Preprint / Version 1

Antimicrobial potential of Indian Cinnamomum species

Authors

  • Bharat Singh aAmity of Biotechnology, Amity University Rajasthan, Jaipur 303 002, India
  • Sheenu Nathawat aAmity of Biotechnology, Amity University Rajasthan, Jaipur 303 002, India
  • Ram Sharma bDepartment of Botany, University of Rajasthan, Jaipur 302 004, India

Keywords:

Cinnamomum species, Essential Oils, Antimicrobial Activity, Minimum Iinhibitory Concentration, GC–MS, GC-FID Analysis

Abstract

Cinnamomum is the largest genus of Lauraceae family and has been used as spices, food, and food additives by the people. Total 15 Cinnamomum species are distributed in different parts of Indian sub-continent. Different parts (leaves, stem bark, stem wood, roots, flowers, and fruits) of these species were shade-dried and used for the determination of essential oils. A total of 19 essential oils were identified and quantified from the different parts of (leaf, stem bark, stem wood, root, flower, and fruit) of 15 Cinnamomum species. The stem bark of C. altissimum was rich in the presence of essential oils (52.2 %) whereas minimum levels of essential oils were recorded in roots (17.9 %). The γ-terpinene (11.1 %) was reported as the major component essential oil in C. subavenium flowers. Methanol extract of C. camphora stem wood showed stronger lowest minimum inhibitory concentration against S. aureus (25 ± 0.01 μg/ml), H. pylori (29 ± 0.05 μg/ml), B. subtilis (31 ± 0.03 μg/ml), E. faecalis (33 ± 0.01 μg/ml), C. albicans (38 ± 0.03 μg/ml) when compared to amoxycillin (S. aureus 56 ± 0.05 μg/ml; B. subtilis 27 ± 0.04 μg/ml, E. faecalis 22 ± 0.01 μg/ml), streptomycin (H. pylori 38 ± 0.02 μg/ml) and fluconazole (C. albicans 56 ± 0.01 μg/ml). Methanolic extract of C. camphora stem wood demonstrated maximum antimicrobial activity against S. aureus, H. pylori, B. subtilis, E. faecalis and C. albicans. The essential oil of C. altissimum stem bark displayed significant lowest MIC against S. aureus (21 ± 0.03 μg/ml), E. coli (22 ± 0.03 μg/ml), E. cloacae (37 ± 0.06 μg/ml), L. monocytogenes (47 ± 0.08 μg/ml), and P. chrysogenum (101 ± 0.07 μg/ml) when compared to amoxycillin (E. coli 18 ± 0.01 μg/ml, E. cloacae 21 ± 0.05 μg/ml, L. monocytogenes 31 ± 0.03 μg/ml), and fluconazole (P. chrysogenum 101 ± 0.07 μg/ml). The essential oil of C. altissimum stem bark displayed maximum antimicrobial activity against S. aureus, E. coli, E. cloacae, L. monocytogenes, and P. chrysogenum. Cinnamomum essential oils may be used as an alternative source of antibacterial and antifungal compounds in the treatment of various types of infections. Keywords: Cinnamomum species, Essential Oils, Antimicrobial Activity, Minimum Iinhibitory Concentration, GC–MS, GC-FID Analysis