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Abstract: Ferula is the third largest genus of the Apiaceae family, its species are utilized as a remedy
for diverse ailments all over the world. F. sinkiangensis K. M. Shen (Chou-AWei, Chinese Ferula)
is mainly found in Xin-jiang Uygur Autonomous Region, China. Traditionally, it is utilized for
treating various illnesses such as digestive disorders, rheumatoid arthritis, wound infection, baldness,
bronchitis, ovarian cysts, intestinal worms, diarrhea, malaria, abdominal mass, cold, measles, and
bronchitis. It can produce different classes of metabolites such as sesquiterpene coumarins, steroidal
esters, lignans, phenylpropanoids, sesquiterpenes, monoterpenes, coumarins, organic acid glycosides,
and sulfur-containing compounds with prominent bioactivities. The objective of this work is to point
out the reported data on F. sinkiangensis, including traditional uses, phytoconstituents, biosynthesis,
and bioactivities. In the current work, 194 metabolites were reported from F. sinkiangensis in the
period from 1987 to the end of 2022. Nevertheless, future work should be directed to conduct in vivo,
mechanistic, and clinical assessments of this plant‘s metabolites to confirm its safe usage.

Keywords: Ferula sinkiangensis; Apiaceae; traditional uses; sesquiterpene coumarins; biosynthesis;
bioactivities; sustainability; responsible consumption and production

1. Introduction

People have utilized plants since ancient times for different reasons: food, clothing,
shelter, decoration, and construction [1]. Their usage by local and indigenous communities
has been vertically and orally transferred among generations [2]. Also, plants are dynamic
factories for the production of enormous kinds of metabolites. The plants and/or their
metabolites form the backbone for diverse pharmaceutics, perfume, cosmetic, agrochemical,
and food industries. Besides, they are traditional remedies for many ailments in various
countries particularly the developed ones [3,4].

Ferula is the third largest genus of Apiaceae family that comprises about 180 species.
Its species commonly exist in Asian and Mediterranean regions e.g., Iran, Turkey, Algeria,
Afghanistan, Saudi Arabia, Pakistan, China, and India [5]. Ferula means “carrier” or “ve-
hicle” in Latin and this genus is distinguished by the existence of oleo-gum-resins (e.g.,
sagapenum, asafoetida, ammoniacum, and galbanum) [6]. Most of its plants are with
a pungent odor and bitter taste due to the existence of disulfides [7]. In Asia, they are
utilized as a spice and in pickles, meat sauces, curry, and other foods as flavoring agents [7].
In China, the Ferula resin is employed for treating dysentery, worms, and malaria, and

Plants 2023, 12, 902. https://doi.org/10.3390/plants12040902 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12040902
https://doi.org/10.3390/plants12040902
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0002-9979-0481
https://orcid.org/0000-0002-7084-5901
https://orcid.org/0000-0002-2971-6008
https://orcid.org/0000-0002-6858-7560
https://doi.org/10.3390/plants12040902
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12040902?type=check_update&version=2


Plants 2023, 12, 902 2 of 33

to dissolve phlegm, as well as an insecticide and deodorant [8]. Its plants are utilized
as tranquilizers and for treating rheumatism, digestive disorders, headache, dizziness,
toothache, and arthritis [9]. Also, they are of great significance in traditional and folk
medicine for more than thousand years in treating epilepsy, asthma, stomachache and
headache, intestinal parasites, flatulence, influenza, dysentery, and weak digestion in differ-
ent countries [10]. These plants displayed a myriad of bioactivities: anticancer, anthelmintic,
antiepileptic, antioxidant, antiulcer, antimicrobial, antihypertensive, antifungal, antide-
pressant, antiproliferative, antiprotozoal, antihemolytic, antimycobacterial, anticoagulant,
antifertility, antispasmodic, anticonvulsant, relaxant, antinociceptive, hypnotic, memory
and digestive enzyme enhancing, antiviral, anxiolytics, antihyperlipidemic, antigenotoxic,
anti-inflammatory, antihyperglycemic, antidiabetic, and hepatoprotective [11–13]. They
also demonstrated aphicidal, phytotoxic, and acaricidal activities [11–13]. It was stated
that sesquiterpene coumarins, coumarins, aromatic acid lactones, and sesquiterpenes
are the prime phytoconstituents of Ferula plants roots [11,14], while sesquiterpenes and
monoterpenes and their oxygenated derivatives with diversified structures are the principal
metabolites of Ferula species aerial parts oil [15].

It is worth reporting that the improper practice of wild plants is commonly invasive
and devasting to the naturally existing medicinal plants which may cause a dangerous
menace to these substantial plants and may result in the extinction of some valuable
species [16]. Thus, the conservation of land resources and responsible consumption and
production are the challenges in sustainable land resources usage [16].

F. sinkiangensis K.M. Shen (Chou-AWei, Chinese Ferula, (Xinjiang’awei)) is an important
member of this genus. F. sinkiangensis is a perennial plant endemic in Xinjiang Uygur
Autonomous Region, China [17] (Figure 1).
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It was reported that this plant is in the menace of evanescence due to irrigation,
road building, unconstrained mining, reclamation, climate variation, and original habitat
deterioration, leading to annual shrinkage of F. sinkiangensis resources [18]. This plant was
included among 2nd class protected wild medicinal species and 3rd class endangered plant
in China [19,20]. However, this plant has not yet been included in the IUCN Red List of
threatened species, as well as in CITES (Convention on International Trade in Endangered
Species of Wild Fauna and Flora) [21–23].

Additionally, various metabolites have been identified from its roots, oleo-gum-resin,
resin, seeds, and aerial parts such as steroidal esters, phenylpropanoids, sesquiterpene
coumarins, aromatic acids, sesquiterpenes, coumarins, monoterpenes, lignans, and sul-
fanes [11,14,24–31].

The plant and its phytoconstituents revealed various bioactivities such as anti-ulcerative,
antibacterial, anti-inflammatory, antioxidant, molluscicidal, anti-schistosome, anti-drug
addiction, immunopharmacological, anti-neuroinflammatory, anticancer, antifungal, an-
tiviral, and insecticidal [11,14,25–32]. It is noteworthy that there is no current inclusive
review on this plant. Since 1987, many studies were performed revealing new metabolites
with diverse structural variation and promising activities from this plant. In this work,
the reported studies on this plant, including traditional uses, its metabolites, their struc-
tural classes, biosynthesis, and bioactivities are reviewed. Overall, this work intended to
give an inclusive introduction to F. sinkiangensis that could help in identifying the future
investigations direction and possible implementations of this valuable medicinal plant.

2. Research Methodology

To collect the reported data on F. sinkiangensis, a comprehensive search was carried
out on PubMed (37 records) and Google-scholar (529 records) databases, as well as the pub-
lished articles by various publishers, including Springer, Elsevier, Taylor & Francis, Wiley,
MDPI, Thieme, Hindawi, etc. The search keywords were F. sinkiangensis, ethnomedicinal
uses, folk uses, bioactive compounds, biosynthesis, phytochemistry, biological activity,
and pharmacology.

The selection criteria of the records including in this work were: (1) research articles
had to be published in scientific journals (2) studies that reported the traditional uses,
metabolites, biosynthesis, and bioactivities of F. sinkiangensis (3) patents, book chapters,
and conferences. The covered records in this work included the published articles from
various publishers, patents, book chapters, and conferences in the period from 1987 to
the end of 2022. For the non-English articles, English abstracts have been utilized. The
studies that did not agree with the selection criteria, as well as the whole non-English,
non-reviewed, and not journal articles are excluded. In the current work, 72 references
have been cited including articles from various publishers, books, conferences, webpages,
and patents (Figure 2).
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PLOS: Public Library of Science; L.W.W.: Lippincott Williams and Wilkins Ltd.; A.M.A.: American
Medical Association; e-C.P.C.: e-Century Publishing Corporation; A.C.S. American Chemical Society.

