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Abstract: The total fertility rate is influenced over an extended period of time by shifts in population
socioeconomic characteristics and attitudes and values. However, it may be impacted by macroeco‑
nomic trends in the short term, although these effects are likely to be minimal when fertility is low.
With the objective of forecasting monthly deliveries, this study concentrates on the analysis of regis‑
tered births in Scotland. Through this approach, we examine the significance of precisely forecasting
fertility trends, which can subsequently aid in the anticipation of demand in diverse sectors by al‑
lowing policymakers to anticipate changes in population dynamics and customize policies to tackle
emerging demographic challenges. Consequently, this has implications for fiscal stability, national
economic accounts and the environment. In conducting our analysis, we incorporated non‑linearma‑
chine learning methods alongside traditional statistical approaches to forecast monthly births in an
out‑of‑sample exercise that occurs one step in advance. The outcomes underscore the efficacy of ma‑
chine learning in generating precise predictions within this particular domain. In sum, this research
will comprehensively demonstrate a cutting‑edge model of machine learning that utilizes several at‑
tributes to assist in clinical decision‑making, predict potential complications during pregnancy and
choose the appropriate delivery method, as well as help in medical diagnosis and treatment.

Keywords: predictability; birth rate data; machine learning; fertility rate; demographic challenges

1. Introduction
Human fertility is a multi‑faceted and constantly evolving phenomenon shaped by

various biological, societal, and economic variables. Factors such as shifts in cultural atti‑
tudes towards female education and employment, the accessibility and affordability of
childcare services, and broader economic indicators, like wage patterns, disposable in‑
come, and employment rates, all play a role [1] (for a more detailed discussion). This
intricate interplay of factors renders the prediction of future birth rates a challenging en‑
deavor [2,3]. Forecasting birth rate and fertility rate plays a crucial role in policy formu‑
lation and long‑term planning initiatives. Specifically, the importance of accurately pre‑
dicting fertility trends can significantly contribute to anticipating demand across various
sectors, as it enables policymakers to anticipate shifts in population dynamics and tailor
their policies to address emerging demographic challenges, thereby impacting national
economic accounts and fiscal stability [4].

The existing literature highlights that period fertility rates can vary in response to
specific economic or political conditions during certain years [5,6]. Hence, it is crucial to
quantify the uncertainty in fertility forecasts to facilitate efficient risk management, em‑
powering policymakers to make well‑informed decisions in the face of uncertain future
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circumstances. Additionally, conducting quantitative evaluations of fertility forecasting
techniques yields invaluable insights into their practicality and efficacy. Such assessments
provide a thorough comprehension of the strengths and limitations inherent in various
forecasting approaches.

In this paper, we consider a time series forecasting strategy for predicting fertility rates
in a univariate forecasting exercise. This allows us to evaluate the efficacy of conventional
econometric approaches, as well as non‑linear machine learningmethods, to predict births
in order to further enhance our understanding of their applicability and robustness in var‑
ious demographic contexts. Previous studies in the literature have extensively explored
methods for predicting fertility rates and birth rates across diverse populations and tem‑
poral contexts [7–9]. The forecasting fertility rate methods include principal component
and functional data models [10–12] approaches such as time series models and linear ex‑
trapolation [5,13] approaches that complete cohort fertility schedules [14–16] as well as
Bayesian methods [17,18].

Congdon (1990) utilized a technique to predict fertility rates specifically for London
boroughs [7]. Alkema et al. (2011) conducted an extensive evaluation of fertility forecasts,
comparing various forecasting methodologies and underscoring the complexities posed
by uncertainty and volatility in demographic projections [19]. In a more recent study, De
Iaco and Maggio (2016) applied ARIMA methods to forecast the parameters of a gamma
function tailored to the fertility trends observed in Italy [20]. Furthermore, they integrated
a Markov field model to address correlations within the error structure of this model. Sim‑
ilarly, Mazzuco and Scarpa (2015) forecast the bimodal pattern of fertility by employing a
Flexible Generalizable Skew‑Normal Distribution [21]. Additionally, Lutz et al. (2014) and
Beaujot (2015) explored the demographic drivers behind global fertility decline, empha‑
sizing the significance of education, urbanization, and women’s empowerment [22]. Simi‑
larly, Barro and Lee (2015) examined the impact of educational attainment on fertility rates,
revealing a negative correlation between education levels and fertility across nations [23].
Collectively, these studies enhance our comprehension of the factors shaping fertility pat‑
terns and birth rates, furnishing valuable insights for policymakers and researchers alike.

