due to 
the neuroprotective effect of HDACis. Once scientists solve 
the problem of HDACis penetrating the BBB, an increasing 
number of HDACis might be used for treating nervous sys-
tem diseases in the future. 

CONCLUSION 

MDD is a disease that involves a combination of genetic 
and environmental factors, and alterations in histone modifi-
cations induced by different environmental factors may in-
fluence the development of MDD. Exploring the changes in 
histone modification may help elucidate the mechanisms of 
MDD and identify new directions for treating MDD. Among 
the different histone modifications, histone methylation, and 
especially histone acetylation, have been found to be critical 
in MDD. Histone crotonylation and histone β-
hydroxybutyrylation are newly discovered histone modifica-
tions. Although there have been few studies on the effects of 
histone crotonylation and histone β-hydroxybutyrylation on 
MDD, we believe that these two modifications may also play 
significant roles in MDD. 

HDACis and alternative TCM therapies have been 
demonstrated to exert antidepressant effects to treat MDD. 
Unfortunately, studies on the antidepressant effect of 
HDACis have only been performed in animal models; clini-
cal trials evaluating the effect of HDACis in humans have 
not yet been conducted. However, many clinical trials evalu-
ating HDACis in cancer have been performed, and HDACis 
have been approved by the US. FDA for clinical use; thus, 
we believe that HDACis could also be applied for the treat-
ment of MDD in the future. 

Traditional alternative therapies have been increasingly 
used to treat MDD. The TCM therapy XYS is a classical 
formula used to treat MDD in China. We have found that 
active compounds of XYS can alter histone modifications, 
leading to the amelioration of MDD. We believe that TCM 
therapies can treat MDD by acting as critical regulators of 
histone modifications. 

SEARCH STRATEGY 

We divided our reference search into multiple small parts 
and used PubMed (https://pubmed.ncbi.nlm.nih.gov/) as our 
main search tool. We first searched the keywords ‘(histone 
methylation) AND (depression [Title/Abstract])’ in PubMed 
and obtained 156 results. By excluding reviews and unrelat-
ed research, we obtained 68 papers. Similarly, we also 
searched for the keywords ‘(histone acetylation) AND (de-
pression [Title/Abstract])’ and obtained another 76 papers 
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that were not duplicates of the papers related to histone 
methylation. Moreover, we obtained 5 papers related to his-
tone phosphorylation, 2 papers related to crotonylation and 1 
paper related to histone β-hydroxybutyrylation. The key-
words ‘(histone modifications) AND (antidepressant)’ were 
also searched and 27 papers were obtained. There were no 
papers on the association between MDD and histone deami-
nation, β-N-acetylglucosamine, ADP ribosylation, ubiquiti-
nation or SUMOylation. All received papers were carefully 
read, selected and summarized. 
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