Multi-Target Approach of Murraya koenigii Leaves in Treating Neurodegenerative Diseases
Authors
Mario Tan
College of Science and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines; [email protected]
Niti Sharma
Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea
Seong An
Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea
Neurodegenerative diseases (NDs) mainly affect neurons and gradually lead to a loss of normal motor and cognitive functions. Atypical protein homeostasis—misfolding, aggregations and accumulations, oxidative stress, inflammation, and apoptosis—are common features in most NDs. To date, due to the complex etiology and pathogenesis of NDs, no defined treatment is available. There has been increasing interest in plant extracts as potential alternative medicines as the presence of various active components may exert synergistic and multi-pharmacological effects. Murraya koenigii (Rutaceae) is utilized in Ayurvedic medicine for various ailments. Pharmacological studies evidenced its potential antioxidant, anti-inflammatory, anticancer, hepatoprotective, immunomodulatory, antimicrobial, and neuroprotective activities, among others. In line with our interest in exploring natural agents for the treatment of neurodegenerative diseases, this review presents an overview of literature concerning the mechanisms of action and the safety profile of significant bioactive components present in M. koenigii leaves to support further investigations into their neuroprotective therapeutic potential.
Keywords: neurodegenerative disease, Murraya koenigii, essential oils, toxicity, carbazole alkaloids, natural products
Click on "Archives" to access the full archive of scientific preprints. You may use the categories and the search functionality to find select preprints you're interested in.