3. Taxonomy of F. sinkiangensis [32]
Kingdom Plantae
Division Magnoliophyta
Class Magnoliopsida
Family Apiaceae
Genus Ferula
Species sinkiangensis

4. Traditional Uses of F. sinkiangensis

F. sinkiangensis is mainly found in Xinjiang, which is a region with various minori-
ties. The plant has been described in the Chinese Pharmacopoeia and in “Medica of the
Tang Dynasty” for a long time as a folk medicine for gastric disorders and rheumatoid
arthritis [24].

The resin of the roots or stems of F. sinkiangensis (Ferulae Resina, “AWei” in China) is
a folk medicine recorded in Chinese Pharmacopoeia [25]. It is often utilized for reducing
the symptoms of lumps, indigestion, joint pain, wound infection, baldness, bronchitis, and
ovarian cysts by Uygur people in Xinjiang [25,33–35]. It also is efficient in killing intestinal
worms, as well as treating parasite-caused malnutrition, abdominal and stomachic swelling
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pain, diarrhea, malaria, abdominal mass, cold, and measles. However, its powerful odor
has restricted its usage [36,37]. The resin is indicated in treating animal stagnation and
food accumulation, concertions and conglomerations because of blood stasis, abdominal
syndrome, and abdominal pain due to accumulation of worms, also for malaria and
dysentery [38] at doses 1–1.5 g in the form of pills or oral powder. The resin should not
be decocted with H2O [38]. Its use is prohibited for patients with spleen and stomach
weakness, as well as for pregnant women [36,38].

5. Phytoconstituents of F. sinkiangensis

The phytochemical investigation of different parts of F. sinkiangensis, including gum
resin, aerial parts, seed, roots, oleo-gum-resin, and resins led to the separation of different
classes of phytoconstituents by the mean of diverse chromatographic tools (Table S1). Their
structure characterization was performed using various spectral techniques (e.g., UV, NMR,
MS), as well as CD, [α]D, and Xray analyses and chemical means. A total of 194 metabolites
were separated from F. sinkiangensis (excluding polysaccharides). These metabolites were
highlighted below.

5.1. Sesquiterpene Coumarins

The reported studies showed that sesquiterpene coumarins represent the major
metabolites produced by this plant. They represent 60 metabolites (Figures 3–8) of the total
compounds reported from this plant that were mainly separated from gum resin, seed,
roots, and resins. It was noted that no sesquiterpene coumarin derivatives were reported
from the aerial parts.
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These compounds featured linked coumarin and sesquiterpene units through C–O–C
ether bridge. These metabolites include monocyclic, bicyclic, or chain derivatives. Also,
they could be accountable for many of the stated bioactivities of this plant.

Their separation was performed by different chromatographic techniques, including
SiO2/RP-18/Sephadex LH-20/HPLC, whereas the identification and configuration were
accomplished using assort spectral tools (e.g., UV, NMR, MS), as well as CD, [α]D and Xray
analyses. They had UV absorbance at 320–330 nm and a common fragment at m/z 185 in
MS [39].

Among these metabolites, karatavicinol A (55), a new sesquiterpene coumarin along
with 32, 39, 41, 52, and 53 were purified from the antiulcer resin CHCl3 extract [14]
(Figure 5).

5.2. Sesquiterpene Chromones and Monoterpene Coumarins

Sesquiterpene chromones possessing a 24-carbon skeleton consisting of sesquiterpene
and chromone were reported from F. sinkiangensis roots. In 2022, Wang et al., reported
the purification of new derivatives, (±)-ferulasin from the roots MeOH extract that was
established by diverse spectral, Xray, and ECD analyses. Ferulasins (61 and 62) showed an
unusual oxygen-bearing macrocyclic skeleton with a tri-oxaspiro unit and a new backbone
in which the C-10‘ and C-11‘ of the sesquiterpene side chain form an oxygen-including
13-membered ring with C-2 of chromone (Figure 9). It was obtained as an enantiomeric
mixture that was chiral-separated by HPLC to (+)-61 and (-)-62 with 2R/3R/10‘R and
2S/3S/10‘S configurations, respectively based on Xray and ECD data [40]. Wang et al.,
assumed the biosynthesis of 61 and 62 from ferulaeone A (71). The reduction of the 71-
side chain C-3 produces 6-membered ring containing oxygen (Scheme 1). After that, the
side chain C2‘-C3‘ is oxidized and yields a 6-membered ring having oxygen with C-2 of
chromone. After the six-membered ring fission, C10‘-C11‘ bond reacts with ozone. Lastly,
attack of oxygen-atoms to C2-C3 the double bond from below or above the plane with
removal of H2O a molecule to afford 61 and 62 (Scheme 1).
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Additionally, ferusinkin A (63), a rare new monoterpene coumarin and known analogs
64 and 65 were purified and identified by Liu et al. in 2020 from the aerial parts MeOH
extract (Figure 9) [41].
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5.3. Coumarins

The coumarins; 66 and 67 were purified from the F. sinkiangensis aerial parts and
characterized based on spectral and physical data [41]. Additionally, sinkiangenol F (68) a
new coumarin was purified from the resin EtOH extract. This compound is rare coumarin
derivative having a coumarin unit connected to phenylethane moiety by C–C linkage at
C-8 [39].

5.4. Sesquiterpene Phenylpropanoids

Sesquiterpene phenylpropanoid derivatives were commonly separated from Ferula
genus [42]. In 2018, Wang et al., stated the separation of new sesquiterpene phenyl-
propanoids, sinkiangenones A (69), and B (70), along with 72 from the resin 95% EtOH
extract, which were specified utilizing spectral and CD analyses (Figure 10) [29].
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Figure 10. Structures of sesquiterpene phenylpropanoids (69–76) from F. sinkiangensis.

Also, Wang et al., separated sesquiterpene phenylpropanoid derivatives (71 and 73–76)
from F. sinkiangensis roots MeOH extract [43]. It is noteworthy that these derivatives were
previously reported from other Ferula species: 71 from F. ferulioides roots; 73 from the
underground parts of F. heuffelii and roots of F. ferulioides, F. fukanensis, F. dubjanskyi, and
F. mongolica; 74 from F. ferulioides roots; 75 from F. heuffelii, F. fukanensis, and F. ferulioides
roots, and 76 from F. heuffelii and F. ferulioides roots [42,43], suggesting the close chemotaxo-
nomic relation of F. sinkiangensis and the other Ferula species, therefore, they could share
the biosynthetic pathways of these metabolites [43].

5.5. Lignans

Lignans, norlignans, and sesquilignans were reported mainly from F. sinkiangensis
seeds and resins. (±)-Ferulasinkins A–D (82–89) (Figure 11), new norlignans characterized
by tetrahydrofuran rings were separated as racemic mixtures from the EtOAc fraction of the
resins 95% EtOH extract by MCI gel CHP 20P/RP-18/YMC gel ODS-A-HG/SiO2/Sephadex
LH-20/preparative TLC.
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Figure 11. Structures of lignans (77–89) reported from F. sinkiangensis.

The chiral column HPLC separation afforded their (-)- and (+)-antipodes. Their struc-
tures and configurations were specified by spectral tools and computational methods [28].