In the context of our analysis, that is of univariate time series forecasting, the ad‑
vancement and acceptance of non‑linear techniques have progressed at a relatively slower
pace [24] particularly within specific domains. For instance, Saibal et al. (2023) focused
on predicting Prakriti classes using data from 217 healthy individuals from genetically dis‑
tinct cohorts in northern and western India, specifically examining three extreme Prakriti
types [25]. To address inter‑individual variability, eight machine learning (ML) classi‑
fiers were employed. The predictive abilities of these ML algorithms were subsequently
evaluated to explore the use of artificial intelligence (AI) in enhancing the assessment of
Prakriti in Ayurveda, aiming to improve the accuracy and consistency of these assess‑
ments and reduce subjective bias. As already mentioned, research in this field has heavily
relied on the use of traditional time series forecasting methods, neglecting the potential
advantages offered by more sophisticated state‑of‑the‑art machine learning regression ap‑
proaches [26]. Traditional econometric approaches used in time series forecasting, further
involving Holt’s linear trend method, extends simple exponential smoothing to capture
linear trends in the data. This method is particularly effective for time series data with
a consistent trend but no seasonality. Recent studies have validated its utility in vari‑
ous fields [27,28]. Furthermore, Holt–Winters’ seasonal method extends Holt’s method
by incorporating a seasonal component. Holt–Winters’ method is particularly effective
for data with both trend and seasonal components and is widely applied in various in‑
dustries [29,30]. In this study, however, we consider Prophet and other machine learning
methods. Specifically, Prophet is designed to handle time series data with strong seasonal
effects and potential for missing data, while Holt’s and Holt–Winters’ methods are more
traditional approaches that can be highly effective based on the data considered in the anal‑
ysis. However, Prophet offers advantages in flexibility and ease of handling irregular time
series data and incorporating external regressors, as in our case. This makes it particularly
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useful in scenarios where data patterns are complex. For this reason, we consider the em‑
ployment of machine learning tree‑based algorithms and algorithms that exploit boosting,
as well as traditional econometric approaches, to evaluate their performance and effective‑
ness in forecasting births. We focus on births in the UK and specifically Scotland, as it
has been noted that, since the late 1970s, Scotland has consistently exhibited notably lower
fertility rates compared to England and Wales. This difference primarily stems from re‑
duced rates of childbearing among women in their thirties and forties in Scotland relative
to England. In a related report, the importance of delving into the substantial popula‑
tion challenges Scotland faces, such as an aging population, decreasing birth rate, and the
evolving repercussions of Brexit, underline the imperative for a comprehensive national
strategy (www.gov.scot, accessed on 3 April 2024). For these reasons, we aim to accurately
forecast the number of births in Scotland. To this end, we conduct an out‑of‑sample fore‑
casting exercise, with various settings being considered regarding the forecasting horizons
and the accuracy measures to evaluate the performance of the corresponding regression
approaches.

The rest of this paper is structured as follows. In Section 2 we outline the data utilized
in the out‑of‑sample forecasting exercise, detailing the methodology employed. Section 3
delves, into the analysis results. Lastly Section 4 concludes this paper.

