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Abstract: Phytochemicals have a long and successful history in drug discovery. With recent ad-
vancements in analytical techniques and methodologies, discovering bioactive leads from natural
compounds has become easier. Computational techniques like molecular docking, QSAR modelling
and machine learning, and network pharmacology are among the most promising new tools that allow
researchers to make predictions concerning natural products’ potential targets, thereby guiding ex-
perimental validation efforts. Additionally, approaches like LC-MS or LC-NMR speed up compound
identification by streamlining analytical processes. Integrating structural and computational biology
aids in lead identification, thus providing invaluable information to understand how phytochemicals
interact with potential targets in the body. An emerging computational approach is machine learning
involving QSAR modelling and deep neural networks that interrelate phytochemical properties with
diverse physiological activities such as antimicrobial or anticancer effects.

Keywords: phytochemicals; natural products; traditional medicine

1. Introduction

Phytochemicals are plant natural products that possess numerous therapeutic prop-
erties. Traditional medicines have utilised the beneficial properties associated with these
compounds for centuries, highlighting their potential to become novel drug candidates [1].
Modern scientific approaches such as structural and computational biology offer unprece-
dented opportunities to study these natural products further. Analysis conducted via
structural biology techniques has revealed three-dimensional structures of phytochemi-
cals that can aid investigations with molecular docking or virtual screening to find new
pharmacologically active molecules [2]. This review will explore the role of phytochemicals
in modern-day drug discovery. We highlight essential findings and trends in this field
from 1995, focusing on the methodologies used, the challenges encountered, and future
research prospects.

1.1. The Role of Phytochemicals in Traditional Medicine

Traditional medicine encompasses approaches from indigenous knowledge systems
and is heavily influenced by phytochemicals derived from plants that have both cultural
and historical significance [3]. Plant-based remedies have shaped modern pharmacology
through the identification of valuable therapeutic agents present within them. With its
interdisciplinary approach, ethnopharmacology seeks to understand how these specific
phytochemicals function as part of traditional healing methods [1].
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Approximately 70–80% of the global population uses traditional medicines to treat
diseases [4]. For those living in rural regions across the globe with limited access to
advanced Western medical practices and technology, traditional medications continue to be
an essential aspect of inclusive healthcare solutions [5]. Phytomedicines are derived from
centuries-old healing traditions from the natural resources surrounding them. Moreover,
these medicines often emphasise curing disease beyond the physical symptoms alone; they
maintain a patient’s overall psychological and ethical balance as integral determinants
of health, making phytomedicines beneficial amongst community members who value
holistic recovery [6]. Many such preparations are extracted directly from plants; some can be
modified by structural transformation. Given the natural diversity of plants globally, there
are many unidentified phytochemicals whose biological actions are yet to be discovered [7]

In recent years, traditional Chinese and African medicines have been used against
diseases, including COVID-19. For instance, the National Administration of Traditional
Chinese Medicine organised a study to identify potential treatments against COVID-19,
and the Lung Cleansing and Detoxifying Decoction (LCDD) was widely used and studied
through clinical trials. LCDD contains 21 ingredients, including Ephedra sinica, Atracty-
lodes macrocephala, and Scutellaria baicalensis, which likely counteract COVID-19 through
synergistic activities [8]. The first trial showed that LCDD was effective on 90% of the
214 COVID-19 patients. Further trials were carried out on a more extensive trial group
with 1262 patients, including 57 with severe symptoms. The results showed that 99.28% of
the patients recovered, and none developed severe symptoms during the treatment [8]. In
Africa, an elixir based on Artemisia annua extract, known as “covid-organics”, was used as a
potential cure for COVID-19, and studies are still ongoing [9]. Plant-based antimalarials like
artemisinin from Artemisia spp. have also been tested against the SARS-CoV-2 virus [10].

Panax ginseng has been widely used as a healing plant in Asian traditional medicine.
This species contains many natural products, including ginsenosides, that exert quali-
ties such as improving immune health, reducing inflammation, and having anticancer
effects [11]. Similarly, turmeric, or Curcuma longa, a plant in the ginger family Zingiberaceae,
which is prominent in Ayurvedic culture, contains curcumin and has wound-healing abili-
ties and antioxidant and anti-inflammatory activities [12]. Moreover, Echinacea from North
America is effective against respiratory disorders [13]. Echinacea possesses phytochemicals
such as phenolics, including caftaric acid, chicoric acid, cynarin, chlorogenic acid, and
echinacoside. Volatile terpenes, such as germacrene D and polyacetylene, are also present
and possess antimicrobial and antioxidant activities. Ascorbic acid is also present, and
it aids in immune augmentation. The polysaccharides and glycoproteins in the plant,
including arabinogalactans, inulin, and heteroxylans, possess immunostimulatory and
anti-inflammatory activities that aid in immune modulation, thus reducing inflammation
often experienced during illness episodes [14–16].