Additionally, Li et al., purified new racemic sesquilignans; sinkianlignans (±)-A–D
(90–97) characterized by a rare α-γ′, β-γ′, and γ-γ′ linkage pattern, and new lignans;
sinkianlignans (±)-E–F (98–101) from the resin 95% EtOH extract using SiO2/RP-18/MCI
gel CHP 20P/YMC gel ODS-A-HG/Sephadex LH-20 CC/preparative TLC and chiral HPLC
and elucidated by spectral and computational tools (Figures 12 and 13) [44].

Sesquilignans are type of lignans that consist of 3 phenylpropanoid units. Compound
94 was assumed to be biosynthesized by the shikimate pathway (Scheme 2). First, phenyl-
propanoid is formed by a shikimic acid pathway that undergoes polymerization to produce
intermediate A (aryltetralin lignan). In addition, intermediate C with a new six-membered
ring skeleton is yielded from the intermediates A and B by the Diesel-Alder cycloaddition
reaction. Moreover, C produces D by opening the ring at C1−C7. Subsequent oxidization
and decarboxylation of D yields E. After a set of redox reactions, intermediate E gives
94 [44].

Sinkianlignans G–K (102–111) new norneolignans were purified from 95% resin
EtOH extract utilizing SiO2/RP-18/MCI gel CHP 20P/Sephadex LH-20/preparative TLC
(Figure 14). Compounds 102–111 were obtained as racemic mixtures that were separated
by chiral HPLC and characterized by spectral and computational means [18].
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5.6. Sesquiterpenes and Monoterpenes

Besides, monoterpenes (e.g., carene (115), camphene (116), β-pinene (117), α- pinene
(118), and p-cymene (119)) were encountered in the F. sinkiangensis oleo-gum resins‘ volatile
oil (Figure 15) [8]. Further, Wang et al., purified a new sesquiterpenoid 125, along with
120, 122, and 124 from F. sinkiangensis roots. Compounds 124 and 125 were isomeric
cyclic-endoperoxy-nerlildol sesquiterpene derivatives, whereas 120 and 122 were chain
and guaiane-type sesquiterpenoid, respectively [40].
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5.7. Sulfanes

It was reported that polysulfides including disulfanes, trisulfanes, di-disulfanes, and
thio-disulfanes are the predominant constituents of the F. sinkiangensis volatile oil oleo-gum
resins. The oil content was 16.7% of which 64.1% were sulfur compounds. The disulfanes
were the prime components: 126–130, 134, and 135 (Figure 16) [8]. Further, the GC-MS
analysis of essential oil (3.8% yield) of F. sikiangensis seeds obtained from Xinjiang, China
that was prepared by hydro-distillation method revealed the existence of 26 metabolites,
comprising 99.001% of total oil [33].

5.8. Sterols

Chromatography separation of F. sinkiangensis 95% EtOH seed extract using SiO2,
Sephadex LH-20, and HPLC yielded new steroidal esters: sinkiangenrins A (148) and
B (149) that were characterized by NMR and Xray analyses [17]. These compounds are
related to oleagenin-cardenolide with different C-13/C-10/C-9/C-8 configuration, hav-
ing 3S/8R/9S/10S/11S/13S/17R/18R and 8S/9S/10S/12R/13R/17R/18R-configurations,
respectively (Figure 17).

These metabolites have an unparallel carbon framework that originates from C21-
steroids (Scheme 3). Firstly, the initiation of D-ring rearrangement by C8–C14 pregnane
epoxide formation, then C-8 carbocation formation. After that, Wagner–Meerwein rear-
rangement results in a C14–15 bond migration to C-8 and the creation of a C-14 protonated
carbonyl that is deprotonated [45]. Following that set of enzyme-catalyzed reactions pro-
duce 148 and 149 [17].

5.9. Phenolic Compounds and Other Metabolites

Several studies reported the separation of phenolics metabolites such as flavonoids,
phenylpropanoids, and acids from resin and seed extracts (Figures 18 and 19) [18,24,27,29].
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Figure 18. Structures of phenolic compounds (154–169) reported from F. sinkiangensis.

From the resin extract, new tetrahydrobenzofuran derivatives: sinkiangensis A–C
(182–184) were purified using SiO2 CC/HPLC and elucidated by spectral and ECD analyses
(Figure 20) [46]. Besides, sinkiangenrin C (192), a new organic acid glycoside was purified
from seeds 95%EtOH extract. It is a 2-(1-hydroxyethyl)-4-methyl pentanoic acid 4-O-β-D-
glucopyranoside [17].
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5.10. Polysaccharides

Ghulameden et al., reported the separation of water-soluble polysaccharide from
F. sinkiangensis roots gathered from Yili, Xinjiang Region, China using DEAE-cellulose-
52 column (distilled H2O, as eluent) that was assigned by IR and HPLC analyses. The
FSPs (crude polysaccharides) had ribose/arabinose/glucose/fucose/galactose (ratios
8.9/3.3/2.1/1.5/0.3), while FSPs-n (neutral polysaccharides) and FSPs-a (acidic polysaccha-
rides) contained glucose/xylose/arabinose/galactose/mannose (ratios 3.9/4.0/1.8/1.4/0.8)
and glucose/xylose/mannose/arabinose (ratios 6.5/4.0/1.7/1.0), respectively [34].

In another study, the sequential extraction of F. sinkiangensis roots yielded 28.86 wt%
total polysaccharides. The polysaccharide fractions are heteropolysaccharides, containing
galacturonic and glucuronic acids, galactose, xylose, rhamnose, fructose, and arabinose [47].

6. Biological Activities of F. sinkiangensis Extracts and Metabolites
6.1. Anti-Inflammatory and Anti-Neuroinflammatory Activity

From the Chinese medicine Awei (F. sinkiangensis gum resin) CHCl3 extract, new
metabolites; 23 and 36, in addition to formerly reported 1, 5, 7, 8, 11–13, 16, 32, 33, 39,
41, 52, and 57 (Table 1)were assessed for their anti-neuroinflammatory activity against
LPS (lipopolysaccharide)-stimulated NO production in BV-2 microglial cells using the
nitrite and MTT (3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazoliumbromide) assays.
It was noted that 7, 12, 32, and 33 possessed marked activity (IC50s 6.93, 4.96, 10.5, and
5.95 µM, respectively) compared to minocycline (IC50 37.04 µM), whereas 5, 8, 11, 13, 39,
41, and 57 greatly lessened NO production (IC50s ranged 19.88–47.43 µM). Compound
12 (Conc. 1–10 µM) remarkably suppressed IL-6, TNF-α, and IL-1β expression, as well
as COX-2 (Conc. 3–10 µM) caused by LPS in BV2 cells. Thus, this plant might have the
potential as anti-Alzheimer′s disease therapy [48]. Structure-activity relationship revealed
that the substitution at C-3‘ in the bicyclic derivatives that possess 8‘R-CH3 and 8‘R-OH
had a substantial role in the activity. The capability of C-3‘-substitutents to boost the
effect followed this order: acetoxy, α-OH, β-OH, and C=O, however, this order varied in
bicyclic derivatives with C-8‘ terminal olefinic bond. In the mono-cyclic derivatives, the
rings‘ breaking position of sesquiterpene moiety could influence the efficacy e.g., 32 and
33 with broken A-ring were more active than 39 and 41 with broken B-ring. Besides, the
O-bridge in ring A in monocyclic derivatives improved the efficacy. On the other hand, the
chain derivatives (e.g., 57 and 52) had weak activity [48]. In 2020, Zhang et al., evaluated
the potential of 12 on ischemic stroke utilizing BCCAO (bilateral common carotid artery
occlusion) and LPS-invigorated microglia models. It was found that 12 relieved cognitive
weakness, lowered neuronal forfeiture, repressed microglial stimulation, and converted
microglia from the proinflammation M1 type to the anti-inflammation M2 type in the
BCCAO-mice model. Moreover, it organized microglial polarization and suppressed the
MAPK (mitogen-activated protein kinase) and NLRP3 signaling pathways subsequent to
LPS-treatment in vitro. These findings highlighted the possible activity of 12 for treating
ischemic stroke [49].
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Table 1. Biological activity of reported metabolites from Ferula sinkiangensis.