2. Methodology
In this section, we present the methods used to approach the research question (Fig‑

ure 1). Specifically, in the current study machine learning algorithms were considered
in our forecasting experiment to predict births in Scotland. In the related literature, a
wide range of approaches have been considered, mainly focusing on modelling fertility
rather than forecasting [31,32]. More recently, machine learning approaches have been con‑
sidered in various forecasting problems across disciplines, reporting significant enhance‑
ments in accuracy compared to current methodologies [33]. In our analysis, the machine
learningmethodologies considered involve tree‑based algorithms, namely RandomForest,
as well as boosting algorithms and specifically Extreme Gradient Boosting. Additionally,
Linear Regression and a conventional econometric time series approach, the Autoregres‑
sive Integrated Moving Average (ARIMA), which has been extensively employed for sim‑
ilar purposes [34,35], are employed to compare their effectiveness in order to accurately
predict births in a univariate out‑of‑sample forecasting exercise.
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2.1. Machine Learning Models
Facebook Prophet

Prophet is a simple algorithm developed to forecast time series data, featuring ad‑
ditional components capturing trends and seasonal patterns, as well as holiday effects.
Firstly, Prophet models the overall trend in the data using a linear regression model. Next,
it captures periodic fluctuations or seasonal patterns by utilizing Fourier series to model
weekly, yearly, and/or any custom seasonalities in the data under analysis. Furthermore,
Prophet accounts for holidays and other known events that may influence the time se‑
ries, enabling users to specify custom holiday effects. Finally, the algorithm combines the
abovementioned components to produce forecasts.

2.2. Random Forest
Breiman (2001) introduced the RandomForest algorithm, which utilizes a group of de‑

cision trees {T1, T2, . . . , TN}, to produce results [36]. Decision trees are a machine learning
method used for classifying and predicting purposes. In a decision tree, the dataset is di‑
vided into subsets based on input feature values to create predictable groups related to the
target variable. Each decision tree within a Random Forest is constructed independently
using a subset of the training data and selected features. The incorporation of random‑
ness at both data and feature levels helps reduce correlations between trees, enhancing the
ensemble’s resilience and minimizing the risk of overfitting.

Assuming we have a dataset called D with n samples and m features, a decision tree
T is made up of a series of splits depicted as nodes. At each node, the process selects the
feature j and a threshold t that effectively divides the data into two groups aiming to mini‑
mize errors in each subset. The decision on how to split can be guided bymetrics like error
(MSE) ormean absolute error (MAE) for regression tasks. This recursive process continues
until certain conditions are met, like reaching a tree depth or having a specific number of
samples, in each leaf node. In regression tasks, this combination usually involves averag‑
ing the predictions from all trees.

2.3. Extra Trees
Extra Trees Regression is a machine learning technique. It works by building a forest

of random decision trees. Each tree is trained on a different subset of data points drawn
with replacement from the original data. Additionally, at each split point within the trees,
a random selection of features is considered, further increasing the diversity of the trees.
This randomness helps reduce overfitting and improve the overall accuracy of the predic‑
tions. By averaging the predictions from all the trees in the forest, Extra Trees Regression
delivers the final prediction.

2.4. Extreme Gradient Boosting (XGBoost)
Extreme gradient boosting (XGBoost) is an efficient and scalable algorithm for imple‑

menting gradient boosted decision trees. According to Chen andGuestrin (2016), XGBoost
is defined as a tree boostingmachine learning approach [37]. Its impact has beenwidely ac‑
knowledged across machine learning and data mining challenges, making it an algorithm
employed in numerous machine learning applications. XGBoost utilizes K function fk(x)
to approximate the function of fk(x), represented as follows:

Fk(x) = ∑K
k=1 fk(x), fk(x) ∈ F (1)

where K is the number of trees, fk(x) is a function family F, and F is the set of all possible
regression trees (CART). XGBoost utilizes a specific form of a base learner: fk(x) is a CART
and can be denoted asω_(q(χ)), qϵ{1, 2, . . . , T}, where T represents the number of leaves
in the tree, q represents the decision rules of the tree, and ω is a vector that signifies the
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sample weight of leaf nodes. Therefore, the loss function of XGBoost is expanded to the
objective function by adding a regularization term as follows:

L =
n

∑
i−1

Ψ(yi,Fk(xi)) +
K

∑
k=1

Ω( fk) (2)

where Fk(x) is the prediction on the i‑th sample at the K‑th boost and Ω_(( f )) = γT +