Plant-derived compounds have also been used to treat diarrhoea, a major global health
issue. Several scientific studies have found that herbal extracts act as antisecretory agents,
have antiperistaltic effects, and antimicrobial and antispasmodic properties. Apigenin and
friedelin have been identified as antidiarrhoeal agents because of their antisecretory and
antimotility activity [17].

Arctostaphylos uva-ursi and Vaccinium macrocarpon have been used to treat urinary tract
infections, and the essential oils from Allium sativum, Melaleuca alternifolia, and Melissa offici-
nalis have been extensively used to treat respiratory, GI, urinary, and skin infections [18].

The examples above show that plant-derived phytochemicals may play a role in
traditional medicine, offering potential remedies for various health conditions. With the
integration of modern and traditional medical systems and the exploration of the world’s
under-explored biodiversity, there is immense potential to discover novel phytochemicals
and drug leads.



Int. J. Mol. Sci. 2024, 25, 8792 3 of 23

1.2. Examples of Approved Commercial Phytochemical Drugs

Several plant-derived drugs on the market have been developed to treat various dis-
eases (Figure 1), e.g., apomorphine (1) is made semi-synthetically from morphine isolated
from Papaver somniferum L. While initially investigated as a potential non-addictive mor-
phine replacement, the pharmacology of 1 is distinct, acting as a dopamine receptor agonist
and it is now approved for the treatment of Parkinson’s disease [19]. Arteether (2) is a
semisynthetic drug derived from artemisinin from Artemisia annua and is used to treat
malaria. Arteether is oil soluble, has a long elimination half-life, and is more stable than
artemisinin [20]. Galantamine (3) is an Amaryllidaceae alkaloid from Galanthus woronowii
and an acetylcholinesterase inhibitor used in Alzheimer’s treatments [18]. Tiotropium
is a muscarinic receptor antagonist from Atropa belladonna that has been used to treat
asthma and chronic obstructive pulmonary disease (COPD) [21]. Other examples include
anthocran, cysticlean, and monoselect macropcarpon from Vaccinium spp., which are being
used to treat urinary tract infections. GutGuard is a standard product that was derived
from Glycyrrhiza glabra extract, and Parodontax is a product that was developed from
Commiphora myrrha, Echinacea purpurea, Krameria triandra, and Matricaria recutita extracts.
Mentha arvensis, M. piperita, and Salvia officinalis essential oils have all been used to treat
oral infections [22].
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Figure 1. Phytochemicals used as drugs. Apomorphine (1), arteether (2) and galantamine (3).

Even in recent times, natural products play a role in drug development, with 6
of 53 new products approved by the FDA in 2023 having been inspired from natural
products (Figure 2) [23]. Examples of small molecules approved include bexagliflozin
(4) (BrenzavvyTM) and sotalgliflozin (5) (InpefaTM), sodium-glucose co-transporter in-
hibitors that are synthetic analogues of the natural product phlorizin isolated initially from
apple trees. BrenzavvyTM has been authorized for glycemic control in adults with type 2
diabetes, and InpefaTM has been approved as a cardiovascular therapeutic. The synthetic
steroids zuranolone (6) (ZurzuvaeTM) and vamorolone (7) (AgamreeTM) were respectively
approved for the treatment of postpartum depression and Duchenne muscular dystrophy.

FilsuvezTM is an extract of birch terpenoids that was approved in 2023. The topical
gel consists of pentacyclic triterpenes (Figure 3), namely, betulin (8) (72–88%), lupeol
(9) (2.4–5.7%), betulinic acid (10) (2.6–4.2%), erythrodiol (11) (0.5–1.2%), and oleanolic acid
(12) (0.3–0.8%). The gel treats partial-thickness wounds with Junctional and Dystrophic
Epidermolysis Bullosa (JEB and DEB). This is the first treatment approved for wounds
associated with the rare disease JEB [23].

Natural products (NPs) or their derivatives contribute a substantial proportion of
drugs that successfully progress through clinical trials to approval. A study by Domingo-
Fernández et al. (2024) explored the features of natural products that contribute to their
success. They analysed patent applications and found that synthetic compounds accounted
for 77% of patents compared to 23% of NP and NP-derived patents. Next, they assessed
clinical trial data, where they observed a steady increase in NP and NP-derived compounds
going through clinical trial phases I to III (from approximately 35% in phase I to 45%
in phase III), with an inverse trend observed in synthetics (from approximately 65% in
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phase I to 55% in phase III). Finally, they analysed in vitro and in silico toxicity studies that
revealed that NPs and their derivatives were less toxic when compared to their synthetic
counterparts. These observations offer valuable insights for successful NP-based drug
development, which highlight the potential benefits of NPs and their derivatives [24].
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Figure 3. Phytochemicals found in FilsuvezTM are composed of a mixture of pentacyclic triterpenes
betulin (8), lupeol (9), betulinic acid (10), erythrodiol (11), and oleanolic acid (12) [23].