Compound Name Biological Activity Assay, Organism or Cell Line Biological Results
Ref.

Compound Positive Control

Farnesiferol A (1) Anticancer MTT/HeLa 20.0 µM (IC50) Taxol 7.5 µM (IC50) [39]

Colladonin (2) Anticancer MTT/AGS 85.5 µM (IC50) Taxol 3.5 µM (IC50) [50]

Coladin (3) Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 60.5 µM (IC50) Minocycline 65.5 µM (IC50) [25]

Farnesiferone A (5) Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 37.88 µM (IC50) Minocycline 37.04 µM (IC50) [48]

Griess reaction/NO
production/LPS-activated BV-2 cells 37.9 µM (IC50) Minocycline 65.5 µM (IC50) [25]

Anticancer MTT/HeLa 23.0 µM (IC50) Taxol 7.5 µM (IC50) [39]
MTT/MGC-803 49.0 µM (IC50) Taxol 3.4 µM (IC50) [39]
MTT/AGS 32.0 µM (IC50) Taxol 1.8 µM (IC50) [39]

Gummosin (7) Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 6.93 µM (IC50) Minocycline 37.04 µM (IC50) [48]

Polyanthinin (8) Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 19.88 µM (IC50) Minocycline 37.04 µM (IC50) [48]

Griess reaction/NO
production/LPS-activated BV-2 cells 37.3 µM (IC50) Minocycline 65.5 µM (IC50) [25]

Anticancer MTT/HeLa 28.0 µM (IC50) Taxol 7.5 µM (IC50) [39]
Anticancer MTT/MGC-803 45.0 µM (IC50) Taxol 3.4 µM (IC50) [39]
Anticancer MTT/AGS 24.0 µM (IC50) Taxol 1.8 µM (IC50) [39]

Sinkiangenol E (10) Anticancer MTT/HeLa 16.0 µM (IC50) Taxol 7.5 µM (IC50) [39]

Ferukrin (11) Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 21.34 µM (IC50) Minocycline 37.04 µM (IC50) [48]

(3‘S, 5‘S, 8‘R, 9‘S,
10‘R)-Kellerin (12) Anti-neuroinflammatory Griess reaction/NO

production/LPS-activated BV-2 cells 4.96 µM (IC50) Minocycline 37.04 µM (IC50) [48]

Anticancer MTT/HeLa 37.0 µM (IC50) Taxol 7.5 µM (IC50) [39]

(3‘S, 5‘S, 8‘R, 9‘S,
10‘R)-Deacetylkellerin (13) Anti-neuroinflammatory Griess reaction/NO

production/LPS-activated BV-2 cells 31.61 µM (IC50) Minocycline 37.04 µM (IC50) [48]

Episamarcandin (15) Anticancer MTT/AGS 83.8 µM (IC50) Taxol 3.5 µM (IC50) [50]



Plants 2023, 12, 902 20 of 33

Table 1. Cont.

Compound Name Biological Activity Assay, Organism or Cell Line Biological Results
Ref.

Compound Positive Control

Lehmannolol (24) Anticancer MTT/AGS 26.0 µM (IC50) Taxol 3.5 µM (IC50) [50]
Anticancer MTT/HeLa 42.0 µM (IC50) Taxol 7.5 µM (IC50) [39]

Lehmannolone (25) Anticancer MTT/HeLa 81.1 µM (IC50) Taxol 5.6 µM (IC50) [50]

Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 93.8 µM (IC50) Minocycline 65.5 µM (IC50) [25]

Ferusingensine H (28) Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 18.6 µM (IC50) Minocycline 65.5 µM (IC50) [25]

Fekrynol (29) Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 13.0 µM (IC50) Minocycline 65.5 µM (IC50) [25]

Anticancer MTT/HeLa 35.0 µM (IC50) Taxol 7.5 µM (IC50) [39]
MTT/MGC-803 49.0 µM (IC50) Taxol 3.4 µM (IC50) [39]
MTT/AGS 20.0 µM (IC50) Taxol 1.8 µM (IC50) [39]

Fekrynol acetate (30) Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 15.7 µM (IC50) Minocycline 65.5 µM (IC50) [25]

Anticancer MTT/HeLa 25.0 µM (IC50) Taxol 7.5 µM (IC50) [39]
MTT/MGC-803 28.0 µM (IC50) Taxol 3.4 µM (IC50) [39]

(8‘S, 9‘S, 10‘S)-Propionyl
fekrynol (31) Anti-neuroinflammatory Griess reaction/NO

production/LPS-activated BV-2 cells 21.3 µM (IC50) Minocycline 65.5 µM (IC50) [25]

Galbanic acid (32) Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 10.50 µM (IC50) Minocycline 37.04 µM (IC50) [48]

Anticancer MTT/HeLa 43.0 µM (IC50) Taxol 7.5 µM (IC50) [39]

Methyl galbanate (33) Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 5.95 µM (IC50) Minocycline 37.04 µM (IC50) [48]

Fekolone (34) Anticancer MTT/AGS 75.4 µM (IC50) Taxol 3.5 µM (IC50) [50]

Sinkianone (35) Anticancer MTT/HeLa 77.9 µM (IC50) Taxol 5.6 µM (IC50) [50]

Ferusingensine G (38) Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 1.2 µM (IC50) Minocycline 65.5 µM (IC50) [25]

Farnesiferol B (39) Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 45.37 µM (IC50) Minocycline 37.04 µM (IC50) [48]
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Table 1. Cont.

Compound Name Biological Activity Assay, Organism or Cell Line Biological Results
Ref.

Compound Positive Control

Farnesiferone B (40) Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 18.3 µM (IC50) Minocycline 65.5 µM (IC50) [25]

Farnesiferol C (41) Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 31.43 µM (IC50) Minocycline 37.04 µM (IC50) [48]

Griess reaction/NO
production/LPS-activated BV-2 cells 22.6 µM (IC50) Minocycline 65.5 µM (IC50) [25]

Anticancer MTT/HeLa 86.9 µM (IC50) Taxol 5.6 µM (IC50) [50]
Anticancer MTT/AGS 101.6 µM (IC50) Taxol 3.5 µM (IC50) [50]
Anticancer MTT/HeLa 25.0 µM (IC50) Taxol 7.5 µM (IC50) [39]

Sinkiangenorin F (42) Anticancer MTT/AGS 27.1 µM (IC50) Taxol 3.5 µM (IC50) [51]

8-O-Acetyl sinkiangenorin
F (43) Anticancer MTT/AGS 62.78 µM (IC50) Taxol 3.5 µM (IC50) [51]

Sinkiangenorin D (44) Anticancer MTT/HeLa 20.4 µM (IC50) Taxol 5.6 µM (IC50) [50]
Anticancer MTT/K562 81.1 µM (IC50) Taxol 8.5 µM (IC50) [50]
Anticancer MTT/AGS 104.8 µM (IC50) Taxol 3.5 µM (IC50) [50]