0.5×〖λ∥ω∥〗2. In the regularization term, γ is a fixed coefficient, and〖∥ω∥〗2 is the L2
norm of leaf weights—the Ω(*) is the regularization term that penalizes the complexity of
the model. The regularized objective function, which is inspired by the regularized greedy
forest, tends to smooth the base learners’ contributions to avoid overfitting. The Ψ(*) is a
specified loss function that measures the difference between the prediction and the real
class label. In XGBoost, to find the minimum Fk(x), the objective function is optimized
with gradient descent, where only the first‑order gradient statistics are used.

2.5. Evaluation Metrics
Different measures have been utilized in the related literature to assess the perfor‑

mance of regression models [26]. For the purposes of our analysis, we rely on three eval‑
uation criteria: the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE) and
the Symmetric Mean Absolute Percentage Error (SMAPE).

The RMSE metric is defined as follows:

RMSE =

√
1
n∑n

i=1(Xi − Yi)
2 (3)

where Xi stands for the predicted value and Yi stands for the actual value.
The MAE metric is defined as:

MAE =
1
n

n

∑
i=1

|Xi − Yi| (4)

The SMAPE metric is defined as follows:

SMAPE =
100%

n

n

∑
i=1

|Xi − Yi|
(|Xi|+ Yi)/2

(5)

SMAPE is expressed as a percentage (Flores 1986) and can be used to measure the
predictive performance of the regression models [24,38].

3. Data
In this paper, the proposed machine learning forecasting models are employed on

data concerning Great Britain, and specifically Scotland. To this end, we use data regard‑
ing births, sourced from www.nrscotland.gov.uk (accessed on 3 April 2024) and involve
official country‑level data of monthly births registered by month of registration, that cover
the period from January 1998 to December 2022. The logarithmic transformation of the
monthly birth variable has been considered throughout the analysis. Additionally, the
nonparametric unit root test has been further applied to reveal whether or not the variable
is stationary. According to the results, the birth series variable can be used in its logarith‑
mic form in the present analysis without further transformation.

Table 1 reports the descriptive statistics for the monthly births’ series. Specifically, in
Table 1 we notice that the mean of the logarithm of monthly births in Scotland is 8.381 and
the standard deviation 0.429. The skewness is −10.526, while the kurtosis value equals
124.054. Regarding the skewness metric, an asymmetric distribution of the birth series is
observed. For kurtosis, the variable shows a deviation from the normal distribution, with
the kurtosis value being greater than 3, hence following a leptokurtic distribution. Based

www.nrscotland.gov.uk
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on the results of the Jarque Bera, test we can conclude that the monthly birth series does
not follow a normal distribution.

Table 1. Descriptive Statistics.

Mean 8.381

Median 8.427

Maximum 9.131

Minimum 2.944

Standard Deviation 0.429

Skewness −10.526
Kurtosis 124.054

Jarque–Bera 188,717 ***

Jarque–Bera probability [0.000]
Notes: This table reports the descriptive statistics for the logarithm of the monthly births in Scotland, for the
full sample. The Jarque–Bera test tests the null hypothesis of normality for each series. The probabilities of the
Jarque–Bera test are contained in brackets. *** indicates a rejection of the null hypothesis of normality at 1%
significance level.

Figures 2 and 3 show Scotland’s monthly birth numbers and suggest a possible link to
the COVID‑19 pandemic. The pandemic might have worsened existing worries, especially
financial, for young couples planning families. Money is an important factor in family
planning, so a national plan to address Scotland’s falling birth rate is needed. This study
helps us understand how uncertainty, including that from climate change, can affect birth
rates in Scotland. This knowledge can be used to create better policies.
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Considering all the above, the proposed forecasting exercise can enhance our under‑
standing of demographic trends in this specific region.