2. Phytochemicals and Their Modern-Day Applications
2.1. Phytochemicals as Antivirals

Viral infections are one of the leading causes of morbidity and mortality. Examples of
severe viral infections are Ebola, AIDS (acquired immunodeficiency syndrome), influenza,
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and SARS (severe acute respiratory syndrome) [25]. Viruses have several invasion mecha-
nisms. Due to their genetic diversity, each virus has its unique biochemical configuration
of surface molecules, which work like a lock and key, enabling viruses to enter hosts by
accurately fitting the molecules on the surfaces of targets [26].

There is some evidence of antiviral potential of phytochemicals, particularly with
tannins, yet little progress has been made in clinical analysis and product development.
Preliminary studies suggest the feasibility of developing phytotherapeutics against viral
infections [27–30]. For instance, saponins extracted from the bark of the soapbark tree
(Quillaja saponaria) were successfully utilised as an adjuvant in the Pneumo-5 vaccine,
offering potent protection against the bovine parainfluenza-3 virus [31,32].

Natural products may be selective antiviral agents [33], but their effectiveness can
be limited by high cytotoxicity or low antiviral activity [34]. Further research on the anti-
viral properties of phytochemicals will allow for the development of target-specific drug
delivery systems. Very little knowledge exists of how phytochemicals interact with viruses
or structures within the host cells. Therefore, there is a need to develop novel technologies
and targeting strategies that can avoid cellular defences, transport phytochemicals to
targeted intracellular sites, and release the phytochemicals in response to specific molecular
signals [35]. Developing drug delivery systems, such as PEG-PLGA nanoparticles, can
enhance their selectivity index and improve their protective properties against respiratory
viruses [36,37]. Moreover, combining phytochemicals with established antiviral drugs may
also enhance efficacy. For example, the sesquiterpene (Figure 4) germacrone (13), when
paired with oseltamivir, demonstrated a synergistic effect in inhibiting influenza virus
infection both in vitro and in vivo [38].
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The Human Immunodeficiency Virus (HIV) is classified as a ‘balanced pathogen’. It
persistently resides in the human body without immediately causing the catastrophic con-
sequences observed with viruses such as COVID-19. It eventually progresses to terminal
illness through ongoing replication, necessitating rigorous treatment for its eradication [39].
Several phytochemicals may control HIV using various mechanisms, as shown in Figure 5.
One study showed that Patentiflorin A was more effective in suppressing HIV than azi-
dothymidine (zidovudine) [40].

Plants were used extensively by local communities during the COVID-19 pan-
demic [41–44]. Medicinal plants may possess anti-inflammatory and anti-oxidative
properties [45]. Several phytochemicals, such as capsaicin, gallic acid, naringin, psy-
chotrine, and quercetin, have shown some antiviral properties targeting COVID-19 [46].
Another in silico study by Hafidul et al. 2020 revealed that ginger metabolites geraniol,
gingerol, shogaol, zingerone, zingiberene, and zingiberenol might have potential antivi-
ral properties that can reduce the virulence of SARS-CoV-2. The high binding energy of
these natural products showed that they may bind to the Spike (S) protein and disrupt
binding to the ACE2 receptor on the host cell phytochemicals, as well as inhibit the main
protease (Mpro) necessary for the virus’s replication [47].
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2.2. Phytochemicals in Cancer Combination Therapies

Several phytochemicals possess multi-targeted activity that simultaneously act on
various biological pathways implicated in cancer [48,49]. Incorporating nature-derived
substances in poly-cures may benefit overall treatment efficacy through synergism [1,50].
Additionally, evidence indicates that combining various phytochemicals could yield potent
synergistic effects that boost overall treatment efficiency while hindering the emergence of
drug resistance [1,51].

The emergence of chemo-resistance has resulted in the development of combination
cancer therapy [52]. Combining multiple compounds can create a synergistic effect, am-
plifying their therapeutic benefits. Synergy may lead to greater efficacy while requiring
lower dosages for individual components, reducing unfavourable side effects. The potential
synergy between natural products and co-administered drugs could yield more significant
clinical responses for patients suffering from varied illnesses or health conditions. By target-
ing multiple pathways simultaneously, natural products may have the ability to overcome
resistance triggered by mutations and modifications in single targets.