Sinkiangenorin E (45) Anticancer MTT/AGS 12.7 µM (IC50) Taxol 3.5 µM (IC50) [52]
MTT/HeLa 82.9 µM (IC50) Taxol 5.6 µM (IC50) [52]

Antiviral A/Beijing/7/2009 H1N1 (BJ09/H1N1) 4.0 µM (IC50) - [52]

Ferusingensine F (46) Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 29.0 µM (IC50) Minocycline 65.5 µM (IC50) [25]

Umbelliprenin (52) Anticancer MTT/AGS 12.7 µM (IC50) Taxol 3.5 µM (IC50) [50]

10R-Karatavicinol (53) Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 47.43 µM (IC50) Minocycline 37.04 µM (IC50) [48]

12′-Hydroxy-
karatavicinol (54) Anticancer MTT/HeLa 48.0 µM (IC50) Taxol 7.5 µM (IC50) [39]

Ferusingensine A (56) Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 31.8 µM (IC50) Minocycline 65.5 µM (IC50) [25]

Ferusingensine E (60) Anti-neuroinflammatory Griess reaction/NO
production/LPS-activated BV-2 cells 65.4 µM (IC50) Minocycline 65.5 µM (IC50) [25]
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Table 1. Cont.

Compound Name Biological Activity Assay, Organism or Cell Line Biological Results
Ref.

Compound Positive Control

(+)-Ferulasin 2R, 3R, 10‘R (61) Anticancer MTT/SW1990 11.77 µM (IC50) Taxol 1.70 µM (IC50) [40]
Anticancer MTT/PANC-1 2.24 µM (IC50) Taxol 0.22 µM (IC50) [40]
Anticancer MTT/CFPAC-1 6.12 µM (IC50) Taxol 0.38 µM (IC50) [40]
Anticancer MTT/Capan-2 8.57 µM (IC50) Taxol 0.51 µM (IC50) [40]

(-)-Ferulasin 2S, 3S, 10‘S (62) Anticancer MTT/PANC-1 0.92 µM (IC50) Taxol 0.22 µM (IC50) [40]
Anticancer MTT/CFPAC-1 19.13 µM (IC50) Taxol 0.38 µM (IC50) [40]

Ferusinkin A (63) Anticancer Spectrophotometrically/
IOZCAS-Spex-II 65.38 µM (EC50) Camptothecin 51.27 µM

(EC50) [41]

Diversin (64) Anticancer Spectrophotometrically/
IOZCAS-Spex-II 52.67 µM (EC50) Camptothecin 51.27 µM

(EC50) [41]

Auraptene (65) Anticancer Spectrophotometrically/
IOZCAS-Spex-II 22.78 µM (EC50) Camptothecin 51.27 µM

(EC50) [41]

Sinkiangenone A (69) Anticancer MTT/MGC-803 45.05 µM (IC50) Taxol 3.35 µM (IC50) [29]
Anticancer MTT/AGS 48.13 µM (IC50) Taxol 1.82 µM (IC50) [29]
Anticancer MTT/GES-1 32.37 µM (IC50) Taxol 2.67 µM (IC50) [29]

Sinkiangenone B (70) Anticancer MTT/MGC-803 18.89 µM (IC50) Taxol 3.35 µM (IC50) [29]
Anticancer MTT/AGS 16.15 µM (IC50) Taxol 1.82 µM (IC50) [29]
Anticancer MTT/GES-1 36.73 µM (IC50) Taxol 2.67 µM (IC50) [29]

Ferulaeone G (72) Anticancer MTT/MGC-803 35.15 µM (IC50) Taxol 3.35 µM (IC50) [29]
Anticancer MTT/GES-1 35.23 µM (IC50) Taxol 2.67 µM (IC50) [29]

Arctigenin (77) Anticancer MTT/AGS 78.3 µM (IC50) Taxol 3.5 µM (IC50) [17]
Anticancer MTT/HeLa 105.1 µM (IC50) Taxol 5.6 µM (IC50) [17]

Matairesinol (78) Anticancer MTT/AGS 99.4 µM (IC50) Taxol 3.5 µM (IC50) [17]
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Table 1. Cont.

Compound Name Biological Activity Assay, Organism or Cell Line Biological Results
Ref.

Compound Positive Control

Nerolidol (120) Anticancer Spectrophotometrically/
IOZCAS-Spex-II 14.64 µM (EC50) Camptothecin 51.27 µM

(EC50) [41]

Antifungal Microdilution/Alternaria alternata 32.0 µg/mL (MIC) Carbendazim 16.0 µg/mL
(MIC) [41]

Microdilution/Pyricularia grisea 16.0 µg/mL (MIC) Carbendazim 32.0 µg/mL
(MIC) [41]

Microdilution/Botrytis cinerea 32.0 µg/mL (MIC) Carbendazim 32.0 µg/mL
(MIC) [41]

Guaiol (122) Anticancer Spectrophotometrically/
IOZCAS-Spex-II 88.92 µM (EC50) Camptothecin 51.27 µM

(EC50) [41]

Coniferaldehyde (167) Anticancer MTT/MGC-803 69.65 µM (IC50) Taxol 3.35 µM (IC50) [29]

Sinkiangensis A (182) Anticancer MTT/AGS 87.1 µM (IC50) Taxol 4.69 µM (IC50) [46]

Sinkiangensis B (183) Anticancer MTT/AGS 72.7 µM (IC50) Taxol 4.69 µM (IC50) [46]

Sinkiangensis C (184) Anticancer MTT/AGS 15.6 µM (IC50) Taxol 4.69 µM (IC50) [46]

Sinkiangenrin C (192) Anticancerity MTT/AGS 36.9 µM (IC50) Taxol 3.5 µM (IC50) [17]
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Further, in 2021, Mi et al., explored the potential of 12 on cerebral ischemia utilizing
MCAO (middle-cerebral-artery occlusion) and LPS-boosted microglia models. In the
MCAO model, 12 amended neurological outcomes and decreased infarct size and edema
of the brain in rats. It also mitigated neuron injury and restrained microglial activation.
Moreover, 12 guarded neuronal cells against damage by repressing microglial activation
in LPS-invigorated BV2 cells. It also diminished the proinflammatory cytokines levels,
NADPH oxidase activity, and ROS generation, along with the NF-κB signaling pathway
repression [28].

Chemical investigation of F. sinkiangensis resin 95% EtOH extract resulted in new
sesquiterpene coumarins: 27, 28, 31, 38, 46, and 56–60, along with early reported 3, 5, 8,
23, 25, 29, 30, 40, 41, and 52. They were characterized spectral/ECD/[α]D analyses. Their
inhibitory potential on NO production induced by LPS using nitrite and MTT assays in BV2
cells. Compounds 3, 5, 8, 25, 28–31, 38, 40, 41, 46, and 56 possessed noticeable inhibition of
NO production in over-activated BV2 cells, (IC50s 1.2–93.8 µM) compared to minocycline
(IC50 65.5 µM), while 27, 23, 52, and 57–59 had weak inhibitory capacity (IC50 > 00 µM).
It was noted that 28 (IC50 1.2 µM) revealed the potent in vitro anti-neuroinflammatory
that was confirmed by docking to TLR4/MD-2. Structure-activity relation showed that
chain sesquiterpene coumarins with C-10‘ acetoxy group (e.g., 56) had powerful activity
than the ones with C-10‘-OH, an unsaturated fatty chain or 4-decylenic acid ester (e.g., 57,
58, and 59, respectively). A-ring substitution pattern affected the potential of monocyclic
derivatives with opened B-ring. The α,β-unsaturated ketone (e.g., 38) increased the effect,
while the seven-membered ring-A resulted from C-4′-O–C–3‘ linkage (e.g., 28) remarkably
repressed NO producing relative to six-membered ring-A derivatives. In the compounds
with opened A-ring (e.g., 29–31 and 46), increase the length of oxyacyl side chain at C-3‘
weakened the anti-neuroinflammatory activity [25].