4. Results
In this study, we aim to predict births on a monthly basis with a special focus on

Scotland. The importance of our approach can be seen considering the dramatic decline
in the birth rate and fertility rate. The results of our forecasting experiment can provide
valuable insights and information for policymakers, healthcare providers, and others who
are interested in understanding demographic trends and planning for the future.

We next present the results of the one‑step‑ahead out‑of‑sample forecasting perfor‑
mance of the proposed univariate machine learning regression methods to predict the
monthly series of births in Scotland (Figures 4–8). We follow a rolling estimation window
approach involving 24 observations [28]. Additionally, the dataset was split into train and
test set, respectively, based on the 80–20% proportion of the total observations of the data.
Hyperparameters for each of themachine learning regressionmethods, as well as the num‑
ber of lags for the birth related variable, were tuned based on cross validation. Window
sizes of 1, 3, 6, 9 and 12, months were used with the value chosen as 12. For each of the ma‑
chine learning models examined, different hyperparameters settings were tried, including
the learning rates (0.00001, 0.00005, 0.0001, 0.0005, 0.001), as well as the number of estima‑
tors (50, 100, 500). The forecasting was performed in R (version 4.3.0) using the ‘timetk’
package (version 2.9.0). We utilized the ‘tidymodels’ package (version 1.1.1) [39], ‘lubri‑
date’ package (version 1.9.2) [40] and ‘modeltime’ package (version 1.2.8) [41] in RStudio
(version 2023.06.0+421).

We also use the Model Confidence Set (MCS) method introduced by [42] to identify
the group of models that perform well. This technique allows us to compare models by
eliminating those that demonstrate significantly poorer performance, assuming an equal
level of forecast accuracy, at a specified confidence level. By conducting comparisons, we
canmake conclusions about significance. For an explanation of theMCS procedure, please
refer to [42]. We apply this test to both non‑linear methods analyzed in our study.
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Based on the corresponding results presented in Table 2, Extreme Gradient Boosting,
Random Forest and Prophet appear to be the best‑performing models, with the Extreme
Gradient Boosting algorithm showing slightly better performance based on the metrics
values. Random Forest and Prophet perform reasonably well. The results based on Linear
Regression present the poorest performance among all models, with higher error metrics
values.

Table 2. Estimation results for the births in Scotland (one‑step‑ahead out‑of‑sample).

Model MAE RMSE SMAPE

ARIMA 0.44 0.52 0.72

Prophet 0.37 0.46 * 0.54

Random Forest 0.34 0.44 * 0.57

Extreme Gradient Boosting 0.32 0.41 * 0.54

Linear Regression 0.45 0.62 0.67
Notes. The Table reports the out‑of‑sample results (metrics values) for predicting births in Scotland (h = 1 days).
(*) indicates models that are included in the Model Confidence Set at the 1% significance level.
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5. Concluding Remarks
In this paper, we predict births in Scotland in a one‑step‑ahead out‑of‑sample univari‑

ate forecasting exercise. Predicting birth rates holds significant importance across various
fields due to its wide‑ranging implications. Effectively and accurately predicting future
births can affect demography and public health, as it can enable policymakers and health‑
care professionals to anticipate population growth or decline, thereby informing decisions
regarding resource allocation for healthcare services, education, and social welfare pro‑
grams. Additionally, in economics and business, projections of birth and fertility rates
provide critical insights into future consumer demographics, labor force dynamics, and
market trends, influencing investment strategies, workforce planning, and product devel‑
opment. Moreover, in environmental science and sustainability, understanding popula‑
tion growth patterns is essential for assessing the impact on natural resources, biodiver‑
sity, and ecosystems, guiding efforts toward sustainable development. Overall, the ability
to predict births facilitates informed decision‑making and strategic planning across a spec‑
trum of fields, contributing to thewell‑being and sustainability of societies and ecosystems.

Future research on this topic could focus on the examination of more sophisticated
machine learning and deep learning algorithms that can better capture the dynamics of
these specific data. Furthermore, additional predictors could be considered that relate to
factors that affect birth rate and fertility rate to improve the out‑of‑sample forecasts of the
machine learning approaches.
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