Additionally, combining natural products with conventional drugs creates selective
pressure on pathogens and cells or causes reduced mutation rates [53,54]. Optimising
the pharmacokinetic profiles of combined drug therapies is critical for achieving maxi-
mal therapeutic benefits while minimising adverse drug reactions. Incorporating natural
products into these therapeutic strategies offers a novel approach to improving overall
efficacy [55–57]. Natural products within this framework are advantageous due to their

BioRender.com
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multifaceted forms and inherent molecular diversity, which generate many pharmacologi-
cal effects [58–60].

A study by Wang et al. (2022) demonstrated that nanoparticles can be used for co-
delivery of these drugs in cancer therapy [61]. In recent studies, mesoporous nanoparticles
were used to deliver 5-fluorouracil (5-FU), a chemotherapy drug used for chemotherapy
and curcumin (Figure 6). This combination led to cell cycle arrest and apoptosis in laryngeal
tumours (Hep-2 cells) [62].

Drug repositioning and repurposing existing drugs for new therapeutic applications
presents an opportunity for phytochemicals. Bioactive phytochemicals such as the taxanes
(14), ellipticine (15), camptothecin (16), combretastatin (17), podophyllotoxin (19), homo-
harringtonine (20) (Figure 7), and others are reported for their potential anticancer effects
on various neoplastic diseases [63].

Moreover, phytochemicals have been applied in cancer immunotherapy and vaccines
and used as immune checkpoint inhibitors [64]. The FDA has confirmed the use of natural
products and immunotherapeutic approaches in cancer treatment (described above). More-
over, the process of discovering cancer drugs has been accelerated by natural products.
Approximately 47% of anti-tumour drugs have been reported to be derived from natural
products [52,65–72]. Several studies have shown that natural compounds are capable of
reducing estrogen receptor alpha (ER-α) levels, angiogenesis suppression proliferation and
metastasis inhibition, apoptosis, and cell cycle arrest of breast tumours [52,73–76].
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Moreover, phytochemicals targeting pathways like Hh, Notch, and Wnt/β-catenin
and cancer stem cell resistance mechanisms show promise in reducing chemotherapy
resistance. Therefore, it is crucial to assess plant-derived compounds’ safety, efficacy, and
pharmacokinetic and pharmacodynamic properties [77].

2.3. Phytochemicals as Antimicrobials

The search for novel antibiotics should be accelerated as there are new microbial
resistance determinants in bacteria, some of which have no effective remedies [78]. Mi-
crobial pathogens have developed self-defence machinery, which protects them against
antimicrobial drugs, antibiotics, and pesticides (Figure 5). These mechanisms are active in
pathogenic microbes, especially antibiotic-resistant phenotypes, ensuring their protection
against a wide range of antibiotics [79,80].

Plants have been shown to possess antimicrobial activities, even in their crude form.
The crude extracts or powders can further be purified to enhance potencies [81]. Several
medicinal plant species are distributed across the African region and have been shown to
possess some antimicrobial properties, e.g., Hibiscus calyphyllus, Cassia abbreviata, Dicoma
anomala, Securidosa longipendunculata, and Lippia javanica, to name a few [82]. Phytochemi-
cals can play an essential role in combatting antimicrobial resistance (AMR) and reducing
the burden of infectious diseases. There is ongoing research in developing new antimicro-
bial therapies, which are currently supported by technological advancements in proteomics
and metabolomics in Africa despite the economic challenges [82]. Phytochemicals may
play an essential role in drug resistance since they are chemically diverse and possess a
wide range of biological activities, which allows them to be used in complementary ther-
apies [79]. They possess antimicrobial activities that can combat antimicrobial resistance
when combined with multiple drugs with different mechanisms of action [1,83].
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The chemical diversity of phytochemicals offers a large repository for identifying
novel drugs with distinctive modes of action (Figure 8). This heterogeneity allows these
phytochemicals to home in on distinct cellular pathways and receptors, thus providing a
better chance of discovering compounds that could potentially overcome drug resistance
mechanisms encountered with current medications [1,84]. Phytochemicals can enhance
antibiotic efficacy by disrupting bacterial cell walls, inhibiting efflux pumps, or modulating
virulence factors (Figure 8).
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3. Drug Discovery Approaches Using Phytochemicals

Synthetic compounds have dominated the field of medicinal chemistry [85]. Nev-
ertheless, due to their diverse bioactivities, phytochemicals are increasingly considered
promising alternatives for new drug development [1,84]. For instance, lead compounds
can be obtained from phytochemicals such as alkaloids, terpenes, and flavonoids [1,86].
One key attribute supporting the importance of phytochemicals in drug discovery stems
from their chemical diversity, broad spectrum of biological functions, and historical use
within traditional medicinal practices [87]. As such, phytochemical screening is valuable
for lead compound discovery efforts.