Among the lignan derivatives, 90–101, 92 and 93 possessed anti-inflammatory poten-
tial via inhibiting TNF-α and IL-6 production mediated by LPS in RAW264.7 cells without
affecting the RAW264.7 viability. Besides 92 and 93 notably suppressed LPS-produced
iNOS and COX-2 expression in RAW264.7 cells [44], whereas 102–111 had COX-2 inhibition
capacity (IC50s 4.47–21.96 µM) [18]. This evidence supported the role of F. sinkiangensis in
treating inflammation [18,44].

In 2022, ferulagenol A (176) a new phenolic metabolite, in addition to 158, 171–173,
175, and 177 were reported by Yan et al., Compounds 176 and 177 possessed notable COX-2
inhibitory capacity (IC50s 3.63 and 3.0 µM, respectively) [18].

On the other hand, F. sinkiangensis gum resin CHCl3 extract considerably prohibited
production of NO in LPS-boosted BV-2 microglial cells (IC50 1.66 µg/mL) [48].

6.2. Anticancer Activity

New sesquiterpene coumarins, 10, 17, 21, and 22 and related analogs 1, 5–9, 11–14,
20, 24, 26, 29, 30, 32, 37, 39, 41, 52, 54, and 57 were reported from the 95% EtOH extract
of the resin [39]. These compounds displayed moderate to weak anticancer potential
against AGS, HeLa, and MGC-803 cell lines. Compounds 5, 8, and 29 demonstrated
anticancer potential against AGS, HeLa, and MGC-803 cell lines (IC50s 20.0–49.0 µM),
compared to taxol (IC50 1.8, 7.5, and 3.4, respectively). Compound 10 had (IC5016.0 µM)
selective activity against HeLa cells. The mechanistic study demonstrated that 10 caused
G0/G1 cell cycle arrest and apoptosis in HeLa cells. It induced its effect by affecting
the expression of cell cycle regulation- and apoptosis-related proteins by stimulating the
MAPK pathway [39]. Additional work by Li et al., reported the separation of another new
sesquiterpene coumarins, sinkiangenorin F (42) and its 8-acetyl derivative, and 8-O-acetyl
sinkiangenorin F (43) from the seeds EtOH extract. They feature ether-linked coumarin
and sesquiterpene moieties with 6‘S/8‘S/9‘S. They exhibited anticancer potential (IC50s
27.1 and 62.7 µM, respectively) against AGS cell lines in the MTT assay [51].

Li et al. in 2015 purified and characterized sinkiangenorin D (44), a novel sesquiterpene
coumarin having fekrynol- sesquiterpene skeleton, along with 2, 15, 19, 24, 25, 29, 34, 35, 41,
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and 52 from the seeds’ EtOH extracts. Compound 44 is sesquiterpene coumarin involving
a monocyclic cycloheptene sesquiterpene unit. These metabolites (IC50s 12.7–226.6 µM)
demonstrated anticancer capacity on HeLa, AGS, and K562 in the MTT assay. Compounds
24, 25, 29, 35, 41, and 44 had activity on HeLa cells (IC50s 20.4–226.2 µM), whereas 2, 15,
24, 34, 41, 44, and 52 were active against AGS cells (IC50s 12.7–104.8 µM) compared to
taxol (IC50s 3.5–8.5 µM) [50]. Sinkiangenorin D (44) was proposed to be biosynthesized
from fekrynol-kind sesquiterpene [50]. Firstly, the formation of II is accomplished by
C-4 protonation and the olefinic bond electron-transport reaction. Thereafter, the C4–C5
electrons would transmit to C11, resulting in a seven-member ring formation. The C-5′

methyl transmission and successive loss of proton form C4′–C5′ double bond result in this
novel framework formation [50] (Scheme 4).
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A novel metabolite (45) having unrivaled bicyclo[4.3.1]decane-type sesquiterpene
skeleton was purified from the 95% EtOH extract of the seeds. Its 2′S/3′R/5′R/7′R/10′R
configuration was determined based on NMR and CD analyses. It had moderate and weak
anticancer activity against AGS (IC50 12.7 µM) and Hela (IC50 82.9 µM) cells, respectively
compared to taxol (IC50 3.5 and 5.6 µM, respectively) [52].

Umbelliprenin (52) possessed dose-dependent and time-dependent apoptosis in CLL
(chronic lymphocytic leukemia) that was more sensitive to 52 than PBMCs. It is noteworthy
that IL-4 could not decline 52-caused apoptosis in CLL (Figure 7). Thus, 52 oral administra-
tion as foods or folk medicines, might stimulate the protection against CLL development
with few side effects, however, additional clinical investigations are needed [53]. Gho-
lami et al., reported that 52 potentiated apoptosis intrinsic/extrinsic pathways in Jurkat
cells by activating caspase-9 and -8, as well as Bcl-2 prohibition [54]. Another study by
Zhang et al., revealed that 52 had a notable anticancer activity (IC50s 13.67 and 20.82 µM, re-
spectively) against AGS cells with less anticancer to GES-1 (normal human gastric epithelial
cell line). It boosted AGS cells apoptosis with elevated Bax/Bcl-2 ratios, ROS generation,
lessened mitochondrial-membrane potential, and PARP and caspase 3 activation resulting
in mitochondrial apoptosis pathway activation. It also arrested the G0/G1 phase of the cell
cycle, increased P27, P53, and P16, expression, and diminished cyclin E, cyclin D, Cdk2,
and Cdk4 expression in cancer cells. Therefore, it could be developed into anti-cancer
therapy [24]. In 2019, Zhang et al., also reported that 52 also demonstrated anticancer
capacity against BGC-823 and AGS, with less toxic influence on the normal GES-1 gastric
cells. It was proven to prevent gastric cancer cell invasion, growth, and migration by
disconcerting the Wnt signaling pathway. Additionally, it exhibited no harm in the in vivo
BGC-823 xenograft model as evidenced by no observed abnormality in daily diet, body
weight, liver function, and histological features of the spleen, liver, lung, kidney, and heart
tissue. This further supported the previous evidence of its promising potential for treating
gastric cancer [55].

The anticancer investigation against SW1990, CFPAC-1, Capan-2, and PANC-1 re-
vealed that (+)-61 and (-)-62 had marked proliferation inhibition capacity on PANC-1 cells
(IC50s 2.24 and 0.92 µM, respectively) and moderate activity against CFPAC-1 cells (IC50s
6.12 and 19.13 µM, respectively) compared to taxol (IC50s 0.22 and 0.38 µM, respectively). It
was noted that the anticancer potential of (+)-61 was more powerful than (-)-62 [40]. Also,
63–65 had anticancer activity (EC50s 22.78–65.38 µM) against IOZCAS-Spex-II, where 65
was the most potent (EC50 22.78 µM) relative to camptothecin (EC50 51.27 µM) [41].
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Wang et al., examined the activity of 69 and 70 against AGS, MGC-803, and GES-
1 using MTT assay. Only 70 possessed the notable anticancer potential against MGC-
803 and AGS (IC50s 18.89 and 16.15, respectively) with less toxicity against GES-1 (IC50
36.73 µM) comparing with taxol (IC50 3.35, 1.82, and 2.67 µM, respectively), whereas the
other metabolites had no notable potential. The mechanistic study revealed that 70 was
found to elevate Bax/Bcl-2 ratios, as well as RB, P16, and P27 expression and decrease
cyclins (D1 and E), Cdk4, P53, and Cdk2, resulting in apoptosis and G0/G1 cell cycle arrest
in AGS cells. This compound could be a potential candidate for gastric cancer therapy [29].