Drug discovery uses sophisticated techniques, including high-throughput screening,
structure-based drug design, and computational methods [88] (Figure 6). Phytochemicals
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can be modified to enhance variables like drug effectiveness, resulting in an excellent
resource pool to design new medical regimens specific to patients’ needs [89,90]. Though
synthetic compounds have historically been a prominent source of drug candidates dis-
covered via these approaches, natural products are also being explored. Despite this effort,
identifying new drugs from natural sources remains daunting because of their complex
structures and challenges in isolation and identification processes [91].

3.1. Traditional versus Modern Drug Discovery Methods

Pharmacological research has dedicated numerous years to seeking new compounds
capable of efficiently treating different disorders. Exploring potential medications has
included techniques such as rational drug design (producing synthetic molecules based
on current drugs) or ethnopharmacology by adopting indigenous remedies. Additionally,
using naturally occurring substances extracted from plants or animals (a natural-product-
based strategy) has been utilised in several studies [1,92]. Although these methods resulted
in positive effects in some situations, they demanded substantial effort and took significant
periods for discovery.

Thanks to advances in structural and computational biology, exploring phytochemicals’
potential applications in drug discovery has never been more promising. With unparalleled
detail and accuracy surpassing traditional laboratory experiments, these cutting-edge
techniques give researchers unprecedented insight into biological processes, which is
invaluable towards finding new treatments for the numerous maladies weighing heavily
on humanity [1,93]. Despite this, identifying, designing, and testing promising drugs still
presents formidable challenges that must be overcome.

3.1.1. Traditional Drug Discovery Methods

Serendipitous events have played a crucial role in discovering life-saving medications
in drug discovery. A great example is the chance discovery of penicillin by Alexander
Fleming in 1928 when his bacterial culture was accidentally contaminated [94]. The dis-
covery of ivermectin, an antiparasitic drug, resulted from a serendipitous collaboration
between Satoshi Ōmura, who isolated the bacterium Streptomyces avermitilis from a soil
sample in Japan, and William Campbell, who discovered its potential against parasites.
This collaboration led to the development of ivermectin from avermectins. Although the
drug was aimed at combating animal parasites, ivermectin was later approved for the
treatment of human diseases like onchocerciasis and lymphatic filariasis. The discovery
exemplifies the role of interdisciplinary research and the role of serendipity in medical
breakthroughs. Ōmura and Campbell received the Nobel Prize in Physiology or Medicine
in 2015 for their contributions [95].

In 1957, Kline et al. presented their findings on the therapeutic effect of iproniazid,
a monoamine oxidase inhibitor, on depression at a regional meeting of the American
Psychiatric Association in Syracuse, New York [96]. Iproniazid was synthesised in 1951 by
Herbert Fox at Roche laboratories in Nutley, New Jersey (USA) for the chemotherapy of
tuberculosis. However, in 1952, using iproniazid in tubercular patients, Orcnstein, Robitzek,
and Sclikoff discovered that the drug produced euphoric behaviour in some patients. This
unexpected observation, later confirmed by Zeller, led to further research, establishing
Iproniazid as one of the first antidepressants [97].

Another serendipitous discovery is Khellin, a natural product derived from the plant
Ammi visnaga. Traditionally used in Egypt for expelling renal calculi, researchers exploring
its potential effects on smooth muscle discovered its vasodilating properties, which led to its
application in treating angina pectoris [98]. Apomorphine’s use in Parkinson’s disease was
also by chance. Apomorphine was developed as a non-addictive morphine replacement.
Its pharmacological profile turned out to be distinct from morphine, exhibiting dopamine
agonist activity that proved to be effective in managing Parkinson’s disease symptoms.
This example highlights the importance of exploring the full range of biological activities
of compounds, even those developed for entirely different purposes [99–101].
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Although such occurrences can be unpredictable and unreliable for systematically
identifying new drugs, ethnopharmacology’s study of traditional medicines and plant-
based treatments has provided another promising avenue for innovation. Natural product
screening is another method used to investigate various organic samples, including plants
and microbes, along with defined criteria consistently uncovering novel biologically active
molecules targeting multiple medical conditions across oncology, their diagnosis and treat-
ment, and various bacterial/viral infections of multiple organ systems. Natural product
(NP) screening normally involves a large library of extracts extracted from natural sources
such as bacteria or plants. The extraction method significantly influences the type of com-
pounds obtained. For example, more polar solvents yield more polar compounds in the
crude extract. Therefore, to increase diversity, several solvents of varying polarities are
often used. Once an extract with promising pharmacological activity is identified, it goes
through successive bioactivity-guided fractionations until the pure bioactive compounds
are isolated. There are several limitations associated with this method, for example, as
some source organisms are non-culturable and in some instances some cease to produce
NPs outside their natural habitat. However, to overcome these challenges, several new
techniques have been developed. Examples include in situ analysis, NP synthesis induction,
and heterologous expression of biosynthetic genes. Another common challenge is that the
crude extracts may contain known NPs, NPs that are not drug-like, or inadequate quantities
of NPs for characterization. This challenge can be addressed by developing methods for
dereplication, extraction, and pre-fractionation [1].

Despite its effectiveness, conventional bioactivity-guided fractionation and isolation
is a time-consuming process that may only sometimes lead to discovery of new com-
pounds [1,102]. For instance, this method is currently being used to identify bioactive
molecules from Traditional Chinese Medicines [103]. Moreover, library sizes have dras-
tically increased, and traditional screening methods are no longer effective compared to
virtual screening. For example, 1.2 billion non-covalent lead-like molecules and 6.5 million
electrophiles were docked against the main viral protease (MPro). From these, 29 non-
covalent and 11 covalent inhibitors were identified as potential inhibitors [104].

While conventional screening methods may provide empirical evidence of compound
activity through direct or physical testing, virtual screening methods offer faster, more
cost-effective ways to eliminate or prioritise compounds for further research.

3.1.2. Modern Drug Discovery Methods

The integration of molecular biology, biochemistry, and structural biology has ushered
in a new era for drug design [105–107]. Rational drug design represents a contemporary
approach grounded in an exhaustive understanding of the disease mechanism and the
target molecule’s structure and function. Such intrinsic knowledge enables researchers to
develop particular and potent therapeutic agents targeting particular interactions. How-
ever, creating these agents requires extensive research into the disease and the targeted
molecule’s nature. It is widely regarded as one of modern medicine’s most innovative
approaches [108].

High-throughput screening (HTS) technology maximises efficiency while evaluating
large libraries of compounds for their biological activity against specific targets or disease
models within pharmaceutical research settings. HTS can be employed on several com-
pound libraries, such as synthetic or natural product extracts, genome-scale gene knockouts,
or RNA interference reagents (Figure 9). Although HTS yields rapid discoveries of active
compounds, obstacles such as a lack of proper assay materials and potential inaccuracies
may arise to limit its effectiveness [109,110].

Fortunately, computational tools like molecular modelling or docking enable re-
searchers to expect interactions between generated molecules and their intended targets
while also determining the chemical properties of these agents so they can assign priority
levels before testing [111,112]. While computational methods have shown remarkable
potential in accelerating drug discovery efforts, their success relies heavily on two pri-
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mary factors: the quality and relevance of input data sets and the algorithms’ efficacy and
precision [113–115].
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Over the past years, several studies have explored the properties of phytochemicals
as either adjuvants or inhibitors to enhance the potency of existing antibiotics, showing
promising results for future medical applications. By employing computational techniques
like virtual screening, molecular docking, QSAR modelling, and network pharmacology,
scientists can quickly and more efficiently discover and enhance natural compounds with
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activity against drug-resistant targets (Figure 9) [1,29,116,117]. For example, Epigallocate-
chin Gallate (EGCG) found in green tea targets β-lactamases enzymes, which ae responsible
for anti-biotic resistance in bacteria and efflux pumps [118,119]. Allicin is another natu-
ral compound found in garlic that targets bacterial efflux pumps and prevents biofilm
formation [120].

Modern drug discovery methods provide insight into the mechanisms underlying
phytochemical action towards drug resistance, thus adding to our understanding of such
diseases. Advanced analytical methods that help isolate, identify, and characterise potential
compounds have recently been applied. Furthermore, combining separation and detection
methods through hyphenated approaches such as LC-MS and LC-NMR are efficient in
streamlining compound identification (Figure 9) [121–123].

4. Computational Approaches to Identifying Potential Phytochemical Drugs

Computational approaches have emerged as an effective means of identifying and
optimising phytochemical therapeutics. For instance, machine learning, virtual screening,
molecular dynamics simulations, and molecular docking have previously been used to
identify and modify the biological activity of phytochemicals (Figure 9) [124].

Virtual screening is a popular computational technique in drug discovery that can
rapidly evaluate and prioritise compounds for experimental testing against a specific target
or disease model [125–127]. Several approaches can be used, e.g., molecular descriptors
and fingerprint-based similarity searching to ligand-based pharmacophore models or
structure-based techniques. [128–130]. Virtual screening methods can be applied to large
databases containing known phytochemicals or in-silico-generated libraries mimicking
natural products [131]. This efficient technique manages large datasets and can reduce the
number of compounds evaluated in biological assays [132].