F. sinkiangensis seeds afforded 77–80 that displayed weak to moderate anticancer
activity on AGS and Hela cells in the MTT assay [17] (Figure 10), whereas 77, 80, and 81
had a weak anticancer capacity against AGS, HeLa, A549, and PC3 cell lines in the MTT
assay (IC50s 54.4–167.3 µM) [24].

In the CCK-8 assay, 84 and 86 were found to significantly prohibit the migration and
invasion of TNBC) cell lines. On the other hand, 88 and 89 promoted the HUVECs) pro-
liferation which was more remarkable than bFGF (basic-fibroblast-growth factor, positive
control) in the wound-healing assay [35].

New phenylpropanoid derivative; sinkiangenones C (179) and D (180), along with
158, 163, 164, 166–170, 174, and 181 were separated from the resin 95% EtOH extract and
specified by spectral and CD analyses. In the MTT assay against AGS, MGC-803, and
GES-1, they had no or weak potential (IC50s 18.89 to 182.46 µM) [29].

Sinkiangensis A–C (182–184) possessed anticancer activity on the AGS cell line (IC50s
87.1, 72.7, and 15.6 µM, respectively), whereas 184 was the most active in comparison to
taxol (IC50 4.69 µM) and induced AGS cell apoptosis in the MTT assay. Unfortunately,
they (IC50 > 100 µM) had no effect against HeLa and K562 cells [46]. Whilst 192 exhibited
anticancer activity on AGS cells (IC50 36.9 µM) [17].

The petroleum ether, EtOAc, n-BuOH, and MeOH fraction possessed of F. sinkiangensis
resin anticancer activity against Caco-2, HC-T116, MFC, and HepG2 cells in the SRB assay.
EtOAc fraction was found to have the potent anti-proliferative and apoptotic effects against
all tested cell lines. This was correlated to its content of sesquiterpene coumarins [31].

6.3. Antiviral, Insecticidal, and Antimicrobial Activities

Besides, 45 prohibited (IC50 4.0 µM) BJ09/H1N1 (influenza A/Beijing/7/2009 H1N1)
infection in MDCK cells [52]. The monoterpene coumarins; 63–65 and the coumarins: 66
and 67 displayed insecticidal potential (Conc. 10 µg/larva, 24 h) against S. exigua 3rd
instar larvae (%mortality ranging from 26.67–52.22%) compared to camptothecin (18.89%
mortality) [41]. From the aerial parts, sesquiterpenes; nerolidol (120) and guaiol (122) (58.89
and 41.11% mortality, respectively) possessed toxic potential on the S. exigua insect 3rd
instar larvae [41]. Additionally, 120 exhibited antifungal effect against plant pathogens:
inhibitory effects on Pyricularia grisea, Alternaria alternata, and Botrytis cinereal (MICs 16,
32, and 32 µg/mL, respectively) compared to carbendazim (MICs 32, 16, and 32 µg/mL,
respectively) [41].

6.4. Anti-Drug Addiction Activity

Drug addiction is a prime health concern that influences a growing number of persons
and gives rise to severe economic and social burdens to economy society [56,57]. Despite
the fact that diverse remedial strategies for drug addiction and abuse are developed,
including psychological, sociological, and pharmacological interventions, their activity is
yet restricted [58,59].

A mixture of 133 and 135 was obtained from the F. sinkiangensis crude essential oil. A
mixture of 133 and 135 (1:3 ratio, doses: 20, 40, and 60 mg/kg, ip) significantly repressed
the morphine abstinence syndrome and physiological addiction in rats and mice [60]. At
the same doses, this mixture (1:3 ratio, i.p.) reduced morphine-induced bodyweight loss.
While the mixture declined the abdominal writhing movements number and automatic
activity (doses 10.73, 21.45, and 43.55 mg/kg, i.p.) revealing its analgesic and sedative
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potential. Its acute toxicity evaluation showed the LD50 values of its iv and ip injections
were 1.42 g/kg and 1.66 g/kg, respectively [60].

In 2006, Wang reported in his patent that the resin extract in the form of capsules,
powder, injection, drop pills, granules, tablets, or oral liquid) ameliorated the influences of
serious and moderate long-time drug addictions in addicted patients, indicating its poten-
tial for treating subjects addicted to morphine, opioid, diamorphine, and marijuana [36,38].
It is noteworthy that 0.1–20 g/kg was found to be the therapeutically effective amount of
the extract for producing an effect of abstinence of morphine, whereas the preferable dose
was 1–3 g/kg [36].

6.5. Protein-Tyrosine Phosphatase 1B Inhibition Activity

FSPs-a (acidic polysaccharides) fraction of F. sinkiangensis roots water-soluble polysac-
charides revealed in vitro PTP1B (protein-tyrosine phosphatase 1B) competitive inhibition
(IC50 0.29 µg/mL, % inhibition 91.23%) [34]. In another study, the PTP1B inhibitory poten-
tial of the different polysaccharides fractions was estimated. It was noted that the inhibitory
capacity of the tested fractions elevated with raising their galactose content, therefore,
galactose may be a ligand for blocking PTP1B catalytic site [47].

6.6. Antiulcer and Antioxidant Activities

In the in vivo antiulcer assay, different F. sinkiangensis resin extracts possessed antiulcer
capacity, whereas CHCl3 extract (%inhibition 48.43) had comparatively better antiulcer
potential than the n-BuOH and EtOAC (%inhibition 37.07 and 46.06%, respectively) extracts
comparing to famotidine (%inhibition 45.37) [14]. In the DPPH assay, the F. sinkiangensis
resin n-BuOH, EtOAc, and MeOH fractions significantly scavenged DPPH, whereas the
EtOAc fraction was the most effective and the petroleum ether fraction was weakly active
in the DPPH assay [31].

6.7. Feed Attraction Activity

In 2020, Xu et al., reported that feeding Lateolabrax japonicus (commercial fish) with
F. sinkiangensis was found to notably promote L. japonicus foraging and better digestive
enzyme activity and fish growth performance, where 10 g/kg was appropriate in the fish
diet. Thus, it had an efficient role in L. japonicus farming and could have potential in the
aquaculture industry as aquafeed formulation [61].