4.1. Molecular Docking

Molecular docking has emerged as a game-changer in phytochemical drug discov-
ery, offering a computational strategy to predict a phytochemical’s binding mode to its
target protein(s) [133]. This tool is indispensable in selecting phytochemicals with high
potential for further experimental investigation. There are numerous computational tools
and algorithms available that have been developed. Examples of commonly used tools are
AutoDock Vina, AutoDock GOLD, Discovery Studio, FRED, Glide, ICM, Surflex, MCDock,
MOE-Dock, FlexX, DOCK, LeDock, rDock, Cdcker, LigandFit, and UCSF Dock [134]. Molec-
ular docking has become indispensable in identifying molecular targets of nutraceuticals in
the treatment of several diseases [124]

For instance, during the COVID-19 pandemic, molecular docking was instrumental in
assessing and validating the ability of phytochemical ligands to interact with druggable
targets for SARS-CoV-2 replication and pathogenesis [135] Among the predicted SARS-CoV-
2 targets, the main protease or 3C-like protease (3CLpro) stood out as a significant druggable
target due to its high conservation and the fatal impact its mutation would have on the
virus [136]. A study by Tiwari et al. (2024) screened 408 phytochemicals from several plants
that possess antiviral properties against the protein furin. Molecular docking revealed three
compounds with good binding scores. Withanolide showed the lowest binding energy of
−57.2 kcal/mol followed by robustaflavone and amentoflavone with a binding energy of
−45.2 kcal/mol and −39.68 kcal/mol, respectively. Additionally, ADME analysis revealed
drug-like properties for all three phytochemicals. Hence, they concluded that the three
phytochemicals may have therapeutic potential for SARS-CoV-2 by targeting furin. Another
study by Chouhan et al. (2023) also used computational methods to investigate microbially
derived natural compounds against the Mycobacterium tuberculosis RpfB protein. They
used structure-based virtual screening (SBVS), drug-likeness profiling, molecular docking,
molecular dynamics simulation, and free-binding energy calculations [137].

In another study, 43 drugs and 35 phytochemical candidates were selected for molecu-
lar docking studies based on their potential inhibitory effects towards the Spike glycopro-
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tein of SARS-CoV-2. These candidates passed toxicity prediction and drug likeliness and
demonstrated consistent docking to all the variants. Liquiritin (21) (a repurposed drug) and
apigenin (22) (a phytochemical) (Figure 10) emerged as top contenders based on docking
score, ADMET analysis, and drug likeliness profiles. However, in vitro and in vivo studies
are yet to be carried out to validate its potency [138].
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Additionally, other phytochemicals, such as phenolics and terpenoids, have shown
potential as leads, including quercetin (23), luteolin (24), and neoandrographolide (25)
(Figure 10) that were identified as potential inhibitors of SARS-CoV-2 druggable protein
targets. It was shown that their interaction could disrupt viral replication and pathogene-
sis [139].

Molecular docking has also been instrumental in discovering anticancer drugs from
phytochemicals. For instance, in a study by Swargiary and Mani (2021), bayogenin (26),
Asiatic acid (27), and andrographolide (28) (Figure 11) were revealed as the best lead
compounds to target Hexokinase 2 (HK2) through molecular docking. Asiatic acid (27) also
interacted with HK2, albeit less effectively than bayogenin and andrographolide. These
compounds may be novel anticancer agents targeting HK2, pending further in vitro and
in vivo experimental studies [140]. In another study on Sauropus androgynus, molecular
docking and network pharmacology were employed to identify prime target genes and
potential mechanisms, with AKT1, mTOR, AR, PPID, FKBP5, and NR3C1 being iden-
tified [141]. The PI3K-Akt signalling pathway, an essential regulatory node in various
pathological processes, was significantly impacted. This study combined network pharma-
cology, molecular docking, and in vitro experiments to better understand the anticancer
and anti-inflammatory molecular bioactivities of S. androgynous [141].
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4.2. Molecular Dynamics

Molecular dynamics (MD) may also play an important role to refine docking or virtual
screening results because biomolecules in the human body are dynamic, unlike the static
conformations used in traditional structure-based drug design methods. Therefore, under-
standing the changing molecular structure of proteins can be critical. Molecular dynamics
(MD) predicts biomolecule molecular and structural changes due to inter- and intramolec-
ular forces, making it critical for drug discovery studies [132]. Several software tools can
be used in MD simulation; for example, GROMACS 2024.2, AMBER 2024, and NAMD
3.0 are commonly used by computational scientist because of their robust computational
algorithms and ability to handle large and complex molecular systems [142]. Moreover,
molecular dynamic simulations can augment structure models by adding dynamics and
atomic-scale movements [143]. Several studies have used MD simulations to study the
interaction between flavonoids and G-quadruplex DNA. The use of MD simulations is vital
in predicting the affinity of flavonoids for binding to G-quadruplex DNA, which plays an
important role in cancer treatment [144,145]

4.3. Machine Learning and Artificial Intelligence

Artificial Intelligence and machine learning (ML) algorithms hold immense potential
for improving our understanding of phytochemistry and its application to medical science.
For example, there are several phytochemicals whose mechanisms of actions of action have
not been elucidated. Understanding the mechanism-of-action (MoA) of phytochemicals
and the prediction of potential drug targets plays an important role in small-molecule
drug discovery. For example, a study by Trapotsi et al. (2021) compared bioactivity data
from the escape database and cell morphology information from the Cell Painting Data to
predict bioactivity data of compounds [146]. The same approach can be used to predict the
bioactivities of phytochemicals in future studies. These methods offer convenient ways to
explore how certain structural elements affect a compound’s qualities, such as bioactivity
or biochemical behaviour. Researchers have provided several insights into phytochem-
ical research by employing machine learning (ML) techniques like deep learning and
network-based approaches [147]. These powerful computational tools allow researchers
to analyse the intricate connections between phytochemical molecular characteristics and
their biological properties, thereby identifying potential targets for therapy development.
Moreover, machine learning offers new avenues for developing therapies based on par-
ticular phytochemicals to predict possible patient-specific reactions [148]. In one study,
Shin et al. (2023) developed a workflow comprising two quantitative structure-activity
relationship-based machine learning models to discover novel glucocorticoid receptor
(GR)-antagonizing phytochemicals. The two models identified 65 phytochemicals that
antagonised GR. They found that demethylzeylasteral (29) (Figure 12), a phytochemical of
the Tripterygium wilfordii Radix, exhibited potent anti-obesity activity in vitro [149].
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Another study evaluated a novel computational screening strategy that classified
bioactive compounds and plants in semantic space generated by word embedding algo-
rithms. The classifier showed good performance in binary (presence/absence of bioactivity)
classification for both phytochemicals and plant genera, and this strategy led to the dis-
covery of antimicrobial activity of several essential oils from Cinnamomum sieboldii and
Lindera triloba against S. aureus. The results validated machine-learning classification in
semantic space and showed that this approach can be helpful in exploring bioactive plant
extracts [150].

García-Pérez et al. (2020) combined plant in vitro culture with neuro-fuzzy logic to
characterise and optimise experimental conditions to produce phenolic compounds in the
Bryophyllum spp. plant under nutritional stress. The algorithms could learn from experimen-
tal observations and construct a model with prediction abilities to characterise flavonoid
content, total phenolic content, and radical-scavenging activity. They also proposed the
combination of two cutting-edge methodologies involving plant in vitro culture and arti-
ficial intelligence-based tools to identify the phytochemical potential of under-exploited
medicinal plants [151]. Artificial intelligence–based approaches such as machine learning
have great potential for improving the bio-relevance of in vitro biological assays [152].

5. Phytochemical Limitations

Despite several advantages of using phytochemicals to develop drugs, several chal-
lenges can affect the efficiency, safety, and practicality of developing new drugs. The first
issue is complexity and variability of phytochemical compositions in plants, which can
lead to inconsistencies in characterisation and isolation of phytochemicals [153]. Environ-
mental factors such as climate, geographical location, and soil quality play an enormous
role in the phytochemical profile of the plant, making standardisation difficult [154,155].
Second, pure compounds’ extraction and purification processes are time-consuming and
sometimes very low yields are obtained, which might affect the ability to conduct extensive
pharmacological studies and further development [156,157]. Addtionally, the structures of
several phytochemicals are very complex, which may pose difficulty when the structure
needs to be modified or optimised.

Several phytochemicals have low bioavailability due to their poor solubility and
stability characteristics. However, this challenge can be overcome by the developing drug
delivery systems [158]. Lastly, safety and toxicity concerns pose another limitation since
some phytochemicals might have adverse effects. Thus, comprehensive toxicological
evaluations need to be carried out [159]. However, despite these challenges, ongoing
research and technological advancements are gradually overcoming these challenges,
enabling more effective use of phytochemicals in drug discovery.

6. Conclusions

Using phytochemicals as a basis for drug discovery is a promising avenue for creating
novel therapeutic drugs. Moreover, coupled with current technologies, phytochemicals
can be harnessed and applied in drug discovery processes. For example, optimising
high-throughput screening and application of computational techniques can significantly
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streamline progress in creating effective therapeutics from phytochemicals. The use of
emerging technologies and interdisciplinary research will help in maximising the potential
benefits of phytochemicals in treating various diseases. By using or applying these cutting-
edge tools, we can unlock new innovative therapeutics with far-reaching implications for
patients worldwide.
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