7. Traditional Ethnomedicinal Uses in Asian Countries

Medicinal plants are fundamental to humans and utilized for thousands of years
in various cultures to treat or prevent diseases or promote health and well-being [62].
Many communities continue to depend on plants as the main tool for healing various
illnesses and have established their medical systems on the basis of their unique beliefs,
experiences, and theories worldwide [63]. Traditional and indigenous medical systems
are especially widespread throughout communities in Asia that are accountable for a
remarkable proportion of the healthcare provided in these countries [64,65]. Ayurveda,
Jamu, traditional Philippines, traditional Malay, Sowa Rigpa, Tibetan, Kampo, Siddha, Thai
medicine, Unani, and traditional Chinese systems are important sources of livelihood and
health for millions of Asian people [62,66]. Generally, the region’s traditional medicine
systems are greatly affected by those practiced in the neighboring areas especially of South
and East Asia, mainly that of India and China [62]. In China, different sociolinguistic
groups have their own traditional systems and medicinal plant usages that vary based
on associated ecology and geography [67]. For example, Southwest China (kingdom of
plants) is renowned for its large variety of ethnic groups with featured traditional cultures.
Populations from 33 ethnicities are using plants as a traditional remedy for thousands of
years, including Bai, Achang, Bulang, Tibetan, Buyi, Dai, Dong, De’ang, Hani, Dulong, Hui,
Han, Jinuo, Lahu, Jingpo, Lisu, Maonan, Luoba, Menba, Molao, Miao, Naxi, Pumi, Nu,
Qiang, Shui, She, Tujia, Yao, Wa, Yi, Zhuang, and Gelao people [67,68].
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8. Conclusions

Herbal medicines have been utilized for thousands of years as principal therapeutic
agents for treating various human illnesses in many countries. Recently, a growing number
of studies have been carried out to prove the efficacy of these medicines against the
assigned disorders. F. sinkiangensis is among the most valuable species of the genus Ferula
that possess various traditional applications in treating various disorders such as bronchitis,
diarrhea, malaria, gastric disorders, and rheumatoid arthritis. In this work, 194 metabolites
have been characterized from various parts of this plant, including aerial parts, seed, roots,
gum resin, oleo-gum resin, and resins (Figure 21).
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It was obvious that the majority of metabolites have been distinguished from resin
extract. These metabolites belong to various chemical classes. Sesquiterpene coumarins
with their structural diversity and contents represent the main and substantial metabolites
of this plant (Figure 22).
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Many studies surmised that these compounds may have a substantial contribution
in many of the reported activities of F. sinkiangensis. F. sinkiangensis had metabolites with
marked antifungal and insecticidal capacity that can be valuable in agriculture for insect and
plant pathogens control, however, additional field assessment is requested. Its metabolites;
61, 62, 65, 70, and 120 had notable anticancer potential against different cancer cell lines.
These findings would provide evidence for the application of this and its fractions in treat-
ing cancers. Compound 12 had marked anti-inflammatory and anti-neuroinflammatory
potential, revealing its potential as a lead metabolite for therapeutic intervention in vari-
ous illnesses such as ischemic stroke, Alzheimer‘s disease, and cerebral ischemia. Many
studies proved the anticancer and apoptotic potential of 52 against different cancer cell
lines particularly the gastric cancer cells with no toxic effect on the normal cells and no
observed abnormality in daily diet, body weight, liver function, and histological features
of the spleen, liver, lung, kidney, and heart tissue. This further supported its promising
potential for treating gastric cancer as foods or folk medicine, however, additional clini-
cal investigations are needed. To find out more metabolites with unique structures and
bioactivity, more phytochemical investigations are demanded and indispensable. Also,
new technologies such as metabolomics, transcriptomics, genomics, and proteomics can be
applied for discovering more metabolites from this valuable medicinal plant. The plant‘s
mechanism in treating gastric disorders and rheumatoid arthritis is insufficiently explored.
Additionally, in-depth in-vivo and in vitro studies of the other bio-activities mechanisms
are required. Meanwhile, toxicological, pharmacokinetic, preclinical, quality control, and
clinical studies are insistent to estimate the safety and rationale usage of this plant. Finally,
the integration of traditional knowledge into ecology-based research for the endangered
medicinal plant protection must be promoted.
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mdpi.com/article/10.3390/plants12040902/s1, Table S1: Secondary metabolites reported from Fer-
ula sinkiangensis (Chemical class, molecular weight and formulae, plant part, and origin). Refer-
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Abbreviations

1D NMR One-dimensional nuclear magnetic resonance
2D NMR Two-dimensional nuclear magnetic resonance
A549 Human lung adenocarcinoma epithelial cell line
AGS Human gastric carcinoma cell line
Bax/Bcl-2 B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax)
BCCAO Bilateral common carotid artery occlusion
1D NMR One-dimensional nuclear magnetic resonance
2D NMR Two-dimensional nuclear magnetic resonance
A549 Human lung adenocarcinoma epithelial cell line
AGS Human gastric carcinoma cell line
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Bax/Bcl-2 B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax)
BCCAO Bilateral common carotid artery occlusion
bFGF Basic fibroblast growth factor
BGC-823 Human gastric carcinoma cell line
n-BuOH n-Butanol
BV-2 Microglia cells
Caco-2 Human colon adenocarcinoma cell line
Capan-2 Human pancreatic cancer cell line
CCK-8 Cell counting kit-8
CD Circular dichroism
Cdk2 Cyclin dependent kinase 2
CFPAC-1 Human pancreatic cancer cell line
CHCl3 Chloroform
CLL Chronic lymphocytic leukemia
COX-2 Cyclooxygenase-2
CITES Convention on International Trade

in Endangered Species of Wild Fauna and Flora
DCFH-DA 2′, 7′-Dichlorofluorescein diacetate
DEAE-Cellulose 52 Diethylaminoethyl cellulose-52
DPPH 1,1-Diphenyl-2-picrylhydrazyl
EC50 Half maximal effective concentration
ECD Electronic circular dichroism
ELISA Enzyme-linked immunosorbent assay
EtOH Ethanol
EtOAc Ethyl acetate
HR-ESIMS High resolution electrospray ionization mass spectrometry
GES-1 Human normal gastric epithelial cell line
GSK-3β Glycogen synthase kinase-3β
H2O Water
HCT-116 Human colon cancer cell line
HepG2 Human hepatocellular liver carcinoma cell line
HeLa Human cervical epitheloid carcinoma cell line
HPLC High-performance liquid chromatography
HUVECs Human umbilical vein endothelial cell line
IC50 Half-maximal inhibitory concentration
LD50 Lethal dose 50,
IL-6 Interleukin-6
IL-1β Interleukin-1beta
IR Infrared
IOZCAS-Spex-II A cell strain cloned from Spodoptera exigua cell line
IUCN International Union for Conservation of Nature
K562 Human erythroleukemic cell line
IR Infrared
iNOS Inducible nitric oxide synthase
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinase
MCAO Middle cerebral artery occlusion
MDCK Madin-Darby Canine Kidney
MeOH Methanol
MFC Mouse forestomach cancer cell line
MIC Minimum inhibitory concentrations
MGC-803 Human gastric cancer cell line
MMP2 and MMP9 matrix metalloproteinases
MS Mass spectrometry
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MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NADPH Nicotinamide adenine dinucleotide phosphate
NBT Nitrotetrazolium blue chloride
NLRP3 NLR family pyrin domain containing 3
NO Nitric oxide
P16 Protein regulating the cell circle
P27 A key protein that regulator of cell proliferation
P53 Tumor suppressor protein
PANC-1 Human pancreas ductal carcinoma cell line
PARP Poly (ADP-ribose) polymerase
PC-3 Human prostatic-testosterone-independent cell line
PCR Polymerase chain reaction
PTP1B Protein tyrosine phosphatase 1B
qRT-PCR Quantitative real-time polymerase chain reaction
RAW264.7 Mouse macrophage cell line
ROS Reactive oxygen species
RP-18 Reversed-phase-18
SCs Sesquiterpene coumarins
SRB Sulforhodamine B
SiO2 CC Silica gel column chromatography
SW1990 Human pancreatic cancer cell line
TCF/LEF T-cell factor/lymphoid enhancer factor
TLC Thin layer chromatography
TLR4 Toll-like receptor 4
TNBC Triple-negative breast cancer
TNF-α Tumor necrosis factor alpha
TTC 2, 3, 5-Triphenyltetrazoliumchloride
UV Ultraviolet
Wnt Wingless-related integration site
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